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A kinetic model, which involves emigration, immigration, birth, death, and fluctuation terms, is utilized to investigate the evolution
of city-size distribution. The Boltzmann-type equation and the corresponding Fokker—Planck equation are obtained to analyze the
urban size distribution. Three different population variable functions, containing both birth and death rates, are considered. For
each population variable function, the closed form of its stationary solution is derived. It is found that the size of urban population
distribution follows a power law. Numerical simulation illustrates the correctness of the results.

1. Introduction

A number of works have shown that city-size distribution
follows power laws. Benguigui and Blumenfeld-Liebertha [1]
create a rank-size logarithmic plot’s equation and several
models to describe different types of city-size distribution.
Their results illustrate that the distribution of city-size obeys
a power law distribution or the concave distribution on the
logarithmic graph of the rank size. Based on the city-size data
of the southeast and southwest in the United States, Garmes-
tani et al. [2] test the size category and power law behavior of
the urban size distribution. According to the size distribution
of France communes, Calderin-Ojeda [3] obtains a conclu-
sion that the upper quartile of the commune size data in the
early period (1962-1975) strictly follows the power law. On
account of the Chinese city-size data of 22 provincial units, Li
and Zhang [4] verify that the urban population conforms to
the power law distribution through statistical methods. Tak-
ing China as an example, the empirical research on the
power law distribution of urban rank size is presented in
the study of Wu and Yang [5].

Another classical explanation of the city-size distribution
is Zipf’s law [6], which is a power law with an index equal to
1. Marsili and Zhang [7] establish a master equation according
to the exchange rate of the increase or decrease of a city’s
population size. Ghosh et al. [8] introduce a resource utilization

model to study the city-size distribution. On account of the data
from India’s population census and China’s population census,
Gangopadhyay and Basu [9] prove that the urban size distribu-
tion of India and China satisfies Zipf’s law. Eeckout [10, 11]
concludes that the distribution of urban population is in line
with the lognormal distribution. Gonzalez-Val [12] analyzes
the size distribution of Spanish cities from a new perspective,
focusing on the role of distance. Levy [13], Zhang et al. [14], Xu
and Zhu [15], and Giesen et al. [16] investigated the city-size
distribution from different angles.

Gabaix [17] creates models of random growth with Gibrat’s
law in the upper tail to explain Zipf’s law for cities. Zanette and
Manrubia [18] utilize a stochastic model that incorporates the
essential mechanisms with govern city formation and find
that population distribution follows a power law. Based on
the Indian population census data in the year 2011, Devadoss
etal. [19] use statistical approaches to conclude that lower tail
cities in India obey a power law. Utilizing a kinetic model, we
find that the city-size distribution obeys a power law.

Combining the immigration and emigration factors,
Gualandi and Toscani [20] utilize a kinetic model to investi-
gate the features of urban agglomerations. The number of
urban population is represented by the variable X(X > 0).
The interaction equation for the change in urban population
reads as follows:
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X* =X - P(X)X + E(X)Z 4 X, (1)

where 7 is a random variable. The functions P(X) and E(X)
describe the rates of people who move out and move in the
city. The variable Z(Z > 0) denotes the quantity of popula-
tion that can migrate toward a city from out of the city.
When the urban population alters, it goes from X to X*.

Considering a certain migration function and using the
Boltzmann-type equation and corresponding Fokker—Planck
equation, Gualandi and Toscani [20] find that the equilib-
rium density follows a power law for large cities and a log-
normal law for middle and low cities.

Inspired by the work of Gualandi and Toscani [20], we
consider the interaction rule equation, which includes immi-
gration, emigration, birth, death, and fluctuation terms. A
kind of Boltzmann equation is employed to describe the
time evolution of population density by using the rarefied
gas dynamics theory. We obtain the equation that represents
the time—behavior of the average urban population. The
Fokker—Planck equation relating to the Boltzmann-type
equation is derived by using the asymptotic limit method.
Because the birth and death are unfixed, we consider a pop-
ulation variable function that involves birth and death. We
consider three different population variable functions, which
correspond to different Fokker—Planck equations, from
which we obtain an explicit form of the stationary solution.
It is found that the size of urban population distribution
follows a power law distribution.

Our work is different from that of Gualandi and Toscani
[20]. First, the interaction rule in the study of Gualandi and
Toscani [20] contains immigration, emigration, and random
fluctuation factors, while the interaction rule in our work
includes immigration, emigration, birth, death, and random
fluctuation factors. Second, due to different interaction rules,
the Boltzmann-type equation is not the same as that of Gua-
landi and Toscani [20]. Third, we consider three different
population variable functions about birth and death rates,
which are not investigated by Gualandi and Toscani [20].
Finally, the corresponding Fokker—Planck equations are dif-
ferent, and the steady-state solutions are distinct from those of
Gualandi and Toscani [20]. Here, we state that our obtained
results are similar to those presented by Gualandi and Toscani
[20]. Namely, the city-size distribution still obeys a power law.

The structure of this work is as follows: Section 2 pro-
vides the kinetic model and its basic parameter settings. The
model describing the evolution of the urban population is
considered in Section 3. A Fokker—Planck equation is dis-
cussed in Section 4. Section 5 presents the numerical analysis
of our results. Section 6 is the conclusion.

2. Kinetic Model

Based on the methods in the study of Gualandi and Toscani
[20], we assume that the city population change is related to the
factors about immigration, emigration, birth, death, and ran-
dom fluctuation. Although the number of urban population X
is obviously a natural number, we assume that X € (0, +0) in
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the rest of the paper. The interaction equation for the change
of urban population evolves as follows:

X* =X - P(X)X + E(X)Z + K(X)X + nX. (2)

The left-hand side denotes the population after the
change. The first item on the right-hand side indicates the
initial population of the city. The functions P(X) and E(X)
denote the rates of people who move out and move in the
city. The variable Z(Z >0) represents persons who migrate
toward a city from out of the city. And the forth item shows
the change in population involving birth and death rates,
where K(X) is a population variable function. Assume that
7 is a random variable with mean zero and variance §.

Birth and death can be described by using statistical data
or stochastic processes [21]. Here, we assume that birth and
death are only related to the size of the urban population.
Suppose that K(X) takes the following form:

K(X) = B(X) - D(X), (3)

where B(X) and D(X) are functions describing the birth and
death rates, respectively.

The total number of people moving out cannot be greater
than the original population of a city. Thus we assume that
P_ < P(X)<P,,where P_ > 0and P, < 1. Similarly, we sup-
pose that the upper and lower bounds of E(X) and K(X) are
0 < E(X)<E., KL< K(X)<K,, where E, <1 and K, <1.

Next, suppose that the population distribution in the
external environment is known. V(Z) is the probability den-
sity function of variable Z. We suppose that V(Z) is bounded
variable and satisfies as follows:

/ V(Z) dZ:l,/ ZV(Z)dZ = M,. (4)

In Equation (4), M, indicates the average population
which migrates toward a city from out of the city.

We use the dynamic model of particle collision to
describe the changing characteristics of urban population
distribution. Let F(X, t) denote the probability density func-
tion of city-size, which is related to time ¢ and variable X. It is
generally assumed that F(X, t) satisfies as follows:

/ F(X.1)dX = 1. (5)

Note that the change of F(X,t) obeys a weak form of
Boltzmann-type equation, namely, for all smooth functions
@(X), F(X,t) as follows:
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% A F(X, t)p(X) dX

:</R

where the bracket (.) represents the mathematical expecta-
tion, and the left side of Equation (6) reflects the population
distribution evolution of the city caused by the interaction at
time ¢#>0. Choosing ¢(X) =1, the right-hand side is zero,
which is verified that Equation (6) satisfies the conservation
property. The average number of urban population M(t)
changes over time, namely,

(6)
(0(X*) - 9(X))F(X, f)V(Z)dXdZ>,

2
T

M(t) = A XF(X, t)dX. 7)

Choosing ¢ = X in Equation (6), we get the evolution of
the mean value as follows:

%M(t) - < /R i (X* - X)F(X, t)V(Z)dXdZ>. (8)

On the basis of the previous discussion, using the inter-
action rule (Equation (2)) derives as follows:

(X* - X) = =P(X)X + E(X)Z + K(X)X. (9)

Substituting Equation (9) into Equation (8) yields as follows:

%M(t): < A - P(X)XF(X. t)dX

+M, A E(X)F(X, t)dX + /

N R,

K(X)F(X, t)dX>.
(10)

According to the assumption P(X)>P_, E(X)<P,, and
K(X)<K_.. Then the mean M(¢) satisfies the following inequality:

d
EM(t) <-P_M(t) + E.M, + K, M(t). (11)

Following the idea in the study of Tchorbadjieff and
Mayster [22], we suppose that the average size of a city’s
population does not exceed the maximum value M,
where M ., is defined as follows:

Ey

Mmax = P_ _ K+

M, (12)

where the constants P_ and K satisty P_ — K, >0.

If P(X), E(X), and K(X) are constants, namely P(X) = P,
E(X)=E, and K(X)=K. Equation (10) becomes the
following:

%M(t) = —PM(t) + EM, + KM(¢). (13)

Solving Equation (13), we acquire the expression of M(t),
which reads as follows:

+ (M(O) %> elK=P)t, (14)

_ EM,
T P-K

M(¥) - %

If P>K, from Equation (14), when t — oo, the city’s
average population M(t) converges to EM,; /P — K.

On the other hand, we consider that P(X) and E(X) are
constants. In the Logistic growth model, K(X) =7, —aX,
where r; is the inherent growth rate, and a =1,/X,,, where
X, is the maximum population capacity of the city. Then 0 <
K(X)<r,, Equation (10) becomes the following:

iM(t) = —PM(t) + EM; + ryM(t) — a/ X2F(X, t)dX.

dt R,
(15)

According to Jensen’s inequality

(A+xf(x, t)dx) s Awaf (e, 1) (16)

from which we have the following:

d
EM(t) < —PM(t) + EM, + roM(t) — aM?(t). (17)

Because the right-hand side of inequality (Equation (17))
contains the term —aM?(t), we obtain that the right-hand
formula holds if and only if M(¢) does not cross the bounded
value as follows:

—2a

M(t)_{P—r0+\/(rO—P)2+4aKM1}. (18)

Finally, we obtain the following:

M(t) < max{M(0),M(t)}. (19)

Note that the city’s average population is bounded.
3. The Fokker-Plank Equation

In the ordinary way, it is difficult to find the analytical solu-
tion of Equation (6). A feasible approach is to investigate its
large-time behavior, which is found in the study of Zhou
et al. [23] and Gualandi and Toscani [24], to consider the
kinetic model. We use the asymptotic limit method to derive
the Fokker—Planck model relating to the Boltzmann-type
equation. We employ the scaling in the study of Stanley
et al. [25] as follows:



P(.) = €P(.), E(.) = €E(.), K(.) = €K(.), n — €%y,
(20)

where a and ¢ are positive constants, and € < 1.

The scaling causes a small change in the average urban
population in Equation (13), but this change is independent
of the value of the exponent a. According to the proportional
setting in Equation (20), the average urban population M ()
satisfies as follows:

9 M(t) = e(~PM(£) + EM, + KM(1)). (21)

Considering t — et, we obtain the following:

d

M) = ~PM(t) + EM; + KM(0). (22)

Note that the scale parameter € is not included in Equation
(22). Therefore, the variables in Equation (8) can be simplified
by scaling. The properties of Equation (22) remain
unchanged when the interaction rule (Equation (2)) changes
slightly.

Using A(X, Z) to represent the change of urban popula-
tion as follows:

A(X.Z) = —=P(X)X + E(X)Z + K(X)X, (23)

then the interaction rule (Equation (2)) satisfies as follows:

(X* - X) =A(X.Z) (24)

and

(X* = X)) = AX(X. Z) + 6X2. (25)

Assuming a=1/2. After scaling, we obtain A(X,Z)
— ¢A(X, Z). Then, we have the following:

(X* - X) = eA(X, Z) (26)

and

(X* = X)?) = 2A%(X, Z) + e6X2. (27)

Using Taylor expansion of ¢(X) around X, we write
@(X) as follows:

PX) = () = (X = X)) (X) +5 (X" = X" (X)

L - X" (R).

T3

where X =X +0(X*-X),0<0< 1.
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Using Equations (26) and (27), we obtain the following:

D) = 9(X) = €| AX.2)9 (X) + 56X (X)
+0:(X,2),

where

0.(X.2)= %GZAZ(X, Z)p" (X) + é (X* - X)%p" (X).
(30)

Substituting Equation (29) into Equation (6), after the
time scaling t — et, we obtain the following:

%/ F(X,t)(p(X)dX:/ [A(X. Z)p'(X)
Re Re (31)
+ %go(x)ango” (X)] F(X, £)dX + éRg(t),

where

R.(t) = A 0. (X, Z)F(X. t)dX. (32)

Considering the remainder term 1/eR.(t), we get the
following:

lim-R,(t) = 0. (33)

Thus, we obtain the following:

d
— F(X,t)p(X)dX=
i, P 000

1 (34)
A [A(X,Z)ga'(X)—i—zéXz(p"(X) F(X,t)dX.

Applying integration by parts and the boundary conditions
vanishing at infinity, we derive the following Fokker—Planck
equation:

OF(X. 1)

_I[FX.0AKX, 2)] | 3P[XF(X, 1)

ot X 2 0X?

(35)

4. Steady-State Distribution of City-Size

Generally speaking, it is difficult to obtain the explicit solu-
tion of the Fokker—Planck equation (Equation (35)). How-
ever, we recognize that the Fokker—Planck equation exists as
a steady-state solution, which keeps the main feature of the
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Boltzmann-type equation. As usual in the kinetic model, it is
convenient to study certain asymptotics, which leads to sim-
plified models of the Fokker—Planck equation. By means of
this way, it is to investigate stationary state solution which
retains the same information on the microscopic interaction
at a macroscopic level [26]. Thus, we consider the steady-state
solution F, (X) of the Fokker—Planck equation (Equation (35)).

Assume that P(X), E(X), and K(X) are constants, namely
A(X,Z)= - PX+EZ+KX. Equation (35) becomes the
following:

d[Foo(X)(=PX + EZ + KX)] 6 d*[X*Foo(X)]
dx T2 dx?

(36)

Integrating both sides of the above, we obtain the following:

8 d[X*Fo (X)]
Fo(X)(-PX+EZ+KX)=z—-77"—-. 37
() (PX+ B2+ KX) = 355 7
Setting g = X?F,(X), we have the following:
éd
i (-PX+ EZ+ KX) =220 (38)

Solving Equation (38), we obtain the explicit stationary
solution as follows:

Foo(X) = HX3(P-K)2¢5¢ (39)

In Equation (39), the positive constant H is to ensure that
the probability density integral in steady state is one, namely
ﬁe X)dX =1. Considering y=2EZ/5X, we have X =
2EZ/5y and dX =2EZ/5( - 1/y*)dy. From Equation (39),
we obtain the following:

{ZEZ} —3(P-K)-1 [+co

5 y i K=Plgr dy = 1. (40)

0

Using I'(1- = [[*y s KPler dy yields as
follows:
-4(P-K)-1
H[%} r(1 —%(K—P)) _1, (41)

from which we get the following:

1
2Pk . 42
TEATE—g-n) @
The rank R(X) of X in a city is as follows:
R(X)=X"7, (43)

where y is a constant. In Zipf’s law, the rank R(X) =X"1.

According to Equation (39), it is found that the steady-
state density is an inverse gamma function. The equilibrium
density has a polynomial rate of decay about X, namely,

2(P - K)

5 T2 (44)

1+y=

The rank R(X) of X in this situation is as follows:

R(X) — X7 = X—I—Z(P—K)/E. (45)

When y =1+ 2(P-K)/8=1, namely the classical Zipf’s
law is obtained for P = K. However, Zipf’s law generally does
not hold in the study of Verbavatz and Barthelemy [27].

If P(X) and E(X) are constants and K(X) is variable. In
general, the number of births and deaths is not fixed. The
parameters considering birth and death should vary. Ignor-
ing other influencing factors, we discuss that the birth rate
and death rate of a city are only related to the number of
population.

Case 1. According to the Logistic growth model, K(X) =1, —
aX and a=ry/X,,. Then 0 < K(X)<r,, Equation (35) is writ-
ten as follows:

d[Foo(X)(=PX + EZ + (1 — aX)X)] 8 dP[X*F(X)]
ax T2 dx?

(46)

Solving Equation (46), the steady-state solution takes the
following form:

Z(r—P) -2 —%{%mx] (47)

In Equation (47), the positive constant T has been chosen
to fix ﬁe X) dX =1. From Equation (47), it is a polyno-
mial rate decay with respect to X at infinity. The steady
density function (Equation (47)) has a power law tail. If

2P-K) 2
S S (r - P), (48)

it follows that the term X3(o=P)-2

in Equation (47) decays
more slowly than X3P~

K)=2 in Equation (39).

Case 2.
(a) We know that the population growth gradually flat-
ten out when X becomes very big. Thus, we assume

the following:

K(X)=ry(Xte X +eX), (49)



where 7, is the inherent growth rate. We write Equation
(35) as follows:

d[Foo(X)(-PX 4+ EZ 4+ ry(X~'e™* 4+ e¥)X)] 5 d*[X?F,(X)]
dx T2 dx?
(50)

Using

d

x (X7le™®) = —X"2e7X — X7l X, (51)

from Equation (50), we have the following:

Foo(X) = WX 2 [EZXT roSX e, (52)

In Equation (52), the constant W is to ensure that the
probability density integral in the steady-state is 1. From
Equation (52), it is found that the steady-state density
function is a polynomial rate decay with respect to X at
infinity and follows a power (—2P/§ —2).

(b) Consider that K(X)<0, namely

K(X) = —ro(X7te™™ + 7). (53)

Equation (35) becomes the following:

d[F(X)(=PX + EZ — ry(X~te™® + e %)X)]

dax
_ P [X?F (X))
2 dxr
(54)
from which we obtain the following:
Foo (X) _ Wlx—¥—2e§[—EZX’l+r0X’le’X] ) (55)

In Equation (55), the constant W, assures that the integral
of the equilibrium density is 1. From Equation (55), we
find that the equilibrium density function is a polynomial
rate decay with respect to X at infinity and follows a power
(2P/8 —2). Whether K(X) is positive or negative, the
steady-state solution has the same term (X?7/%-2),

Case 3.

(a) Suppose that K(X) is represented as follows:
1+ X
Xe* -

Equation (35) is expressed in the following form:

K(X) =1, (56)

d[Fm(X)<—PX+EZ+rO%)} S d2[X2F, (X)]
X T2 dx?

(57)
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Combining

% (Xle®) = —X72eX - X7le7X, (58)

we obtain the explicit steady-state density function as follows:

Foo(X) = NX 5268 -EZX " —roX1e™] (59)

In Equation (59), the constant N is chosen to satisfy that
the integral of the equilibrium density is one. It is poly-
nomial rate decay with respect to X at infinity. From Equa-
tion (59), we know that steady-state distribution follows
power law distribution.

(b) Suppose that K(X)<0, namely
1+ X

Equation (35) becomes the following:

d[Foc(X) (—PX +EZ - ro%)} S [XPF (X))
dX 2 odxr
(61)

from which we get the following:

Fo(X) = NIX%‘zeé[‘EZX_I*’OX_le_x}. (62)

In Equation (62), the constant N; guarantees that the
integral of the steady-state density is one. From Equation
(62), we conclude that the equilibrium density obeys a
power law. The equilibrium density (Equation (62)) is a
polynomial rate decay with respect to X at infinity. Equa-
tions (59) and (62) have the same term (X5 —2).

Remark 4. From Equations (39), (47), (52), (55), (59), and
(62), we conclude that as X goes to infinity, the city-size
density function F(X, t) is a polynomial rate decay and obeys
a power law. We also say that the city-size distribution fol-
lows a power law (see [5, 8, 20]).

5. Numerical Simulation

The empirical study about the Chinese city rank-size obeys a
power law distribution by using statistical methods [5]. Thus,
theoretically speaking, in this part, we take different values of
the parameters of the stationary city-size density and provide
several numerical results. When the population growth rate
is constant or variable, the steady-state density function of
the urban population is a polynomial rate decay with respect
to X at infinity. Therefore, Equation (39) is used to describe
the asymptotic behavior at steady state. According to
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x1077
5 T T T

45F 1 -

w

--- K=-0.01 - - K=-0.29
— K=-0.15

x1077
1.8 ; ; .

F_(X)

— K=0.1

(b)

FiGure 1: Continued.
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-—- K=-0.1

(d)

FiGure 1: Behaviors of the stationary probability density of urban population size for population growth K. Stationary probability density for
(a) K=-0.01, K=—0.15, K=—-0.29; (b) K=0.01, K=0.1, K=0.19; (¢) K=-0.2, K=0, K=0.2; and (d) K=-0.1, K=0, K=0.1.

growth rate K(X) ranges from —0.29 to 0.2, the probability
density of the steady state is shown in Figure 1. In
Figure 1(a), F,(X) corresponds to K= —0.01 (blue line),
K= -0.15 (black line), and K= —0.29 (red line). In

Equations (39) and (42), we only need to consider the values
of E, Z, K, P, and 6.

First, we consider different stationary city-size densities of
urban population growth rate. When the urban population
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x1077
8 T T T

F (X

--- P=0.02 --= P=0.06
— P=0.04

(b)

FiGure 2: Behaviors of the stationary probability density of urban population size for emigration P. Stationary probability density for
(a) P=0.2, P=0.4, P=0.6 and (b) P=0.02, P=0.04, P=0.06.

Figure 1(b), the values of K are 0.01, 0.1, and 0.19, F,(X) (black line), and K=0.2 (red line). Figure 1(d) contains
corresponds to K=0.01 (blue line), K=0.1 (black line), K= -0.1 (blue line), K =0 (black line), and K =0.1 (red
and K =0.19 (red line). In Figure 1(c), the stationary pro- line). From Figure 1, we obtain the conclusion that the
file F,(X) corresponds to K= —0.2 (blue line), K=0  increase of K, depicting the urban population growth
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%1077
2.5 T T T

F,(X)

X x107

--- 8=06 --8=1
— §=08

(b)

FiGure 3: Behaviors of the stationary probability density of urban population size for variance §. Stationary probability density for (a) 5§=0.3,
6=04,6=0.5and (b) §=0.6,5=0.8, 5=1.

rates, results in stationary density possessing the lower  emigration rates when the urban population growth rate
vertex and fatter tails. K =0.0001. When the emigration rate of the urban popula-

Second, we consider the probability density of the urban  tion is 0.02, 0.04, 0.06, 0.2, 0.4, and 0.6. The probability
population size corresponding to different urban population  density of the steady-state is shown in Figure 2, which shows
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that the lower the emigration rate of the urban population is,
the higher the vertex of probability density is. Lower emigra-
tion has fatter tails.

Third, we consider the steady-state density of urban popu-
lation distribution corresponding to the difference of variance
when the urban population growth rate K =0.0001 and emi-
gration P =0.12. When the variance 6 is 0.3, 0.4, 0.5, 0.6, 0.8,
and 1, the probability density of the steady urban population
is shown in Figure 3. We conclude from Figure 3 that the
larger the variance is, the higher the vertex of probability
density is. Meanwhile, lower variance possesses fatter tails.

6. Conclusion

The evolution of the urban population is related to many
factors, including urban immigration, emigration, birth,
and death. We use a dynamic model to study the city-size
distribution involving urban immigration, emigration, birth,
and death. We describe the interaction rule of urban popu-
lation change and give the Boltzmann-type equation, from
which we obtain the corresponding Fokker—Planck equation.
We discuss three different population variable functions and
obtain stationary city-size density functions. It is concluded
that when the population growth rate is a constant or a vari-
able function, the equilibrium city-size distribution follows a
power law. Numerical simulation illustrates the results.
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