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Location-routing problem (LRP) thoroughly considers location allocation problem (LAP) and vehicle routing problem (VRP)
which has been an integral part applied in modern logistics. A number of researchers at home and aboard have put forward their
views by establishing fne models. On the basis of studying the previous research results by classifcation, summary, and
comparative analysis, this study hence proposes a new solution-fuzzy clustering model and algorithm to resolve two-layer
location-routing problem based on a heuristic hybrid algorithm: Designing a hybrid genetic and simulated annealing algorithm
(GASA) to optimize the initial value of the fuzzy C-means clustering algorithm (FCM); considering the roving visit characteristics
of vehicles to design the path by employing a special VRP problem—the multiple traveling salesman problem (MTSP).Teoretical
analysis and experimental results show that the algorithm used in this study has the advantages of fast convergence speed and less
iterations, which signifcantly improve the quality of the initial solution of FCM in LAP, shorten the vehicle patrol cycle in VRP to
a great extent, improve the vehicle utilization, and save the vehicle patrol costs. A specifc example is programmed byMATLAB to
verify the feasibility of this method.

1. Introduction

Location allocation problem (LAP) and vehicle routing
problem (VRP) are two essential parts in logistics which are
widely used in life and engineering. On the one hand, LAP
strategically considers the location of the distribution center,
but it fails to include the characteristics of vehicle tours from
a tactical aspect, which may easily lead to a larger actual
distribution distance. On the other hand, VRP takes the
characteristics of vehicle tours into account; however, it does
not consider whether the location of the distribution center
is reasonable from a strategic view, which will easily result in
a high total cost of the entire logistics system [1]. To address
both disadvantages arising from LAP and VRP, some
scholars have put forward the location-routing solution
from the strategic and tactical aspects which comprehen-
sively considers problems of the site selection of distribution
center, coverage of distribution services, and vehicle routing

optimization, aiming to seek the optimal solution of the
entire logistics system by integrating both merits of LAP and
VRP. Te LRP is an NP-complete problem, and a series of
related approximation algorithms have emerged in recent
years, so we hope to obtain a satisfactory solution (may not
be the optimal solution) with high quality through the
approximation algorithm.

In practice, the site selection of the distribution center
and the path design of the distribution service are two vital
aspects. Te site selection is related to the strategic decision
made by the logistics enterprises, while the path design
concerns their tactical decision. In order to better serve the
needs of economic and societal developments, a number of
experts and scholars at home and abroad have actively
explored the feld of LRP and achieved enormous results.

A large number of studies have shown that the overall
optimization of positioning, allocation, and path holds the
key to solving LRP. Previously, scholars were limited to the
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study of a single distribution center, employing the total cost
function to describe the path cost [2]. By comparing the total
cost function and the potential location path cost, Webb
pointed out that the path cost cannot be represented by the
approximate total cost function at a certain moment [3].
Wang dan et al. also made similar fndings in their research
[4]. Later on, scholars realized the importance of site
decision-making and path coordination. Terefore, many
scholars have renewed their research on this matter: Cooper
believes that the appropriate location of the distribution
center directly afects future transportation costs, so the site
selection and the path problem should be integrated for
study [5]. Bookbinder seeks to solve LRP by building
a nonlinear mixed integer programming model [6]. Tere
are also extensive research studies on LRP in China. Some
scholars have established a two-stage planning model to
determine the site selection plan [7], customer division, and
logistics distribution in terms of recycling and trans-
portation path design [8]; studied multiobjective random
LRP in the context of considering a variety of uncertainties
[9]; established a three-layer LRP model on the basis of
introducing the important parameter of storage cost to the
traditional two-layer LRP model; and applied the genetic
algorithm to seek a solution [10, 11].

In addition, the study by Tang et al. is noteworthy, who
solved the TSP with the asymptotic formulation. Te
result was approximately equal to the path length in the
distribution system, while the time cost was much shorter
[12, 13].

For LRP research, there are various common solutions:
Te traditional fuzzy C-means clustering algorithm

(FCM) is essentially a local optimization algorithm, which is
very sensitive to the selection of the initial value and is easy
to converge to the local extreme point.

Te present single heuristic algorithm also has its
shortcomings. For example, genetic algorithms are sus-
ceptible to fall into local optimum; simulated annealing
algorithm is lacking incomprehensive search ability, etc [14].

Te tour feature of vehicles has not been fully utilized.
With regard to the shortcomings of previous studies in

these aspects, this study proposes a new solution, namely, the
fuzzy clustering model and algorithm to resolve a two-layer
location-routing problem based on heuristic hybrid
algorithm:

In the frst-layer mathematical model (LAP model), the
initial value of FCM is optimized by using the genetic
simulated annealing algorithm (GASA) [15].

In the second-layer mathematical model (VRP model),
the genetic algorithm is used to solve a special VRP prob-
lem—the multiple traveling salesman (MTSP) problem [16].

Terefore, this study aims to solve the LRP more ef-
fectively by using the above methods.

2. Problem Statement and Model Building

LRP can be defned as follows: a distribution network plans
to set upm distribution centers, with available vehicles and n
customers. Te set of the distribution center is defned as
M � M|M � 1, 2, . . . , m{ }. Te set of the available vehicles is

defned as S � S|S � 1, 2, . . . , s{ }. Te set of the customers is
defned as N � N|N � 1, 2, . . . , n{ }.

Te set of points composed by the distribution center
and customers is defned as V � M∪N �

V|V � 1, 2, . . . , m + n{ }.
Te set of edges is defned as E � (m, n)|m, n ∈ V{ }. Let

the distance (Euclidean distance) corresponding to each
edge be Dmn, and let the distribution cost be Cmn. Tere is
no capacity limitation for vehicles and distribution
centers.

Each vehicle has only one service path, and the start and
end points must be at the same distribution center. Each
distribution center can have multiple vehicles to provide
service for multiple customers while each customer can only
be served once by one vehicle at the same distribution center.
Te decision variable xmns represents whether the vehicle S
accesses the edge (m, n) (yes� 1, no� 0). Te decision
variable ymn represents whether customer N is within the
service range of distribution center M (yes� 1, no� 0).

Fuzzy C-Means (FCM) can be defned as follows:
selecting m(2≤m≤ n) locations for a distribution center
and let n data samples be X � x1, x2, . . . , xN􏼈 􏼉. Te set of
served customers is defned as P1, P2, . . . , Pm􏼈 􏼉. Te loca-
tion of the distribution center is P1, P2, . . . , Pm􏼈 􏼉 Let the
similarity classifcation matrix be U, and let the degree of
membership of the n customer to the m distribution center
be μmn.

Te dissimilarity between xi and ej is defned as d(xi, ej).
Let the characteristic of the sample be p.

Since this paper focuses on shortening the solution time
on the basis of optimizing the solution method, only the
situation where distance cost is the core factor of site se-
lection will be considered.

2.1. Te First Layer of the Mathematical Model. Let the ob-
jective function be Jq(U, e), and the maximum value of U is
as follows:

min Jq(U, e) � 􏽘
m

i�1
􏽘

n

j�1
μij􏼐 􏼑

q
Dij􏼐 􏼑

2
. (1)

To divide X into m clusters, the following three condi-
tions should be satisfed:

μmn: X⟶ [0, 1],∀m ∈M,∀n ∈ N,

􏽘

m

i�1
􏽘

n

j�1
μmn xk( 􏼁 � 1, k � 1, 2, . . . N,

0< 􏽘
N

k�1
μmn xk( 􏼁<N,∀m ∈M,∀n ∈ N.

(2)

Teminimized constraints of J(U, e) is (4). Tis leads to
the following Lagrange function:

J(U, e) � 􏽘
m

i�1
􏽘

N

j�1
μij􏼐 􏼑

q
Dij􏼐 􏼑

2
− 􏽘

N

j�1
λj μij − 1􏼐 􏼑. (3)

Te membership μmn is calculated as follows:
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μmn �
1

􏽐
m
i�1 Dji/Dli􏼐 􏼑

2/q− 1 . (4)

Te center (distribution center) ei􏼈 􏼉 of each cluster can
be written as follows:

eij �
􏽐

m
i�1 μij􏼐 􏼑

q
xij

􏽐
m
i�1 μij􏼐 􏼑

q . (5)

Tese functions are called membership functions. Te
fuzzy membership function value has the mathematical
characteristics of a set. In other words, each vector x belongs
to multiple clusters at the same time but with a diferent
degree of membership. Te corresponding value μmn in the
interval [0, 1] quantifes the degree of membership. A value
close to 1 indicates a high degree of membership to the
cluster while a value close to 0 indicates a low degree of
membership to the cluster.

2.2. Te Second Layer of the Mathematical Model. Te ob-
jective function can be written as follows:

min Gd � 􏽘
m∈M

􏽘
n∈N

􏽘
s∈S

Cmn ∗xmns, (6)

Cmn depends on the distance from the distribution center m
to the customer n:

Ci j � K∗Di j � K∗D xi − ej􏼐 􏼑 � K∗

���

􏽘

p

j�1

􏽶
􏽴

xi j − ei j􏼐 􏼑
2

,

(7)

here K represents the freight cost per unit, namely the
freight rate.

A customer can only be served by one car:

􏽘
m∈V

􏽘
s∈S

xmns � 1,∀n ∈ N. (8)

A customer can only be served by one distribution
center:

􏽘
m∈M

ymn � 1,∀n ∈ N. (9)

Each vehicle can be dispatched to fnish the delivery tasks
only on one route:

􏽘
m∈M

􏽘
n∈N

xmns ≤ 1,∀s ∈ S. (10)

Neither the customer nor the distribution center is
allowed to ship to itself, which means there is no route
between them:

xmms � 0,∀m ∈ V,∀s ∈ K. (11)

Distribution centers are not allowed to ship between
each other:

􏽘
m∈M

􏽘
n∈M

xmns � 0,∀s ∈ S. (12)

Te number of vehicles departing to and returning from
the customers should be equal:

􏽘
m∈V

xmns − 􏽘
m∈V

xnms � 0,∀n ∈ V, ∀s ∈ S. (13)

Te total number of vehicles in the entire distribution
system should not exceed the total number of existing ve-
hicles S:

􏽘
m∈M

􏽘
n∈N

􏽘
s∈S

xmns ≤ s. (14)

Suppose each distribution center has the same number of
vehicles mean_V:

mean V �
S

cn
,

mean V � 1, 2, . . . .

(15)

In addition, xmns and ymn are 0–1 decision variables, the
properties of which are as follows:

xmns ∈ 0, 1{ },∀m, n ∈ V, ∀s ∈ S,

ymn ∈ 0, 1{ },∀m ∈M,∀n ∈ N.
(16)

3. Algorithm Design

3.1. Implementation of the Fuzzy C-Means Clustering
Algorithm. In the fuzzy C-means clustering method, each
data point belongs to a certain cluster center according to
a certain fuzzy membership degree [17]. Jim Bezdek pro-
posed the clustering technology as an improvement to the
traditional clustering technology in 1981 [18]. Firstly,
a number of cluster centers are randomly selected, and all
data points are given a certain fuzzy membership degree to
the cluster center [19]. Ten, the iterative method is used to
continuously modify the cluster center, and the iterative
process minimizes the distance from all data points to each
cluster center as well as the weighting and optimization
objectives of the membership value [20]. Te output of fuzzy
C-means clustering is a list of cluster centers and the
membership value of each data point for each cluster
center [21].

3.2. Genetic Algorithm. Te genetic algorithm (GA) is
a probabilistic optimization algorithm that is based on
natural selection and genetic theory and uses the combi-
nation of evolutionary survival of the fttest and the random
exchange of chromosome information in a population to
search for global solutions. It was frst put forward by
Professor J. Holland of the University of Michigan in
1975 [22].

Te genetic algorithm is composed of three modules:
encoding and decoding, individual ftness evaluation, and
genetic operation. In the genetic algorithm, we defne
a population or group as the set of encoded chromosomes,
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and each individual is the phenotype of its corresponding
chromosome [23].

3.2.1. Encoding and Decoding. Te encoding and decoding
of genetic algorithms correspond to the genotype and
phenotype of organism at the macro level and correspond to
the transcription and translation of DNA at the micro level
[24]. Te operation object of the genetic algorithm is a point
set (string), the mapping from the solution space of the
problem to the genetic algorithm space is called encoding,
and the mapping from the genetic algorithm space to the
solution space of the problem is called decoding [25].

Binary coding is adopted for the two-layer model in this
study. In the frst layer of the model, each chromosome is
composed of m cluster centers. For the p-dimension sample
vector, the number of variables to be optimized is m∗p∗. If
each variable uses k-bit binary coding, the length of the
chromosome is a binary code string of m∗p∗k. In the second
layer of the model, each chromosome is composed of n
nodes (including customers and distribution centers). For
the q-dimension sample vector, the number of variables to
be optimized is n∗q. If each variable uses l-bit binary coding,
the length of the chromosome is a binary code string of
n∗q∗l.

3.2.2. Individual Fitness Evaluation. Te ftness function is
a measure of individual ftness. In this study, the frst layer of
the model takes (1) as the objective function and its re-
ciprocal 1/Jq as the ftness function, the value of Jq is smaller,
the value of its reciprocal 1/Jq is higher, the individual ftness
value is higher, and it can satisfy two conditions that is the
customer is more intensive, the establishment of distribution
center is more economical and the ftness is higher. Te
chance of genetic inheritance to progeny individuals is
higher. Similarly, the second layer of the model takes
Equation [26]. (6) as the objective function and its reciprocal
1/Gd as the ftness function. Te value of 1/Gd is smaller, the
value of reciprocal 1/Gd is higher, the individual ftness value
is higher, and it can satisfy two conditions: the total distance
of distribution is shorter, the cost is lower, and the prob-
ability of the gene with the highest ftness being passed on to
the progeny individuals is higher [27].

3.2.3. Genetic Operation. Selection Operator: In this study,
the individual ftness of the parent population is evaluated
and sorted according to the size of the ftness value, and then
a random traversal sampling strategy is used to generate the
progeny population.

Crossover Operator: Considering that the number of
efective genes on each chromosome may not be the same,
the single point crossover operator is used in this study.

Mutation Operator: Te mutation operator refers to the
generation of mutation genes with a certain probability and
the selection of mutation genes by a randommethod. In this
study, two individuals are randomly selected, and then two
genes of the selected individuals are randomly exchanged to
achieve mutation operation [28].

3.3. Simulated Annealing Algorithm. Although the parallel
search pattern of the genetic algorithm has a strong search
capability in the whole solution space, it has a slow con-
vergence and poor local search capability. Te probabilistic
abrupt jump nature of the simulated annealing algorithm is
an efective way to fnd the optimal solution to the problem
in the search space. However, the serial search approach of
the simulated annealing algorithm leads to less than com-
prehensive results for the search space and does not facilitate
running the search process in the most promising search
regions [29]. Tus making itself inefcient in terms of op-
erations. Terefore, we combine the advantages of the ge-
netic algorithm and simulated annealing algorithm to
optimize the initial clustering centers of the fuzzy C-mean
clustering algorithm.

Lombard et al. mentioned in their paper that the sim-
ulated annealing algorithm originated from the fndings of
statistical mechanics of materials and was originally pro-
posed by Metropolis et al. In 1983, Kivkpatrick et al. pro-
posed to apply the simulated annealing algorithm to solve
combinatorial optimization problems, and their starting
point was based on the similarity between the annealing
process of physical solids and combinatorial optimization
problems in general [30].

Te simulated annealing algorithm is a kind of stochastic
search algorithm. Teoretically, it is a globally optimal al-
gorithm. Its core is composed of “Tree Functions” and “Two
Criteria.” Te former refers to the state generation function,
state acceptance function, and temperature update function,
and the latter refers to the sampling stability criterion (inner
loop termination criterion) and the annealing termination
criterion (outer loop termination criterion) [10].

3.3.1. State Generation and Acceptance Functions. Te state
generation function, also known as the neighborhood
function, is a function that ensures that the generated
candidate solutions are spread throughout the solution space
as much as possible. In this study, the genetic algorithm is
embedded in the simulated annealing algorithm as its inner
loop structure. In other words, the state generation function
corresponds to the genetic operator in the genetic algorithm,
and the state acceptance function in the simulated annealing
algorithm corresponds to the population iteration operation
in the genetic algorithm [10].

3.3.2. Temperature Update Function. Te temperature up-
date function can have various forms. In this study, it is
given as follows [29]:

Ti+1 � Ti ∗ kq i � 0, 1, 2, . . . , (17)

here kq is the cooling coefcient, and its value determines
how fast the temperature drops.

3.3.3. Sampling Stability Criterion. TeMetropolis sampling
stability criterion, also known as the inner loop termination
criterion, is used to reach thermal equilibrium at any
constant temperature. Its role in the algorithm is to defne
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the acceptance probability in terms of the diference between
the objective function of the new solution and the current
solution, i.e.,

P �

1, if E xnew( 􏼁<E xold( 􏼁,

exp
E xnew( 􏼁 − E xold( 􏼁

K∗T
􏼠 􏼡, if E xnew( 􏼁≥E xold( 􏼁,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(18)

here K is the Boltzmann constant.
In order to better integrate the genetic algorithm and

simulated annealing algorithm, the genetic generation in the
genetic algorithm is set to the length of the Markov chain in
the simulated annealing algorithm as the inner loop ter-
mination criterion in this study [16].

3.3.4. Annealing Termination Criterion. Te annealing ter-
mination criterion, also known as the outer loop termination
criterion, is used in this study to determine whether the
program is terminated or not. If it holds, the program
terminates; otherwise, the program proceeds to the next
iteration.

4. Algorithm and Its Example Verification

4.1. Algorithm Flow of the First Layer Mathematical Model

(1) Initializing control parameters: simulate initial
annealing temperature T0, cooling coefcient kq,
end temperature Tend, individual size of population
sizepop, maximum generation MAXGEN, cross-
over probability pc , and mutation probability
Pm, etc.

Table 1: Client coordinates.

Nos. Coordinates
1 (0.2266, 0.0658)
2 (0.9020, 0.6752)
3 (0.6990, 0.6662)
4 (0.8107, 0.7774)
5 (0.3453, 0.3365)
6 (0.2889, 0.2624)
7 (0.5827, 0.3995)
8 (0.5572, 0.7973)
9 (0.1611, 0.1290)
10 (0.0525, 0.3003)
11 (0.1226, 0.0865)
12 (0.6464, 0.4419)
13 (0.3726, 0.4734)
14 (0.8218, 0.6348)
15 (0.5215, 0.2849)
16 (0.5307, 0.2081)
17 (0.5215, 0.7569)
18 (0.6243, 0.3511)
19 (0.7841, 0.6275)
20 (0.8483, 0.0178)
21 (0.0616, 0.3822)
22 (0.1692, 0.8558)
23 (0.3142, 0.3240)
24 (0.3095, 0.6284)
25 (0.5163, 0.1034)
26 (0.3364, 0.9960)
27 (0.9675, 0.4120)
28 (0.0251, 0.6994)
29 (0.5178, 0.8281)
30 (0.2201, 0.9690)
31 (0.5455, 0.7088)
32 (0.9107, 0.0855)
33 (0.5668, 0.7064)
34 (0.0494, 0.7305)
35 (0.4789, 0.7273)
36 (0.2233, 0.5032)
37 (0.8480, 0.2040)
38 (0.4529, 0.9115)
39 (0.4823, 0.3539)
40 (0.6527, 0.9238)
41 (0.9248, 0.3725)
42 (0.5147, 0.0494)
43 (0.0617, 0.3826)
44 (0.7940, 0.2926)
45 (0.7414, 0.5063)
46 (0.5395, 0.1430)
47 (0.8302, 0.7108)
48 (0.1240, 0.2596)
49 (0.5330, 0.2463)
50 (0.3668, 0.1719)
51 (0.0403, 0.0030)
52 (0.1390, 0.8815)
53 (0.1311, 0.9338)
54 (0.1679, 0.9176)
55 (0.8107, 0.2406)
56 (0.8808, 0.2671)
57 (0.1797, 0.3355)
58 (0.3126, 0.0158)
59 (0.3268, 0.5915)
60 (0.1077, 0.9922)

Table 1: Continued.

Nos. Coordinates
61 (0.0449, 0.8286)
62 (0.5965, 0.2003)
63 (0.1101, 0.9886)
64 (0.2517, 0.1577)
65 (0.3456, 0.6481)
66 (0.5236, 0.5425)
67 (0.1704, 0.6832)
68 (0.9218, 0.4146)
69 (0.0745, 0.3948)
70 (0.4568, 0.6939)
71 (0.9960, 0.1876)
72 (0.7049, 0.8491)
73 (0.2948, 0.0159)
74 (0.6819, 0.7943)
75 (0.4643, 0.4818)
76 (0.1130, 0.8745)
77 (0.7603, 0.5215)
78 (0.7316, 0.1828)
79 (0.2154, 0.2482)
80 (0.6186, 0.6382)
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(2) Randomly initializing cn cluster center generates the
initial population Chrom. Ten, formula (4) is used
to calculate degree of membership μmn of each node
to the cluster center, and formula (1) is used to
calculate the ftness value of each individual fi,
i � 1, 2, . . . , sizepop.

(3) Setting iteration counter gen←0.
(4) Te selection operator, crossover operator, mutation

operator, and other genetic operations of population
Chrom are performed to generate the progeny
population. For the individuals in the progeny
population, the formula (4) is used to calculate the
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Figure 1: Client distribution map of the distribution network.
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Figure 2: Location-distribution map.
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degree of membership of each node to cn cluster
center, and the formula (1) is used to calculate the
ftness value of each progeny individual. Te me-
tropolis algorithm is used to determine whether or
not to accept the progeny individuals. If fi

′ >fi, then
the progeny individuals replace the parent in-
dividuals; otherwise, the progeny individual is
P � exp(fi − fi

′/T).
(5) Determining whether or not out of the inner loop. If

gen<MAXGEN, then gen⟵ gen + 1, turn to
Step4; otherwise, go to Step6.

(6) Determining whether or not out of the outer loop. If
Ti <Tend, then producing the cluster result, the frst
layer model program ends, and the second layer
model program starts.

4.2. Algorithm Flow of the Second Layer Mathematical Model

(1) Initializing control parameters: population size
pop size, maximum number of iterations
MAX num iter, coordinate matrix xy of each node,
distance matrix dm at of each node, maximum
number of vehicles MAX V that can be dispatched
by each distribution center, etc.

(2) Importing the location distribution results of the frst
layermodel. Iffenzu⟵ 1, thenfenzu � 1, 2, . . . , cn.

(3) Initializing the population generates the initial
population tmp pop rte and formula (6) is used to
calculate the ftness value of each individual,
i � 1, 2, . . . , pop size.

(4) Setting iteration counter num iter⟵ 0.
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Figure 3: Te client cluster and the distribution route of the frst distribution center.
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(5) According to the genetic operation, three operations
of selection, crossover, and mutation are used to
make the population tmp pop rte generate progeny
population new pop rte. For the individuals in the
progeny population, formula (7) is used to calculate

the cost of the cluster center to each node, and
formula (6) is used to calculate the ftness value of the
progeny individual to judge whether or not to accept
the progeny individuals fitnessi

′. If fitnessi
′ > fitnessi,

the progeny individuals replace the parent and copy
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Figure 5: Te client cluster and the distribution route of the third distribution center.
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Figure 6: Te client cluster and the distribution route of the fourth distribution center.

Table 2: Te client distribution served by each distribution center (mean_V � 1).

Distribution center Nos. Te number of the
clients Client numbers

1 13 22, 26, 28, 30, 34, 52, 53, 54, 60, 61, 63, 67, 76.
2 20 7, 12, 15, 16, 18, 20, 27, 32, 37, 41, 44, 45, 46, 49, 55, 56, 62, 68, 71, 78.
3 24 2, 3, 4, 8, 14, 17, 19, 24, 29, 31, 33, 35, 38, 40, 47, 59, 65, 66, 70, 72, 74, 75, 77, 80.
4 23 0.1, 5, 6, 9, 10, 11, 13, 21, 23, 25, 36, 39, 42, 43, 48, 50, 51, 57, 58, 64, 69, 73, 79.
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it to the next generation; otherwise, the progeny
individuals are not accepted and the parent in-
dividuals are copied to the next generation.

(6) Determining whether or not out of the iteration loop.
If num iter<MAX num iter, then num iter⟵
num iter + 1 go to Step4; otherwise, go to Step7.

(7) Producing the distribution routes from each distri-
bution center to the customer groups, and the second
layer model program ends.

5. Verification of the Algorithm Case and
Result Analysis

Assuming that 4 distribution centers which can form
a distribution network are going to be built, all 4 available
dispatching vehicles will be sent for 80 clients. Client co-
ordinates are shown in Table 1.

According to the designed algorithm, in the frst-layer
model settings, we set the initial temperature as T0 � 100,
the cooling coefcient as kq � 0.8, the fnal temperature as
Tend � 64, the population size as sizepop � 20, the genetic
maximum as MAXGEN � 30, the crossover probability as
Pc � 0.8, mutation probability as Pm � 0.05. In the second-
layer model settings, we set the the population size as
pop size � 20, the genetic maximum as
MAX num iter � 2000, and the number of the vehicles
available in each distribution center as mean V � 4.
MATLAB R2012a is used to write the program for calcu-
lation in the experiment, and the program runs on the PC
(CPU: Pentium dual-core 1.5G·Hz; memory: 4G; operating
system: window7 64 bit). By running the program, the client
distribution map of the distribution network and the
location-distribution map can be obtained, as shown in
Figures 1 and 2, respectively:

Every vehicle route map corresponding to each distri-
bution center is shown in Figures 3 to 6, respectively.

Te client distribution served by each distribution center
is shown in Table 2.

Te study shows that the designed two-layer location
selection and route model based on the hybrid heuristic
algorithm is of high computational efciency and can deliver
a satisfactory solution in a short time.

6. Conclusion

Tis study has analyzed the advantages and disadvantages of
the c-means clustering algorithm, genetic algorithm, and
simulated annealing algorithm. Te innovations are as
follows:

Te classical algorithm in the fuzzy c-means clustering
algorithm, the original production method of initial value, is
improved.

(1) Tis study has improved the original way of gener-
ating initial values based on the synthesis of previous
scholars’ research. Stimulating the probabilistic jump

of the simulated annealing algorithm can make the
algorithm jump out of the local minimum and fnd
the optimal solution in a large search space, which
efectively makes up for the lack of search ability of
the genetic algorithm in the local solution space and
can efectively converge to the global optimal
solution.

(2) Te parallel search ability of genetic algorithm can
quickly carry out global search. Making use of the
advantages of genetic simulated annealing, a hybrid
heuristic algorithm with global search and parallel
search is designed to optimize the initial value and
improve the convergence speed of the algorithm.
Tis avoids the drawbacks arising from a single al-
gorithm, and at the same time creates the “one plus
one greater than two” efect.

Te traditional LRP model has also been improved as
follows:

(1) Making full use of the tour visit characteristics of
vehicles, the multitraveling salesman problem
(MTSP) is introduced into the LRP model, which
shortens the tour cycle of vehicles, improves the
utilization rate of vehicles, and saves the tour cost of
vehicles. At the same time, it saves the vehicle’s
cruising cost and verifes the feasibility of the method
in this study by implementing a specifc arithmetic
example through MATLAB programming.

(2) Te complex mathematical model is replaced
by a simple mathematical model. Although there
is a sacrifce in the accuracy of the model, the
solution time of the problem is greatly shortened
and the timeliness of the distribution system
is ensured with simple solution method.
Compared with other methods for LRP solution,
the method in this study has a stronger overall
solution efect.
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