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In this paper, the problem of direction-of-arrival (DOA) estimation for strictly noncircular sources under the condition of unknown
mutual coupling is concerned, and then a robust real-valued weighted subspace ftting (WSF) algorithm is proposed via block sparse
recovery. Inspired by noncircularity, the real-valued coupled extended array output with double array aperture is frst structured via
exploiting the real-valued conversion.Ten, an efcient real-valued block extended sparse recovery model is constructed by performing
the parameterized decoupling operation to avoid the unknown mutual coupling and noncircular phase efects. Tereafter, the WSF
framework is investigated to recover the real-valued block sparsematrix, where the spectrumof real-valuedNCMUSIC-like is utilized to
design aweightedmatrix for strengthening the solutions sparsity. Eventually, DOA estimation is achieved based on the support set of the
reconstructed block sparse matrix. Owing to the combination of noncircularity, parametrized decoupling thought, and reweighted
strategy, the proposed method not only efectively achieves high-precision estimation, but also efciently reduces the computational
complexity. Plenty of simulation results demonstrate the efectiveness and efciency of the proposed method.

1. Introduction

Tanks to the growing maturity of array signal processing
technology, parameter estimation gradually occupies an
important position in the felds of vehicle positioning, radar,
medical diagnosis, and so on [1]. As one of the bases for
parameter estimation, direction-of-arrival (DOA) estima-
tion has been a hot topic for decades accompanied by a series
of work [2–4]. Afterwards, benefting from the increasing
development of multiple-input multiple-output (MIMO)
technique, MIMO radar architectures have been developed
to provide high degrees of freedom (DOF) and resolution for
DOA estimation [5]. Unfortunately, the distance between
sensors decreases as the number of antennas increases for a
fxed array aperture. It means that it is quite possible for
closely-spaced sensors to sufer from the unknown mutual
coupling efect. Tereby, it is worthwhile to study DOA
estimation with strong robustness. In this way, this paper

mainly investigates the robust DOA estimation of strictly
noncircular sources with unknown mutual coupling.

Generally speaking, many DOA estimation attempts can
be roughly divided into subspace-based methods [6–9] and
sparse signal recovery (SSR) methods [10–13]. Multiple
signal classifcation (MUSIC) method [6] uses the decoupled
noise subspace to frst achieve super-resolution direction
fnding, diferent from estimation of signal parameters via
rotational invariance techniques (ESPRIT) algorithm [7]
based on the decoupled signal subspace. It should be pointed
out that these approaches have difculty in achieving sat-
isfactory performance under low signal-to-noise ratio
(SNR), insufcient snapshots, or correlated sources.
Tereafter, sparse recovery technique ofers a feasible per-
spective to overcome these drawbacks, which can be cate-
gorized into norm optimization estimators [10, 11] and
sparse Bayesian learning (SBL) approaches [12, 13]. Fur-
thermore, it has been demonstrated that SSR algorithms are
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better than subspace-based methods in challenging cir-
cumstances, such as unsatisfactory SNR or inadequate
snapshots [14].

It can be found that the above methods study circular
signals by default. However, in recent years, DOA esti-
mation of noncircular sources has received extensive at-
tention in parameter estimation [15]. Tis is largely due to
its wide distribution and natural superiorities. To the best
of our knowledge, noncircular sources are commonly seen
in practical communication systems [16], such as ampli-
tude modulation (AM) and binary phase shift keying
(BPSK). More importantly, noncircular sources can
achieve higher accuracy and detect more targets than the
default circular sources [17]. Subsequently, numerous al-
gorithms [18–24] have been presented for noncircular
sources that show the advantage in accuracy. On the one
hand, there are lots of attempts achieved by subspace
technology [18–20]. As shown in [18], noncircular MUSIC
(NC MUSIC) algorithm is derived via combining non-
circularity with MUSIC principle. Whereas, large-scale
spectral peak search results in relatively high computa-
tional complexity. After that, noncircular root MUSIC (NC
Root-MUSIC) approach [19] and noncircular conjugate
ESPRIT (NC C-ESPRIT) algorithm [20] are introduced for
tackling the above problem. On the other hand, DOA
estimation for noncircular sources is implemented from
the perspective of sparse reconstruction [21–24]. In
[21, 22], the joint sparsity-aware schemes for array and
monostatic MIMO radar system are put forward, respec-
tively. With the in-depth research on sparsity, not only
block sparsity but also rank sparsity are simultaneously
utilized to model a nuclear norm penalty framework for
enhancing the solutions sparsity [23]. Although this
method has superiorities in estimation accuracy and res-
olution, it is computationally expensive. Tereby, a unitary
nuclear norm minimization strategy [24] is further pre-
sented to reduce the computational complexity.

It is noted that the array manifolds of the above methods
are normally assumed to be ideal. Nevertheless, such hy-
pothesis may not be applicable to practice due to the ex-
istence of array manifold perturbations, like mutual
coupling [25, 26]. It is generally believed that there may be
unknown mutual coupling between closely-spaced antennas
afected by the interaction of space electromagnetic felds
[26]. Tis perturbation leads to undesired array manifold,
thereby degrading or even invalidating the estimation
performance of these approaches. Afterwards, a large
number of calibration ideas are designed to deal with the
problem of unknown mutual coupling [27–38].

For one thing, a series of calibrations [27–34] for cir-
cular sources have been attempted to estimate DOAs. In
[27], the unknown mutual coupling is modeled as a
complex band symmetric Toeplitz structure, and then
additional auxiliary sensors are added to compensate.
Similarly, the selection matrix is further designed by setting
the antennas at both ends of the original array to be
auxiliary sensors [28]. Unfortunately, these approaches can
only maintain normal direction fnding at the expense of
array aperture. For preserving the array aperture as much

as possible, the parameterized decoupling idea [29] is in-
troduced to decouple the angle parameter and mutual
coupling coefcients. Although this method uses whole
data, its application scope is still limited because it belongs
to subspace-based methods. Diferent from these eforts
using subspace technology, relevant works [30–34] on
sparse recovery have also been carried out. As introduced
in [30], a revised l1-SVD (singular value decomposition)
algorithm is structured by designing a specifc selection
matrix in array. Analogously, the selection matrix is further
implanted into the MIMO framework [31]. Actually, both
the auxiliary sensors and the selection matrix can be
regarded as two embodiments of array compensation. But
they all sacrifce the array aperture. Aiming at this drawback,
an efective block sparse recovery (BSR) approach [32] is
presented by replacing array compensation with parame-
terized decoupling. Moreover, a reweighted BSR algorithm
[33] and a weighted subspace ftting (WSF) method [34] are
further reported for acquiring higher accuracy.

For another, some studies [35–40] on noncircular
sources have been done to estimate DOAs. In [35], a se-
lection matrix is frst constructed to remove the negative
infuence so as to directly apply ESPRITprinciple. Similar to
[27, 28], it is achieved at the expense of array aperture.
Subsequently, an efcient real-valued rank reduction method
[36] using MUSIC principle is derived to efectively avoid the
unknown mutual coupling efect and protect the precious
array aperture. However, these methods are still subject to the
limitations of subspace technology, unlike robust SSR algo-
rithms. In view of this shortcoming, the joint reweighted
sparsity-inducing scheme based on SVD principle [37] and
WSF principle [38] are put forward, respectively. Whereas,
their computational complexity is relatively higher than that
of subspace-based methods in [35, 36].

In this work, an efcient real-valued WSF algorithm with
block sparse recovery is presented for DOA estimation of
strictly noncircular sources under unknown mutual coupling.
First, a real-valued block extended sparse recovery model is
formed to avoid the unknownmutual coupling and noncircular
phase efects. Subsequently, the regularization framework be-
tween sparsity penalty and subspace ftting error is investigated.
Finally, a real-valued reweighted block sparse recovery ap-
proach is explored to achieve WSF for DOA estimation. Te
proposed method efectively maintains high accuracy and ef-
fciently reduces the computational load.Te simulation results
confrm the correctness of the above deduce.

Te main contributions of the proposed method are
summarized as follows:

(a) Perform a real-valued conversion to reduce the
computational burden, and then construct a real-
valued coupled extended data by exploiting
noncircularity.

(b) Eliminate the unknown mutual coupling and non-
circular phase interferences through parameterized
decoupling operation without array aperture loss.

(c) Structure a real-valued noncircular MUSIC-like (NC
MUSIC-like) weighted matrix to enhance the solu-
tions sparsity.
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(d) Develop a robust real-valued WSF framework to
estimate DOAs by block sparse recovery.

It is noted that some important notations adopted in this
article are defned in Table 1.

2. Data Model for DOA Estimation

2.1. Problem Formulation. Suppose that K far-feld uncor-
related narrowband NC sources sd,k􏽮 􏽯

K

k�1 incident on a
uniform linear array (ULA) equipped with M omnidirec-
tional antennas. Te distinct DOAs can be denoted as
θ � [θ1, θ2, . . . , θK]. Ten, the array output in the ideal
environment can be structured as

x(t) � Asd(t) + n(t), (1)

where x(t) � [x1(t), x2(t), . . . , xM(t)]T ∈ CM×1 is the re-
ceived data. n(t) � [n1(t), n2(t), . . . , nM(t)]T ∈ CM×1 stands
for the complex additive Gaussian white noise vector with
zero mean. Meanwhile, sd(t) � [sd,1(t), sd,2(t), . . . ,

sd,K(t)]T ∈ CK×1 means the noncircular signal vector. A �

[a(θ1), a(θ2), . . . , a(θK)] ∈ CM×K indicates the ideal array
manifold matrix. As the k th column of matrix A, a(θk) is
known as array manifold corresponding to k th target and
satisfes a(θk) � [1, ρ(θk), . . . , ρM− 1(θk)]T ∈ CM×1, where
ρ(θk) � ej](θk) with ](θk) � −2π d/λn sin(θk). d represents

the distance between adjacent antennas and λn denotes the signal
wavelength. Obviously, the data model in (1) is not afected by
any array manifold perturbations, such as mutual coupling [37]
and gain-phase error [9]. Unfortunately, as the number of
antennas increases, the distance between sensors decreases.
Hence, due to the fact that space electromagnetic feld interacts
with each other, closely-spaced antennas are vulnerable to
unknown mutual coupling, as illustrated in Figure 1.

It has been demonstrated that the mutual coupling
coefcients between antennas are inversely proportional to
their spacing. Tat is to say, the larger the sensors spacing,
the weaker the mutual coupling efect, and the smaller the
corresponding coefcients. Moreover, when the antennas
are far enough away from each other, it is reasonable to
ignore the impact of unknown mutual coupling. Ten, a
structure of complex banded symmetric Toeplitz in [27] is
utilized to model the mutual coupling matrix (MCM), i.e.,

G � Toeplitz 1, g1, . . . , gH−1, 01×(M−H)􏽨 􏽩􏼐 􏼑 �

1 g1 . . . gH−1

g1 1 g1 . . . gH−1 0

⋮ ⋱ ⋱ ⋱ ⋱ ⋱

gH−1 · · · g1 1 g1 · · · gH−1

⋱ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱

gH−1 · · · g1 1 g1 · · · gH−1

0 ⋱ ⋮ ⋱ ⋱ ⋱ ⋮

gH−1 · · · g1 1 g1

gH−1 · · · g1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

where gc􏼈 􏼉
H−1
c�1 refer to the unknown nonzero mutual cou-

pling coefcients, whose c th element gc � λce
jφc is made up

of amplitude coefcient λc and phase coefcient φc,

respectively. It can be clearly seen that there are H nonzero
mutual coupling coefcients, which satisfy
0< |gH−1|< |gH−2|< , . . . , < |g2|< |g1|< |g0| � 1. Ten, the

Table 1: Some important notations.

Notations Defnitions
(·)T , (·)∗ and (·)H Transpose, conjugate, and conjugate-transpose operations
(·)† and | · | Pseudo-inverse and absolute value operations
Re[·] and Im[·] Real and imaginary part operations
0M×K M × K dimensional zero matrix
IM M × M dimensional identity matrix
diag ·{ } and blkdiag ·{ } Diagonalization and block diagonalization operations
E ·{ } Mathematical expectation operation
tr ·{ } and det ·{ } Trace and determinant operations
‖ · ‖0 , ‖ · ‖1, and ‖ · ‖2 l0-norm, l1-norm, and l2-norm
‖ · ‖F Frobenius norm

Sourceθk

gH-1 gH-1g1 g1

… … … …

Figure 1: Mutual coupling model of ULA.
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ideal array manifold is afected by the unknown mutual
coupling in antennas, which should be revised as

a
∧
θk( 􏼁 � Ga θk( 􏼁. (3)

Tereby, the practical array output under the condition
of unknown mutual coupling can be written as

y(t) � GAsd(t) + n(t), (4)

where y(t) � [y1(t), y2(t), . . . , yM(t)]T ∈ CM×1 represents
the actual received data disturbed by unknown mutual
coupling, unlike x(t) in (1).

According to the above introduction, sd(t) denotes the
noncircular source, which means that its noncircular rate ξ
ranges from 0 to 1, including the upper limit [38]. When
referring to the maximum noncircular rate ξ � 1, the ra-
diation signal can be defned as the strictly noncircular
source, like AM modulation signal. In this paper, strictly
noncircular sources are considered. It has revealed in [22]
that the complex strictly NC source sd(t) in (4) can be
further expressed as

sd(t) � Φs(t), (5)

where Φ � diag(ejϕ1 , ejϕ2 , . . . , ejϕK ) ∈ CK×K stands for the
rotation phase shift matrix corresponding to
ϕ � [ϕ1,ϕ2, . . . ,ϕK], which can be arbitrary for each source.
s(t) � [s1(t), s2(t), . . . , sK(t)]T ∈ RK×1 is the real-valued
signal vector corresponding to the complex-valued vector
sd(t). In this way, taking (5) back to (4), the actual array
output can be represented as

y(t) � GAsd(t) + n(t) � GAΦs(t) + n(t). (6)

2.2. Real-ValuedConversion forNoncircular Sources. In view
of the noncircularity advantages, many researches on
noncircular sources directly construct the extended signal
model achieved by the received data and its conjugate form.
However, the data belongs to the complex domain, which
inevitably leads to the high computational burden. Diferent
from the above classical processing in the complex domain, a
real-valued conversion is frst applied to the received data for
structuring an extended data model in the real domain [36].

Tanks to the real-valued transformation, the computation
load is greatly reduced to accelerate the direction fnding
speed. Ten, following the idea in [36], the real and
imaginary parts of the actual array output can be extracted as

yR(t) � Re[y(t)]

�
y(t) + y∗(t)􏼂 􏼃

2

�
GAΦ + G∗A∗Φ∗( 􏼁

2
􏼢 􏼣s(t) + Re[n(t)]

� ARs(t) + nR(t),

(7)

yI(t) � Im[y(t)]

�
y(t) − y∗(t)􏼂 􏼃

2j

�
GAΦ − G∗A∗Φ∗( 􏼁

2j
􏼢 􏼣s(t) + Im[n(t)]

� AIs(t) + nI(t),

(8)

where nR(t) ∈ RM×1 and nI(t) ∈ RM×1 express the real and
imaginary components achieved by the complex noise
vector n(t) ∈ CM×1. AR � [aR(θ1, ϕ1,G), aR(θ2,ϕ2,G), . . . ,

aR(θK, ϕK,G)] ∈ RM×K and AI � [aI(θ1, ϕ1, G), aI(θ2, ϕ2,
G), . . . ,aI(θK, ϕK, G)] ∈ RM×K are the virtual coupled ar-
ray manifold matrices of yR(t) and yI(t), respectively.
Moreover, as one of the columns in AR and AI, aR(θ, ϕ,G)

and aI(θ, ϕ,G) simultaneously contain the unknown
mutual coupling coefcients and noncircular phase. Tey
can be represented as

aR(θ, ϕ,G) �
Ga(θ)e

jϕ
+ G∗A∗(θ)e

− jϕ
􏼐 􏼑

2
,

aI(θ, ϕ,G) �
Ga(θ)e

jϕ
− G∗A∗(θ)e

− jϕ
􏼐 􏼑

2j
.

(9)

Combining (7) and (8), a real-valued coupled extended
signal model can be designed as

(1) Input: Te actual received signal y(t) in (6);
(2) Extract the real and imaginary parts of y(t) based on (7) and (8) to formulate the real-valued coupled extended array output yRI(t)

in (10);
(3) Calculate the sampling covariance matrix R of yRI(t) by (13);
(4) Perform eigenvalue decomposition on R to acquire the signal subspace Es and the noise subspace En in (14);
(5) Construct the optimal weighted matrix Wopt according to (14);
(6) Form the over-complete dictionary ARI in (26) by sparsely representing T(θk) of 􏽢ARI in (21) to develop a sparse representation

model in (27);
(7) Structure the real-valued NC MUSIC-like weighted matrix D adopting (33) to enhance the solutions sparsity;
(8) Design the reweighted regularized framework based on WSF principle in (35);
(9) Output: Te reconstructed real-valued sparse vector rl2 ;
(10) Perform a 1-D spectrum search to fnd the K maximum values for DOA estimation.

ALGORITHM 1: Real-valued weighted subspace ftting algorithm with block sparse recovery.
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yRI(t) �
yR(t)

yI(t)
􏼢 􏼣 ​

� ​
AR

AI

􏼢 􏼣s(t) +
nR(t)

nI(t)
􏼢 􏼣

� ARIs(t) + nRI(t),

(10)

where ARI � [aRI(θ1, ϕ1,G), aRI(θ2, ϕ2,G), . . . ,aRI

(θK, ϕK,G)] ∈ R2M×K is the real-valued coupled extended
steering matrix. Each column in ARI denotes the coupled
extended array manifold and takes the following structure:

aRI(θ, ϕ,G) �
aR(θ, ϕ,G)

aI(θ, ϕ,G)
􏼢 􏼣. (11)

Ten, the covariance matrix of yRI(t) can be written as

R
∧

� E yRI(t)yH
RI(t)􏽮 􏽯 � ARIRsA

H
RI + σ2I2M, (12)

where σ2 expresses the corresponding noise power. Rs �

E s(t)sH(t)􏼈 􏼉 indicates the signal covariance matrix, whose
rank K′ rests with the source correlation.Tis paper assumes
K′ � K because of the uncorrelated sources presupposition.
In fact, R

∧
can only be obtained when the number of

snapshots approaches infnity. However, it is clearly un-
available and eventually replaced by its maximum likelihood
estimation R in reality. R can be computed by fnite
snapshots T, which takes the following form:

R �
1
T

􏽘

T

t�1
yRI(t)yH

RI(t), (13)

where R refers to the sampling covariance matrix. Ten,
applying eigenvalue decomposition to R, yields

R � 􏽘
2M

m�1
λmδmδ

H
m � EsΩsE

H
s + EnΩnE

H
n , (14)

where λm􏼈 􏼉
2M

m�1 mean the eigenvalues and satisfy
λ1 ≥ λ2 ≥ , . . . , ≥ λK > λK+1 �, . . . , � λ2M. δm􏼈 􏼉

2M

m�1 are the
eigenvectors corresponding to the eigenvalues λm􏼈 􏼉

2M

m�1.
What is more, K larger eigenvalues and their corresponding
eigenvectors are utilized to formulate the diagonal matrixΩs

and the signal subspace Es, respectively, i.e.,
Ωs � diag λ1, λ2, . . . , λK􏼈 􏼉 ∈ RK×K and Es � [δ1, δ2, . . . ,

δK] ∈ R2M×K. In like manner, the diagonal matrix
Ωn � diag λK+1, λK+2, . . . , λ2M􏼈 􏼉 ∈ R(2M− K)×(2M− K) and the
noise subspace En � [δK+1, δK+2, . . . , δ2M] ∈ R2M×(2M− K)

are composed of 2M − K smaller eigenvalues and the cor-
responding eigenvectors [38].

As introduced in [39], the steering matrix spans the same
range subspace as the signal subspace. Similarly, the signal
subspace Es lies in the range space of the real-valued coupled
extended steering matrix ARI, which indicates that Es and ARI

satisfy

Es � ARIU. (15)

where U denotes a column full rank matrix with K × K

dimension. Unfortunately, it is hard for (15) to estimate U
due to the coexistence of unknown parameters, such as
mutual coupling coefcients and noncircular phase.
Tereby, a robust estimator should be designed to overcome
these disturbances.

2.3. ParameterizedDecouplingOperation. It is noted that the
real-valued coupled extended array manifold in (11) is af-
fected by unknown mutual coupling and noncircular phase,
resulting in the failure of many existing ideal direction
fnding algorithms. Inspired by [36], the parameterized
decoupling thought in the real domain is exploited to deal
with the above problem.

Trough parameterizing the virtual coupled array
manifolds aR(θ, ϕ,G) and aI(θ, ϕ,G), yields

aR(θ, ϕ,G) �
Ga(θ)e

jϕ
+ G∗a∗(θ)e

− jϕ
􏼐 􏼑

2

� Ψ
⌢

(θ, ϕ,G)T
⌢

(θ)Σ
⌢

(θ, ϕ,G) − Ψ
⌣

(θ, ϕ,G)T
⌣

(θ)Σ
⌣

(θ, ϕ,G),

(16)

aI(θ, ϕ,G) �
Ga(θ)e

jϕ
− G∗a∗(θ)e

− jϕ
􏼐 􏼑

2j

� Ψ
⌣

(θ, ϕ,G)T
⌢

(θ)Σ
⌣

(θ, ϕ,G) + Ψ
⌢

(θ, ϕ,G)T
⌣

(θ)Σ
⌢

(θ, ϕ,G),

(17)

where
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T
⌢

(θ) �

1

cos (](θ))

⋱ 0

cos ((H − 1)](θ))

⋮

0 cos ((M − H)](θ))

⋱

cos ((M − 1)](θ))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

T
⌣

(θ) �

0

sin (](θ))

⋱ 0

sin ((H − 1)](θ))

⋮

0 sin ((M − H)](θ))

⋱

sin ((M − 1)](θ))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ψ
⌢

(θ, ϕ,G) � 􏽘
H−1

c�1−H

λ|c| cos φ|c| + ϕ + c · ](θ)􏼐 􏼑,

Ψ
⌣

(θ, ϕ,G) � 􏽘
H−1

c�1−H

λ|c| sin φ|c| + ϕ + c · ](θ)􏼐 􏼑,

Σ
⌢

(θ, ϕ,G) � τ⌢1(θ), . . . , τ⌢H− 1(θ), 1, σ⌢1(θ), . . . , σ⌢H− 1(θ)􏽨 􏽩
T
,

Σ
⌣

(θ, ϕ,G) � τ⌣1(θ), . . . , τ⌣H− 1(θ), 1, σ⌣1(θ), . . . , σ⌣H− 1(θ)􏽨 􏽩
T
,

τ⌢h(θ) �
Ψ
⌢

(θ, ϕ,G) − 􏽐
H−1
c�h λc cos φc + ϕ − c · ](θ)( 􏼁

Ψ
⌢

(θ, ϕ,G)
,

τ⌣h(θ) �
Ψ
⌣

(θ, ϕ,G) − 􏽐
H−1
c�h λc sin φc + ϕ − c · ](θ)( 􏼁

Ψ
⌣

(θ, ϕ,G)
,

σ⌢h(θ) �
Ψ
⌢

(θ, ϕ,G) − 􏽐
H−1
c�H−h λc cos φc + ϕ + c · ](θ)( 􏼁

Ψ
⌢

(θ, ϕ,G)
,

σ⌣h(θ) �
Ψ
⌣

(θ, ϕ,G) − 􏽐
H−1
c�H−h λc sin φc + ϕ + c · ](θ)( 􏼁

Ψ
⌣

(θ, ϕ,G)
,

(18)
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where h � 1, 2, . . . , H − 1 . T
⌢

(θ) ∈ RM×(2H− 1) and
T
⌣

(θ) ∈ RM×(2H− 1) are the real-valued block matrices and
only depend on angle information. For briefness, F � 2H −

1 is defned in what follows.
It is worth emphasizing that Ψ

⌢
(θ, ϕ,G) and Ψ

⌣
(θ, ϕ,G)

stand for two constants. Tey rely on three parameters,
i.e., angle parameter, mutual coupling coefcients,

and noncircular phase. Additionally, Ψ
⌢

(θ, ϕ,G)≠ 0
and Ψ

⌣
(θ, ϕ,G)≠ 0 occur with extremely high probabil-

ity except for a few very special circumstances.
Tereby, this article defaults Ψ

⌢
(θ, ϕ,G)≠ 0 and

Ψ
⌣

(θ, ϕ,G)≠ 0.
Ten, bringing (16) and (17) back to (11),

aRI(θ, ϕ,G) ∈ R2M×1 can be decoupled as

aRI(θ, φ,G) �
aR(θ,φ,G)

aI(θ, φ,G)
􏼢 􏼣

�
Ψ
⌢

(θ, φ,G)T
⌢

(θ)Σ
⌢

(θ, φ,G) − Ψ
⌣

(θ, φ,G)T
⌣

(θ)Σ
⌣

(θ,φ,G)

Ψ
⌣

(θ, φ,G)T
⌢

(θ)Σ
⌣

(θ, φ,G) + Ψ
⌢

(θ, φ,G)T
⌣

(θ)Σ
⌢

(θ,φ,G)

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

�
T
⌢

(θ) −T
⌣

(θ)

T
⌣

(θ) T
⌢

(θ)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

􏽼√√√√√√􏽻􏽺√√√√√√􏽽
T(θ)

Ψ
⌢

(θ, φ,G)Σ
⌢

(θ, φ,G)

Ψ
⌣

(θ, φ,G)Σ
⌣

(θ, φ,G)

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

􏽼√√√√√√√√√√􏽻􏽺√√√√√√√√√√􏽽
Λ(θ,φ,G)

, (19)
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Figure 2: Te spatial spectra for all methods.
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whereT(θ) ∈ R2M×2F andΛ(θ, ϕ,G) ∈ R2F×1 are blockmatrix
and block vector, respectively. It can be discovered that the real-
valued coupled extended array manifold aRI(θ, ϕ,G) ∈ R2M×1

is decoupled into two parts: T(θ) and Λ(θ, ϕ,G). T(θ) only
rests with angle parameter.Terefore, it can be seemed as a new
decoupled extended steering vector, similar to aRI(θ, ϕ,G)

∈ R2M×1 in (11). WhileΛ(θ, ϕ,G) subjects to the interferences
of unknown mutual coupling and noncircular phase.

According to (19), the coupled signal model in (10) can
be further decoupled as

yRI(t) �
yR(t)

yI(t)
􏼢 􏼣 �

AR

AI

􏼢 􏼣s(t) +
nR(t)

nI(t)
􏼢 􏼣

� ARIs(t) + nRI(t) � A
∧

RIΔs(t) + nRI(t)

� A
∧

RIsRI(t) + nRI(t),

(20)

where

􏽢ARI � T θ1( 􏼁,T θ2( 􏼁, . . . ,T θK( 􏼁􏽨 􏽩 ∈ R2M×2FK
,

Δ � blkdiag Λ θ1,φ1,G( 􏼁,Λ θ2,φ2,G( 􏼁, . . . ,Λ θK,φK,G( 􏼁􏼈 􏼉,
(21)

where A
∧

RI denotes the real-valued block extended array
manifold matrix formed by T(θk)(k � 1, 2, . . . , K). It sepa-
rates angle parameter from disturbance factors, such as mutual
coupling coefcients and noncircular phase, making it only
depend on DOAs information. Te block diagonal matrix
Δ ∈ R2FK×K is combined with the real signal vector s(t) to
construct a novel block signal vector sRI(t). i.e.,
sRI(t) � Δs(t) ∈ R2FK×1. It can be found that the (2Fk −

2F + 1) th to (2Fk) th rows in sRI(t) correspond to k th
element in s(t). Besides, both the new extended array
manifold matrix A

∧
RI and the corresponding signal vector

sRI(t) in (20) have block structures for each target, unlike
the original coupled extended steering matrix ARI and the
signal vector s(t) in (10).

3. Real-Valued Weighted Subspace Fitting with
Block Sparse Recovery

3.1. Te Subspace Fitting Framework with Optimal Weighted
Matrix. It has been analyzed that the real-valued coupled
extended array manifold matrix ARI still spans the same
range subspace as the signal subspace Es. Trough com-
bining the basic theory of linear algebra and the fact thatΔ in
(21) is a column full rank matrix, it can be deduced that the
signal subspace Es is a subset of the range space of the real-
valued block extended array manifold matrix A

∧
RI, which

satisfes

Es � ARIU � A
∧

RIΔU � A
∧

RIU
∧

, (22)
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Figure 3: RMSE versus SNR for all methods.
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where U
∧

� ΔU ∈ R2FK×K is a block diagonal matrix with
column full rank and consists of K subblocks

U
∧

k(k � 1, 2, . . . , K). As the k th subblock,U
∧

k is composed of

the (2Fk − 2F + 1) th to (2Fk) th rows in U
∧
corresponding

to k th row inU. Whereas, (22) will be invalid when there are
disturbances such as noise in the array output.

As revealed in [39], numerous prevalent works on DOA
estimation can be viewed as the subspace ftting problem in a
general sense. Ten, a subspace ftting framework is given as
follows:

[θ
∧
,U] � argmin

θ,􏽥U

EsW
1/2

− A
∧

RI(θ) 􏽥U
�������

�������

2

F

, (23)

where A
∧

RI is parameterized by θ. W ∈ RK×K represents a
positive defnite weighted matrix depending on the dis-
tinct calculation ways and afecting the asymptotic charac-
teristics of ftting error. According to [39], it has been revealed
that there exists an optimal weighted matrix that asymptoti-
cally minimizes the ftting error variance in the target direc-
tions and satisfes Wopt � (Ωs − σ

∧2
IK)2Ω−1

s . σ
∧2

denotes any
consistent estimate of noise variance, which can be achieved by
averaging 2M − K smaller eigenvalues of R. Highlighting that
when W � Wopt, (23) describes the optimal subspace ftting
issue, defned as weighted subspace ftting (WSF) problem
[40].

It is emphasized that A
∧

RI and 􏽥U can be separated in the
process of subspace ftting [38]. Meanwhile, the parameter
we care about is A

∧
RI, not 􏽥U. Terefore, the least square

solution of 􏽥U can be solved by fxing A
∧

RI. i.e.,

U � A
∧ †

RI(θ)EsW
1/2

. (24)

Ten bringing (24) back to (23), yields

θ
∧

� argmin
θ

tr P⊥
A
∧

RI(θ)
EsWoptE

H
s􏼚 􏼛

� argmin
θ
Υ(θ),

(25)

where P⊥
A
∧

RI(θ)
� I2M − P

A
∧

RI(θ)
� I2M − A

∧
RI(θ)A

∧ †

RI(θ).

In order to deeply study the subspace ftting issue
structured by (25) from the perspective of sparse recon-
struction, the spatial domain is evenly discretized to form an
over-complete dictionary ARI. ARI takes the following form:

ARI � T θ1􏼐 􏼑,T θ2􏼐 􏼑, . . . ,T θN􏼐 􏼑􏽨 􏽩 ∈ R2M×2FN
, (26)
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Figure 6: RMSE of the proposed method versus SNR for diferent
number of antennas.
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where θ � θ1, θ2, . . . , θN􏽮 􏽯 represents a sampling grid point
set and N indicates the number of grid points. It is noted that
compared with M and K, N is sufciently large in this paper,
so that the grid-of issue is not considered here. Trough
combining (22) withWopt, EsW1/2

opt � A
∧

RIU
∧
W1/2

opt � A
∧

RI
􏽥U can

be structured. However, it should be pointed out that such
relationship is mathematically strict only under the con-
dition of infnite snapshots. Ten, based on the over-
complete dictionary in (26), EsW1/2

opt can be sparsely rep-
resented as

EsW
1/2
opt � ARIU, (27)

where U � [UT
θ1

,UT
θ2

, . . . ,UT
θN

]T denotes a block sparse
matrix, whose n th subblock Uθn

is made up of the (2Fn −

2F + 1) th to (2Fn) th rows ofU. Furthermore, the subblocks
corresponding to the desired DOAs in U are equal to those
in 􏽥U, while the rest are zero. i.e.,

Uθn
�

􏽥Uθk
, θn ∈ θ1, θ2, . . . , θK􏼈 􏼉

0, θn ∉ θ1, θ2, . . . , θK􏼈 􏼉

⎧⎨

⎩ , (28)

where n � 1, 2, . . . , N and k � 1, 2, . . . , K.
According to (28), it is known that there are only K

nonzero subblocks in U due to the existence of K targets.
Terefore, the DOA estimation issue can be transformed into a
block sparse recovery problem, in which DOAs can be esti-
mated by determining the positions of nonzero subblocks inU.

It can be discovered that block sparse matrixU is critical for
direction fnding, which can be reconstructed via minimizing
l0-norm. Ten, a l0-norm optimization scheme is formed as

min rl2
�����

�����0
s.t. EsW

1/2
opt � ARIU, (29)

where a column vector rl2 � [r
l2
1 , r

l2
2 , . . . , r

l2
N]T is introduced

to describe sparsity. r
l2
n is the n th element in rl2 and cor-

responds to the n th subblock of U, which can be computed
by the l2-norm of the (2Fn − 2F + 1) th to (2Fn) th rows in
U. Tat is to say, r

l2
n �

��������������������

􏽐
2Fn
a�2Fn−2F+1 􏽐

K
b�1 (Ua,b)2

􏽱

, in which
Ua,b represents the element located at the a th row and b th
column of U. Evidently, the sparsity of vector rl2 is the same
as that of the block sparse matrix U.

In general, l0-norm penalty can accurately describe the
solutions sparsity in the process of sparse recovery.Whereas,
l0-norm penalty is a nondeterministic polynomial (NP)-
hard and nonconvex combinatorial optimization problem,
so it is mathematically intractable. In this way, l0-norm
convex relaxes to l1-norm to solve the above problem.
Moreover, considering the ftting error caused by fnite
snapshots, the l1-norm penalty framework is ultimately
restructured as

min rl2
�����

�����1
s.t. EsW

1/2
opt − ARIU

�����

�����F
≤ ε, (30)

where the regularization parameter ε means the upper limit
of the subspace ftting error, that is utilized to guarantee
robust DOA estimation. Inspired by (25), it is known that
the subspace ftting error is equal to

����
Υ(θ)

􏽰
. It has been

derived that function (2T/σ
∧2

)Υ(θ) asymptotically follows

chi-square distribution with 2K′(2M − K) degrees of
freedom when θ refers to the true DOAs [40]. Tereby,����
Υ(θ)

􏽰
≤ ε with a high confdence interval 1 − ρ is calculated

to determine parameter ε, in which ρ � 0.001 is chosen in
this paper.

3.2. Reweighted Block Sparse Recovery for DOA Estimation.
Trough the sparse recovery framework achieved by
l1-norm constrained optimization in (30), DOA estimation
can indeed be obtained. However, l1-norm penalty is only
the convex approximation of l0-norm minimization,
resulting in limited recovery accuracy. Specifcally speaking,
the penalty imposed on larger coefcients is heavier than
that imposed on smaller coefcients in the l1-norm penalty
framework, unlike the democratic l0-norm constraint. Ten,
a weighted matrix is introduced to enhance the solutions
sparsity, where the weights can be determined by con-
structing the penalty factors. Terefore, l1-norm can ap-
proximate l0-norm as much as possible.

Following the principle of MUSIC-like approach in
[36, 38], the orthogonality between the real-valued block ex-
tended arraymanifold and the noise subspace can be utilized to
formulate a novel real-valued NC MUSIC-like spectrum
function. Te spectrum function can be expressed as

ZMUSIC(θ) �
1

det TH
(θ)EnE

H
n T(θ)􏼒 􏼓

.
(31)

Inspired by the discretized sampling gird points
θ � θ1, θ2, . . . , θN􏽮 􏽯, the orthogonality between the over-
complete dictionary and its noise subspace can be exploited
to structure the weights. First, the over-complete dictionary
in (26) can be categorized into two groups:
ARI � [ARI1,ARI2]. It is supposed thatARI1 is composed ofK

block steering matrices corresponding to the interested
DOAs, while ARI2 is formed by residual N − K subblocks.
Ten based on (31), the initial weights can be represented as

d
∧

n � det TH θn􏼐 􏼑EnE
H
n T θn􏼐 􏼑􏼚 􏼛n � 1, 2, . . . , N, (32)

where the weight d
∧

n indicates the determinant value
corresponding to θn. Ten, a weighted matrix can be
structured as

D � diag d{ }, (33)

whereD ∈ RN×N denotes a weighted matrix that depends on
the vector d. Furthermore, d relates to the initial weights
d
∧

n(n � 1, 2, . . . , N) and takes the following form:

d � d1,d2􏼂 􏼃

� d1, d2, . . . , dN􏽨 􏽩

�

d
∧

1, d
∧

2, . . . , d
∧

N􏼢 􏼣

max d
∧

1, d
∧

2, . . . , d
∧

N􏼢 􏼣

.

(34)
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It can be concluded that if the number of snapshots is
sufciently large, the weights in d1 corresponding to the
interested DOAs are more likely to be zero, which are
smaller than those in d2. Trough exploiting the weighted
matrix, larger coefcients are preserved by smaller
weights, while smaller coefcients close to zero are
punished by larger weights. Terefore, no matter how
large or small the coefcients are, they can be punished
more democratically, behaving like the fair l0-norm
penalty. Eventually, by embedding the weighted matrixD,
the reweighted scheme based on l1-norm optimization can
be constructed as

min Drl2
�����

�����1
,

s.t. EsW
1/2
opt − ARIU

�����

�����F
≤ ε.

(35)

Tanks to second order cone (SOC) programming
packages, like CVX, the optimization problem given in (35)
can be successfully addressed. In this way, DOAs can be
efectively estimated by detecting the positions of nonzero
values in the reconstructed sparse vector rl2 .

Up to now, an efcient real-valued weighted subspace
ftting algorithm with block sparse recovery has been pro-
posed for DOA estimation of strictly noncircular sources
with unknown mutual coupling, which can be summarized
as algorithm 1.

4. Simulation and Analysis

In this section, plenty of simulations are implemented and
the corresponding results are exhibited to demonstrate the
superior performance of the proposed method.

4.1. Simulation Scene. To demonstrate the superiority of the
proposed method, the reweighted BSR method in [33]
(defned as ReBSR method) and the joint reweighted
sparsity-inducing method based on WSF principle in [38]
(defned as WSF method) are chosen as the comparison
methods. Meanwhile inspired by the Cramer–Rao bound
(CRB) for noncircular signals of MIMO radar in [22], the
array CRB is redrived for noncircular sources under un-
known mutual coupling in this paper. In addition, the root
mean square error (RMSE) is used to evaluate the estimation
performance of all algorithms, which can be achieved by

RMSE �

������������������

1
JK

􏽘

J

j�1
􏽘

K

k�1
θj,k − θk􏼐 􏼑

2

􏽶
􏽴

, (36)

where θk stands for the real DOAs of k th target and θj,k is
estimated by θk in the j th Monte Carlo experiment. K refers
to the number of radiating sources. Te number of Monte
Carlo experiments is set as J � 100.

In what follows, it is assumed that M � 8 antennas form
a ULA, each of them is separated by half-wavelength
spacing. Tere are K � 2 narrowband uncorrelated strictly
noncircular sources incident on the ULA from diferent
directions in the far feld, whose DOAs are denoted as θ1 �

−10° and θ2 � 2°, respectively. Additionally, the mutual
coupling matrix consists of H � 3 nonzero coefcients in-
cluding g1 � 0.6864 − j0.0919 and g2 � 0.2079 − j0.0603.
Te entire spatial domain from −90° to 90° is uniformly
sampled at the grid interval of 0.1°.

4.2. Simulation Results. Figure 2 gives the spatial spectra for
all diferent methods, in which SNR is set to −5 dB and the
number of snapshots is fxed at 100. According to Figure 2, it
can be observed that all methods form spectral peaks at the
true DOAs positions. Tat is to say, these algorithms can
realize direction fnding of noncircular sources in the case of
unknown mutual coupling. Furthermore, ReBSR method
has the least shape peaks, the highest side-lobe, and the
farthest from the real DOAs, while the proposed approach
has the sharpest peaks, the lowest side-lobe, and the closest
to the desirable DOAs. In this way, the proposed method
outperforms other approaches in terms of resolution and
accuracy.

Figures 3 and 4 indicate RMSE versus SNR and PSD
versus SNR for distinct algorithms, respectively. In Fig-
ure 3, the number of snapshots is chosen as T � 100. On
the one hand, as displayed in Figure 3, the RMSE of these
methods gradually decreases as SNR increases. Terefore,
these methods can achieve improved performance by
enhancing the signal environment. Moreover, the main
diference between the proposed method and WSF al-
gorithm is whether to perform real-valued conversion, so
its impact on the estimation accuracy may not be obvious.
In other words, it is reasonable to assume that their
performance is similar. At the same time, the RMSE of
ReBSR algorithm is larger than that of other noncircular
methods, which is mainly due to its inability to take
advantage of noncircularity, unlike the other two non-
circular algorithms. On the other hand, as given in Fig-
ure 4, PSD refers to the successful detection rate for all
Monte Carlo running experiments. And when the error
absolute value between the true DOA θk and the estimated
DOA θk is less than 0.3°, the target detection is considered
successful. From Figure 4, within the selected SNR range,
the PSD of the proposed method and WSF approach are
much higher than that of ReBSR algorithm. Additionally,
they can be the frst to achieve 100% PSD compared to
ReBSR method. In conclusion, the proposed method has
advantage over ReBSR algorithm and similar performance
to WSF approach.

Figure 5 depicts RMSE versus snapshots for distinct
methods, when SNR is fxed at SNR � 0 dB. As shown in
Figure 5, the overall simulation trend is similar to that of
Figure 3. As the number of snapshots increases, the RMSE of
all distinct approaches decreases. Furthermore, in terms of
estimation accuracy, the proposed method is similar to WSF
algorithm, better than ReBSR approach and closer to CRB.

Figure 6 shows RMSE of the proposed method versus
SNR for diferent number of antennas, in which T � 100.
From Figure 6, the RMSE is the largest when M � 7, while
the RMSE is the smallest when M � 9, which means that if
SNR is fxed, the RMSE of the proposed method decreases
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with the increase of the number of sensors. However, it is
worth highlighting that the more sensors, the higher the
estimation accuracy, the heavier the computational load, and
even the stronger the antennas interaction. In other words, it
is better to make a trade-of between efectiveness and
efciency.

Figure 7 reveals the average simulation time required for
the two noncircular methods versus gird interval, where
SNR and snapshots are set to SNR � 0 dB and T � 100,
respectively. In Figure 7, whether the proposed method or
WSF algorithm, the larger the grid interval, the shorter the
simulation time and the lower the computational burden.
Tis is mainly because the number of sampling grid points
decreases as the grid interval increases. In addition, it is
evident that the proposed method requires much less time
than WSF algorithm, which means that the proposed
method is superior to WSF algorithm in simulation time,
although they all belong to noncircular algorithms.Temain
reason is that the proposed method converts complex do-
main date into real domain data to speed up direction
fnding for meeting the real-time requirement as much as
possible, diferent from WSF approach in the complex
domain. In this way, it takes less time to efciently achieve
high-precision DOA estimation, which is more suitable for
practical applications.

5. Conclusion

In this paper, the scenario of strictly noncircular sources in the
presence of unknownmutual coupling is concerned, and then a
real-valued reweighted block sparse recovery framework
achieved by WSF principle is structured for DOA estimation.
In the proposed method, a real-valued coupled extended array
output is frst constructed by connecting the real and imaginary
parts of the received data.Ten, the real-valued block extended
sparse recovery model is formed by exploiting the parame-
terized decoupling thought to avoid the infuences of unknown
mutual coupling and noncircular phase. Afterwards, a robust
WSF approach is explored to recover the real-valued block
sparse matrix for DOA estimation, where a real-valued NC
MUSIC-like weighted matrix is further embedded to reinforce
the solutions sparsity. Additionally, the upper bound of sub-
space ftting error is reported as well. Tanks to noncircularity,
parameterized decoupling operation, and reweighted measure,
the proposedmethod can not only provide desirable estimation
accuracy, but also bear low computational burden. Extensive
experiment results validate the efectiveness and efciency of
the proposed method for strictly noncircular sources with
unknown mutual coupling.
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