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Analyzing monitoring data to recognize structural anomalies is a typical intelligent application of structural safety monitoring,
which is of great significance to hydraulic engineering operational management. Many regression modeling methods have been
developed to describe the complex statistical relationships between engineering safety monitoring points, which in turn can be used
to recognize abnormal data. However, existing studies are devoted to introducing the correlation between adjacent response points
to improve prediction accuracy, ignoring the detrimental effects on anomaly recognition, especially the pseudo-regression prob-
lem. In this paper, an anomaly recognition method is proposed from the perspective of causal inference to realize the best
exploitation of various types of monitoring information in model construction, including four steps of constructing causal graph,
regression modeling, model interpretation, and anomaly recognition. In regression modeling stage, two deconfounding machine
learning models, two-stage boosted regression trees and copula debiased boosted regression trees, are proposed for recovering the
causal effects of correlated response points. The validation was carried out with Shanmen River culvert monitoring data, and experiment
results showed that the proposed method in this paper has better anomaly recognition compared to existing regression modeling
methods, as shown by lower false alarm rates and lower averaged missing alarm rates under different structural anomaly scenarios.

1. Introduction

A large number of hydraulic engineering projects in the
world are in operation and maintenance. These projects
may encounter engineering defects or structural failures
caused by design defects, flooding, geological movement,
material aging, etc., during operation, which may result in
serious accident hazards. Understanding whether there are
safety hazards in the structure through activities such as
engineering monitoring and inspection is an important task
in the process of engineering operation and maintenance.
For this reason, more and more technologies of sensors [1],
data acquisition [2], and data analysis [3] are developed and
applied to engineering structural safety monitoring [4] and
engineering safety state evaluation [5], so as to improve the
efficiency of safety monitoring and reduce the human cost of
engineering operation and maintenance.

Data-based structural anomaly recognition is a monitor-
ing data analysis technique that aims to establish recognition
criteria for the presence of structural anomalies by mining
and analyzing historical data [6]. In the process, common
data mining methods include statistical feature extraction
[7], cluster analysis [8, 9] and regression modeling [10, 11],
which has been widely discussed in the engineering safety
monitoring literature. Statistical feature extraction assumes
that the extreme values, rates of change, and other features of
structural response quantity should be consistent with engi-
neering experience, and this method relies too much on the
design of domain experts [12]. Cluster analysis assumes that
monitoring data samples are distributed in clusters of differ-
ent sizes, and “outliers” that are too far from the cluster
centers or too small in density are recognized as anomalous
data. This method takes into account the correlation between
the environment quantity and the effect quantity but is prone
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to misreporting sparse samples in extreme environments
[13]. Regression modeling assumes that the environment
quantity x directly affects the change of the effect quantity
y in the form of load f(x), and by regression modeling of
historical data, a structural response model y ¼ f xð Þ þ u can
be constructed, and samples that do not satisfy the conditional
distribution P yjxð Þ are recognized as abnormal data.

It is not difficult to see that anomaly recognition methods
based on regression modeling have more restrictive assump-
tions and thus are more reliable in recognizing structural
anomalies and are widely studied [14]. However, the complex
response mechanism between environment and response
quantities, the nonlinear feature interaction and nonstation-
ary properties of engineering safety monitoring data make
it difficult to construct a reasonable regression model using
simple statistical modeling techniques [15]. In recent years,
the introduction ofmachine learning techniques has improved
this situation [16]. Machine learning models not only pro-
vide sufficient parameters for data fitting [17] but also pro-
vide efficient optimization methods to learn the complex
interactions between features and thus have higher predic-
tion accuracy [12]. In addition, machine learning models
can effectively identify long-term stable signals and short-
term fluctuation signals in monitoring data to adapt to the
changing environment–response relationship of engineer-
ing structure in different operation periods [18].

Usually, there is more than one measurement point for
response variables of the same type. This is because regres-
sion analysis of single response point tends to give false
alarms under limited monitoring of environmental variables,
while correlated data consisting of multiple response points
can assist in inferring the presence of abnormal loads on the
structure. Engineering examples exhibit the consistent behav-
ior of hydraulic structure under normal conditions [19].
However, existing studies tend to focus only on the prediction
accuracy of regression models, especially assuming that the
variance of response residuals u are uncorrelated [20], ignore
that the inference of correlated data often requires special
methods, otherwise the results are likely to be biased or yield
paradoxes [21]. This brings significant risks to the task of
structural anomaly recognition. Thus, there is still a lack of
debiased anomaly recognition model construction methods
within consideration of correlated response points in hydrau-
lic structural safety monitoring.

This paper aims at providing a machine learning regres-
sion modeling idea from the perspective of causal inference,
so that the introduced correlated response variables not only
assist the inference of abnormal data but also can improve
the variance of model prediction, thus reducing the chance of
false alarm and missed alarm. To achieve this purpose, this
paper constructs a causal graph between the physical quan-
tities of structural monitoring, proposes two deconfounding
regression modeling methods based on boosted regression
trees, and validates these methods on the Shanmen River
culvert. The structure of this paper is as follows: Section 2
describes the correlation and its mining value of adjacent
response points in engineering safety monitoring, and reviews
the literature taking account of adjacent response points in

regression modeling. Then, this paper proposes a structural
anomaly recognition modeling process in Section 3, in which
two deconfounding regressionmodeling approaches based on
causal inference are proposed to improve the problem of
robustness of anomaly recognition brought by the introduc-
tion of adjacent response points. The method proposed in this
paper is applied and validated using Shanmen River culvert as
an example in Section 4. Section 5 provides an overview of the
advantages and limitations of the suggested models, and pro-
spects for future work.

2. Literature Review

Existing studies have shown that many machine learning
methods such as neural networks [22], support vector machines
[23], random forests [24], and extreme learning machines [25],
and among others can construct well-performing models for
structural response trends prediction and structural anomaly
recognition by their strong fitting ability. In machine learning
research, it is a common idea tomine and exploit the correlation
in the data as much as possible to improve the model prediction
accuracy. As mentioned above, the correlation in structural
safety monitoring data is not only reflected in the causation
between environment and response points but also in the cor-
relation between adjacent response points. Although the exist-
ing literature is optimistic about the prospect of utilizing
correlations between response points, it remains cautious in
research and application in structural anomaly detection [26].

There are two main problems with introducing correla-
tions between adjacent response points when constructing
structural response models. One problem is that along with
the change of structural properties, the correlation between
adjacent response points may change, i.e., there is a phenom-
enon of covariate drift with uncertainty [19]. Under normal
operating conditions, adjacent response points will exhibit a
high degree of correlation, but when the structure is sub-
jected to abnormal loading, the correlation may either
remain or change significantly, depending on whether the
structure is experiencing an overall or local anomaly. Thus,
if the constructed regression model relies too much on the
correlation between adjacent response points, the anomaly
recognition model will exhibit a lack of generalization ability.

Further, another problem is the interpretation of machine
learning models [27, 28]. Machine learning models generally
have a more complex structure, which gives them the ability
to better explore the complex relationships between variables
while also posing difficulties in model interpretation. Due to
the lack of a unified theory and method to explain the con-
structed regression models, most of the existing studies only
focus on the model prediction accuracy performance and lack
the comparison and analysis of the significance of input fea-
tures. This leads to the problem of model overfitting not being
easily revealed after introducing the correlation of adjacent
response points.

In contrast to without consideration of using adjacent
response points in regression modeling (named “without
consideration” in Table 1), there are three major approaches
introducing this correlation in literatures. The most direct
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way is to use the adjacent response points as the input fea-
tures of regression model [20, 29], and then select a machine
learning model with good generalization ability such as
boosted regression trees (BRT) for training (named “direct
modeling” in Table 1). Although the simulation experimen-
tal results show that model’s prediction performance get
better, the problem of overfitting exists obviously. Another
alternative approach is to construct the regressor of the adja-
cent response points using the environment quantity in first-
stage regression, and then the prediction results of adjacent
response points of first-stage regressor are used to construct
the second-stage regression model with environment quan-
tity as model inputs (named “two-stage regression” in
Table 1) [30]. However, some studies have shown that intro-
ducing a nonlinear regressor constructed by machine learn-
ing in the first-stage regression can cause significant bias in
the second-stage regression modeling [31]. In addition, there
is another way of regression modeling using environment
and adjacent response points separately and then weighting
multiple regressors together to obtain an integrated regres-
sion model (named “separate regression” in Table 1) [19].
This approach distinguishes effect between causal factors and
correlation factors but ignores the interaction between the
two. The above-related studies are summarized in Table 1.

In summary, although existing studies consider the introduc-
tion of adjacent response points in the regressionmodeling phase,
they lack the exploration of the anomaly recognition performance
and require a suitable theoretical guide in regression correction
strategy, so that there are many limitations in practice.

3. Methodology

As a common data analysis method, regression modeling has
been used in many areas of business, with prediction tasks
being the most popular. Prediction aims to make full use of
the correlations in the data to estimate the changes of system
under different scenarios; however, prediction models can-
not always be used to make counterfactual inferences due to
the possible confounding variables used in modeling the
system, which makes the constructed statistical models suffer
from pseudo-regression problems. Consequently, the intro-
duction of causal analysis methods to remove confounding
effects is usually considered in decision-making tasks. Decon-
founding regression modeling, i.e., combining causal analysis
methods to correct the process of regression modeling or the
estimated results, often entails drawing a graph of what may
be causing what, identifying confounders, and stratifying
those to find the effect of a treatment on an outcome. Doing
this properly helps decision makers stay clear of absurd
claims.

This paper proposes deconfounding regression modeling
methods to implement a structural anomaly recognition
technique based on the analysis of causal relationships
among measurement points, including four steps of con-
structing causal graph, regression modeling, model interpre-
tation, and anomaly recognition, as shown in Figure 1. First,
according to the layout of measurement points in the moni-
toring section, the measurement points are classified into
exogenous variables (adjacent response points) and endogenous

TABLE 1: Regression modeling approaches consideration on adjacent response points and their limitations.

Modeling approach Limitations

Without consideration Insufficient monitoring of environmental factors, the regression model is prone to missing alarms
Direct modeling The regression model suffers from severe overfitting and is prone to false alarms
Two-stage regression The powerful nonlinear fitting capability of machine learning hinders overfitting correction
Separate regression The integrated regression model ignores interactions between causal factors and correlation factors

1. Causal graph construction 2. Regression modeling

Structure monitoring quantity

Environment
variables 

Response
variables 

Causal graph

History monitoring data

Training
dataset

Validation
dataset

Regression model and residual

Test data to be
recognized

Abnormal data

Check if the feature
importance is reasonable 

Estimated beyond
error interval

Early warningModel interpretation result

N

Deconfounding boosted
regression tree

SHAP

Domain
knowledge Y

3. Model interpretation

4. Anomaly recognition

FIGURE 1: The overall workflow of anomaly recognition model construction and application.
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variables (environment points) using domain knowledge, and
a cause graph is constructed to guide the next regression
modeling process. Then, in the regression modeling stage,
inspired by econometrics, two improved machine learning
modeling methods are proposed to minimize the effects aris-
ing from confounding bias. After the regression modeling is
completed, a suitable model interpretation method is selected
to understand whether the endogeneity problem of the regres-
sion model is mitigated by comparing the importance of differ-
ent features at sample estimation. Finally, in the anomaly
recognition stage, the anomaly discriminant interval is consid-
ered, which is used to establish the anomaly recognition rules.
The details are shown below.

3.1. Causal Graph Construction. A reasonable hypothesis on
the causal relationship between variables is a prerequisite for
causal inference. During the design and construction of engi-
neering safety monitoring, various types of sensors are gen-
erally installed in a vertical monitoring section. These sensors
include several response points for monitoring the structural
response of interest, such as displacement, seepage, stress,
strain, etc., and also some environment points for monitoring
the environment factors that produce loads on the structural
response, such as water level, temperature, etc. Although the
historical monitoring data collected by different sensors are
correlated with each other, the reasons to produce the corre-
lation are not the same. First, changes in environment quan-
tities are the direct cause of changes in response quantities,
and thus there is causality between the environment and
response quantities. In contrast, the environment factors
and the principle of producing load on response measures
in the same section are similar, and thus these response points
show a high correlation, but this correlation does not mean
that there is a strong direct interaction between them. Based
on the above analysis, a causal graph is constructed, as shown
in Figure 2.

There are three paths in Figure 2 to reveal the source of
correlation between the adjacent response points, which are
indicated by green, blue, and red arrows. The green path
indicates that the engineering structure as a whole, local
load changes will have some direct effects on the loads at

other locations. The blue path and the red path indicate that
the environment quantities as confounding variables result
in correlations between the same section response points,
where the blue path is the observed environment quantity,
and this confounding effect can be eliminated by the condi-
tion control of the environment quantity, while the red path
represents the confounding effect of the unobserved environ-
ment quantity, and this confounding effect is not easily elim-
inated. It is worth noting that there is another reason for the
correlation with response points, which is the most of the
monitoring data are collected in good conditions, which
makes the monitoring data used for regression modeling
subject to sample selection bias. In econometrics, sample
selection bias can also be considered as a confounding effect
of unobserved variables.

In the causal inference perspective, in order to restore the
causal effects between adjacent response points, it is key to
condition the environment quantities, otherwise the con-
structed regression model will suffer from endogeneity pro-
blems. Endogeneity refers to the presence of confounding
factors both affecting x and y, leading to inequality of statis-
tical association distribution and interventional distribution,
i.e., P yjxð Þ ≠ P yjdo xð Þð Þ, this is also referred to as con-
founding bias. In econometrics, endogeneity is described as
the presence of correlation between x and u in the ideal
regression model y ¼ f xð Þ þ u. As an example, in a linear
model y ¼ βx þ u, if x is an endogenous variable, it is corre-
lated with the residual u, that is the covariance of two vari-
ables cov x;ð uÞ ≠ 0. When doing ordinary linear regression,
the model parameter β would be biased estimated for:

bβ ¼ cov y; xð Þ − cov x; uð Þ
cov x; xð Þ ≠

cov y; xð Þ
cov x; xð Þ : ð1Þ

3.2. Regression Modeling. Machine learning-based regression
modeling methods can be very good at learning correlations
between complex factors, and in practice, often the more
correlated features have a greater impact on the estimation
results. However, correlation is not equal to causality, and
the purpose of causal inference is to eliminate confounding
bias as much as possible and identify causality from correla-
tion. In this paper, inspired by the methods of dealing with
endogeneity problems in econometrics, we propose two
deconfounding regression modeling methods based on
boosted regression trees models, including two-stage BRT
(TSBRT) and copula debiased BRT (CDBRT). Assume that
the ideal regression model has the form y ¼ f x;ð zÞ þ u,
where z is the exogenous variable, i.e., the environment
quantity, and x is the endogenous variable, i.e., the adjacent
response quantity. The principle of the twomethods proposed
in this paper is to reduce the correlation between x and u as
much as possible in the regression modeling process, and
the difference between the two methods is whether the
confounding effect from unobserved environment factors is
considered in the correction process, as described below.

Soil pressure Water level

TimeTemperature

Observed
environment factors

Unobserved
environment

factors

Response point
to be recognized

Response points
in same section

FIGURE 2: The causal graph of measurement points in the monitor-
ing section.
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3.2.1. Boosted Regression Trees. BRT is an ensemble learning
model based on classification and regression tree (CART),
where the model constructs multiple decision trees with
training data and sums the estimates of each decision tree
as the final estimation at the prediction stage. The method
fully combines the flexibility of CART with the effectiveness
of the boosting learning mechanism. CART serves as a sub-
model to compose BRT, and during the regression model
training, the algorithm is used by recursively dividing the
dataset into smaller subsets until certain stopping conditions
are satisfied, such as minimum number of samples or maxi-
mum tree height.

Decision tree splits during model learning with dataset
R ¼ x;ðf yÞg, the dataset is divided as R1 j;ð sÞ ¼ xjxj ≤ s

È É
and R2 j;ð sÞ ¼ xjxj>s

È É
, recursively. Everytime subset is

divided, the CART algorithm selects a split sample with fea-
ture j and feature value s that satisfies the minimum mean
square error (MSE) condition in a greedy strategy:

argmin
j;s

∑
x i2R1 j;sð Þ

yi −bc1ð Þ2 þ ∑
x i2R2 j;sð Þ

yi −bc2ð Þ2: ð2Þ

In Equation (2), the estimate value bc is the mean of the
labels y of the samples contained in each child node. After
the decision tree h is built, a common regularization tech-
nique to avoid overfitting is to reduce the complexity of the
decision tree by pruning. The regularized loss function L(h)
is:

L hð Þ ¼ MSE hð Þ þ α hj j; ð3Þ

where MSE(h) is the mean square error of samples estimated
by h, |h| is the number of leaf nodes, and α is a predefined
regularization weight to trade-off different losses. The prun-
ing process is traversed upward from each leaf node, and the
parent node is pruned if the regularized loss function will
become smaller after the parent node is deleted.

The CART algorithm can handle both continuous and
discrete variables, so it is well-suited to handle various types
of datasets. However, the fitting ability of a decision tree as a
weak classifier is very limited. BRT performsmultiple rounds of
training based on the boosting mechanism for each build a
group of decision trees. After a decision tree hi(x) is trained,
the regression function of the whole model fi xð Þ ¼ fi−1 xð Þþ
λhi xð Þ, where λ is the learning rate, and the fitted residual of the
sample ui ¼ y− fi xð Þ is just the gradient of trained regression
model fi xð Þ and will be used as the new label yiþ1 for the next
round of decision tree training.

The hyperparameters in model training process include
max iteration number M, minimal leaf sample, max tree
depth, regularization weight α, and learning rate λ. These
parameter values need to be set empirically during model
training, and the values taken in this study are shown in
Section 4.2. The decision tree construction process uses dif-
ferent features for division, thus can better mine the interac-
tion effects between variables, and decision tree is easier to
explain. However, when the decision trees are complex or too

many, it still requires sophisticated interpretation tools,
which will be discussed in Section 3.3.

3.2.2. Two-Stage Boosted Regression Trees. When causal
inference models are constructed, the input features are
divided into two categories, one for exogenous variables z
and the other one for endogenous variables x. The difference
between them is that endogenous variables may lead to endo-
geneity problems when they are used directly in regression
modeling. Two-stage regression is a common idea in causal
inference, where in the first stage, a regression model is con-
structed for each endogenous variable x, and then in the
second stage, exogenous variables z and the estimated endog-
enous bx are used to construct a regression model for the
variables y to be estimated.

Based on the above principles, this paper proposes a two-
stage regression model based on BRT named TSBRT, in
which the environment factors are considered as exogenous
variables z and the other response points in same section
are considered as endogenous variables x. In the first stage
regression modeling progress, a part of correlation between
different response points produced by unobserved environ-
ment factors (red path in Figure 2) is filtered out, and
another part produced by common observed environment
factors (blue path in Figure 2), thus the second-stage regres-
sion model predict account for adjacent response points with
remaining correlation (green path in Figure 2). The algo-
rithm details are shown in Algorithm 1.

It is worth noting that original BRT is an ensemble learn-
ing method, which means that each decision tree generated
in the modeling is a weak regressor. The proposed TSBRT
constructs the regression model fx zð Þ for the endogenous
variable x and the regression model f z;ð bxÞ for the variable
y in a stepwise “tree by tree”manner, instead of constructing
the whole regression model one by one. The reason for this is
that it has been found in practice that machine learning
methods have a strong nonlinear fitting ability, and thus
the instrumental variables generated tend to introduce an
overfitting risk to the second-stage regression training, and
empirically the complexity of the first-stage trained regres-
sion model should not exceed that of the second-stage
model.

3.2.3. Copula Debiased Boosted Regression Trees. Filtering out
correlations between response points produced by unob-
served environment factors is a conservative modeling strat-
egy. Retaining a portion of the correlation between response
points under reasonable assumptions can further improve
the prediction accuracy of the model while ensuring model
robustness. As there are no suitable instrumental variables
to estimate the unobserved environment factors, some
instrument-free modeling approaches in econometrics can
be introduced.

In causal inference, there is endogeneity in the con-
structed regression models, implying that there is a correla-
tion between the endogenous variables x and the model
residual u. The problem of endogeneity can be greatly allevi-
ated if the joint distribution between the endogenous vari-
ables and the model residuals can be modeled. Copula is a
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tool for constructing complex joint distributions between
variables, and this section proposes a copula-based modeling
improvement strategy.

Using the copula method, the correlation between the
two can be modeled, that is, the joint distribution of x and
u, and then more consistent model parameter estimates can
be obtained. According to Sklar theorem, for two variables
with marginal distributions H and G, there exists a copula
function c such that the joint distribution:

F x; uð Þ ¼ c H xð Þ;G uð Þð Þ ¼ c Ux;Uuð Þ: ð4Þ

In Equation (4), Ux ¼ H xð Þ and Uu ¼ G uð Þ are variables
generated by probability integral transformation that satisfies
the uniform distribution in [0, 1], which means their proba-
bility density functions satisfy f x;ð uÞ ¼ c Ux;ð UuÞh xð Þg uð Þ.
Similar to many existing model assumptions, this paper uses
a Gaussian copula function to establish the joint density
function of endogenous features x and residual u:

f x; uð Þ ¼ 1

1 − ρ2ð Þ1=2 exp −
ρ2 Φ−1 Uxð Þ2 þ Φ−1 Uuð Þ2ð Þ

2 1 − ρ2ð Þ þ ρΦ−1 Uxð ÞΦ−1 Uuð Þ
1 − ρ2ð Þ

� �
h xð Þg uð Þ: ð5Þ

In Equation (5), ρ is the correlation coefficient of endog-
enous features x and residual u, Ux can be obtained through
nonparametric density estimation method. Assuming u is
sampled from a normal density function with mean 0 and
standard error σ2u. This linear Gaussian correlation assump-
tion implies that the correlated residual u can be rewritten as:

eu ¼ σu ⋅ ρ ⋅ ex þ σu ⋅
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ2

p
⋅ ew; ð6Þ

where x̃ is got from Φ−1 Uxð Þ and w̃ is a variable sampled
from standardized normal distribution [32]. The implemen-
tation of the proposed method introduces a generated feature
ũ in the process of BRT training as Algorithm 2 described.

3.3. Model Interpretation. In a linear regression-based causal
inference task, although it is impossible to confirm whether
the parameters learned by the model are in accordance with
causality, it is possible to judge whether the improved model
is more consistent with engineering experience and

perception based on the changes in model parameters before
and after the implementation of the deconfounding method,
such as a significant increase in the weights of the causal
variables. However, the model parameters involved in
machine learning methods are often very numerous and
complex in their relationships, which poses a great challenge
to model parameter identification.

In recent years, the development of explainable artificial
intelligence techniques has provided many tools to help
model users understand the behavior of the trained model.
Researchers tend to focus on the degree to which each feature
of the model input affects the model output, often referred to
as feature importance [33], and in linear regression models,
feature importance is measured in the form of variable coeffi-
cients. Although decision tree-based feature importance quan-
tification methods have been proposed for a long time, the
traditional interpretation methods based on the importance
of decision tree features are often misleading [34]. To address
this problem, Lundberg and Lee [35] proposed SHapley

Input: Train data collection C ¼ z;ðf x; yÞg, loss function L, max iteration number M, and learning rate λ

Output: Second-stage regression function by ¼ fM z;ð bxÞ and each first stage regression function bxi ¼ f iM zð Þ; i ¼ 1; 2;…; jxj
1 f i0 zð Þ ¼ mean xið Þ; i ¼ 1; 2;…; jxj//Initialize each first stage regression function

2 f0 z;ð bxÞ ¼ mean yð Þ//Initialize second-stage regression function

3 while m ¼ 1→M do

4 while i ¼ 1→ jxj do
5 uim ¼ −

∂L xi; f im−1 zð Þð Þ
∂f im−1 zð Þ ¼ xi − f im−1 zð Þ //Get residual’s gradient of f im−1 zð Þ

6 him zð Þ← CART Ci
m ¼ z;ðfð uimÞgÞ

7 f im zð Þ ¼ f im−1 zð Þþ λhim zð Þ
8 //Train a new CART tree to update regression function of bxi ¼ f im zð Þ
9 end

10 vm ¼ −
∂L y; fm−1 z; bxmð Þð Þ

∂fm−1 z; bxmð Þ ¼ y− fm−1 z;ð bxmÞ //Get residual’s gradient of fm−1 z;ð bxmÞ
11 gm z;ð bxmÞ← CART Cm ¼ z;ðfð bxm; vmÞgÞ
12 fm z;ð bxmÞ ¼ fm−1 z;ð bxmÞþ λgm z;ð bxmÞ
13 //Train a new CART tree to update regression function of by ¼ fm z;ð bxmÞ
14 end

15 Return fM z;ð bxÞ and f iM zð Þ; i ¼ 1; 2;…; jxj

ALGORITHM 1: Training of a two-stage boosted regression trees model.
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Additive exPlantions (SHAP), a computational framework
dedicated to unifying the field of interpretable machine learn-
ing based on the concept of Shapley value.

Assuming that players cooperate in a union and receive a
certain amount of income from this cooperation, for a joint
game, each player contributes differently to the total income,
and thus a method is needed to allocate income to players
based on their contribution to the total spent. Similarly,
regression is the process of estimating the label jointly based
on multiple input features, and SHAP uses Shapley values to
explain the importance of each feature in the model, gradu-
ally becoming a general method for interpretability of com-
plex models.

As stated in Section 3.2.1, the decision tree model esti-
mates the sample by traversing different sets of features s and
eventually obtaining different estimates g(s), depending on
the splitting point. SHAP takes each input feature of the
machine learning model as player i, then for the arrangement
of all features z0 2 0; 1f gM, there is a linear equation for the
constructed explanation model:

g z0ð Þ ¼ ϕ0 þ ∑
M

i¼1
ϕiz0i : ð7Þ

In Equation (7), z0i ¼ 1 means that feature i participate in
s, otherwise it is 0, and ϕi represents the contribution of
feature i. The conditional expectation h xð Þ ¼ E f xð Þjxs½ � of
different features sets s are obtained by estimating a large
number of samples of the model f(x). And the final explana-
tion of the feature importance is the marginal contribution of
a player i in various alliance s, thus h s ∪ ið Þ− h sð Þ.
3.4. Anomaly Detection. After a regression equation f(x) has
been trained, it can be used to perform anomaly recognition
tasks. This is done by first estimating the label y of data {(x)}
to be tested with by ¼ f xð Þ, and discriminate data (xi, yi) is
abnormal, if Equation (8) is satisfied:

yi − byij j>3σ: ð8Þ

In Equation (8), σ is the sample standard error of the
residuals u of the regression model f(x) in the validation
dataset. The basic principle of this discriminant rule is that
if f(x) learns the mapping x À! y well, the sample residuals
u of the normal data should conform to the normal distribu-
tion with means 0 and standard error σ2. The statistical
meaning of 3σ is that, y is in about 95% confidential interval
of f(x), which is a common setting in literatures. This thresh-
old is given as 2σ in some papers as well. From an engineer-
ing point of view, when the estimated response value exceed
the anomaly discrimination interval, it indicates that the
structure is subjected to a load that cannot be explained,
i.e., the identification of a possible anomaly in the current
structure.

According to Equation (8), it can be found that an anom-
aly recognition model with good performance tends to have
two properties. On the one hand, f(x) has good predictive
performance in the validation dataset, which means that the
standard error of the model residuals is smaller, and thus a
narrower anomaly discrimination interval allows the model
to identify minor abnormal loads at the early stage when
structural anomalies occur. On the other hand, f(x) needs
to have a good generalization ability, i.e., the model reason-
ably extracts the feature information as the main basis for
estimation. The engineering operation process is complex
and the distribution of environmental variables may change.
Better generalization ability can better adapt to covariate
shifts and reduce the possibility of false alarms and missed
alarms.

However, the two goals often conflict in practice, espe-
cially when model training pursues only in-bag accuracy, it
may mislead machine learning with the problem of overcon-
fidence and poor generalization performance. Thus, the
trade-off problem of variance-bias needs to be considered.
The main focus of this paper is on how to effectively use the
correlation between adjacent response points to improve the

Input: Train data collection C ¼ z;ðf x; yÞg, correlation coefficient ρ, loss function L, max iteration number M, and learning rate λ

Output: Regression function by ¼ fM z;ð xÞ
1 f0 z;ð xÞ ¼ mean yð Þ //Initialize regression function

2 while m ¼ 1→M do

3 vm ¼ −
∂L y; fm−1 z; xð Þð Þ

∂fm−1 z; xð Þ ¼ y− fm−1 z;ð xÞ //Get residual’s gradient of fm−1 z;ð xÞ
4 h̃m z;ð xÞ← CART C̃m ¼ z̃ ;ðfÀ

x̃; ṽmÞgÞ
5 //Train CART tree with bootstrap method and sample residual’s standard error σu;m
6 ũm ¼ σu;m ⋅ ρ ⋅ x̃ þ σu;m ⋅

ffiffiffiffiffiffiffiffi
1−

p
ρ2 ⋅ w̃

7 hm z;ð xÞ← CART Cm ¼ z;ðfð x; vm − ũmÞgÞ
8 fm z;ð xÞ ¼ fm−1 z;ð xÞþ λhm z;ð xÞ
9 //Train a new CART tree to update regression function of by ¼ fm z;ð xÞ
10 end

11 Return fM z;ð xÞ

ALGORITHM 2: Training of a copula debiased boosted regression trees model.
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anomaly recognition performance. This paper argues that
because the correlation between adjacent response points is
unstable, directly using them as input features for model
training may easily lead to insufficient generalization ability
of the regression model. Considering that the forms of struc-
tural anomalies are diverse, such as single point anomalies,
partial structural anomalies, and overall structural anoma-
lies, this paper aims to present the proposed deconfounding
BRT methods have stable anomaly recognition ability, as
tested in Section 4.

4. Case Study

The case study concerns the Shanmen River culvert in Jiao-
zuo with coordinates (113.19094° E, 35.162414° N) accord-
ing to the World Geodetic System (WGS84). Culvert is a
common water delivery building and is widely constructed
in South-to-North Water Diversion Project. Shanmen River
culvert was completed in June 2012 and has been in use since
December 2014. The culvert is a pressureless tunnel, 550m
long. The maximum excavation height of the cave is 11.75m,
the span is 11.75m, and the distance between the left and
right holes is 24m. The cover layer between the bottom of
Shanmen River and the culvert is thin, and the minimum
burial depth is about 18m. The surrounding rocks are loose
laminated bulk structure of the fourth series, mainly com-
posed of pebbles and heavy powdery loam, in which the
pebble cementation is mostly uneven, staggered layers or
lenticular distribution, and the distribution is more irregular.
The instruments layout of SHM culvert monitoring section is
shown in Figure 3.

4.1. Regression Model Construction. Under the influence of
material aging, geological movement, or other factors during
operation, the surrounding rock structure may be cracked

and damaged, which may result in structural instability. By
monitoring the changes of the steel stress in the surrounding
body, it is possible to recognize structural anomaly and take
disposal measures in time. As illustrated in Figure 3, there are
four steel stress gauges (R1–R4) that were installed on
the palm cavity at 3, 6, 9, and 12 o’clock, respectively.
Some environment sensors were installed to perceive the
potential load from environment changing near them, the
environment sensors including four temperature gauges
(T1–T4) to monitor the steel temperature, four soil pressure
gauges (E1–E4) to monitor load from the river above and
surrounding soil, and a water level gauge (P) to monitor
water level in the cavity. In addition, taking into account
the effect of concrete creep is related to time, the input fea-
tures often include time t in regression process.

To achieve regression-based structural stress anomaly
recognition, the key step is to construct a regression model
for each steel stress measurement point. The main question
discussed in this paper is how to effectively use the correla-
tion between adjacent response points to compensate for the
incomplete monitoring of environment factors. To demon-
strate the effectiveness of the proposed method in this paper,
two existed model construction ideas are implemented for
comparison. One is a causal model, in which the model
selects some of the environment variables that directly gen-
erate loads on the structural stress measurement points as
input features. In addition, a noncausal model is constructed
by introducing other steel stress measurement points as
input features, considering the existence of unobserved envi-
ronment factors on the structure. The input features of the
two regression models are shown in Table 2. Taking the
regression model for steel stress gauge R3 as an example,
the input features of the noncausal model include not only
the environment variables E3, T3, P, and t but also the steel
stresses R1, R2, and R4 at other positions.

As described in Section 3.3, the input features of the two
improved models proposed in this paper are identical to
those of the noncausal model. The difference is that the
regression model proposed in this paper divides the input
features into environment variables z and adjacent steel
stress points x. The noncausal model directly constructs
the mapping of input features to the estimated steel stressby as x;ð zÞ À! by , while TSBRT estimate z À! bx before con-
structing a mapping of bx;ð zÞ À! y, and CDBRT constructs a
mapping x;ð yÞ À! ũ, then x;ð zÞ À! by − ũ is constructed.

4.2. Model Training and Interpretation. In this paper, moni-
toring data of Shanmen River culvert from 2,018.6 to 2,022.6
were used for model training and validation. Regression
modeling assumes that the data used for model training
and accuracy evaluation are all data collected under normal
working conditions, while the actual engineering monitoring
process may generate error data due to problems such as
unstable instrument operation or manual mistakes. Before
the model training, the monitoring data were processed for
the coarse error exclusion, which was based on the Grubbs
criterion. For each measurement point, the historical data
were sorted according to the measured value from smallest

P

E1E3

E4

E2

R2  T2

R1
T1

R4 T4

R3
T3

FIGURE 3: Monitoring equipment layout of Shanmen River culvert.
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to largest. The data series of each variable x is obtained, and
then the following equation is calculated:

gi ¼
abs xi − xð Þ

σ
: ð9Þ

In Equation (9), xi is the ith sample in dataset, x is the
sample mean of {(x)}, σ is the sample standard error, and abs
means the absolute value of a scalar value. If gi ≥ g0 i;ð 0:05Þ,
then the sample data xi is judged to be coarse error and is
excluded, and g0 i;ð 0:05Þ is the threshold value of the judg-
ment criterion, which is obtained by checking the Grubbs
threshold table.

After coarse error exclusion, 70% of the historical data is
used for model training and the remaining 30% is used to
evaluate the model performance. The same hyperparameters
were used for all model training processes, including a train-
ing loss function of MSE, a max iteration number of 50, a
minimal leaf sample of 5, a max tree depth of 3, a regulari-
zation weight α of 1.0, and a learning rate λ of 0.1. Compar-
ing the model residuals using different models and
constructing different measurement points, the model pre-
diction accuracy of test data was measured using the mean
absolute error, as shown in Table 3.

From the experimental results, it can be seen that the
causal model has the lowest model prediction accuracy
because it only considers the observed environment factors.
In contrast, the other models have higher model prediction
accuracy because they consider the effect of unobserved envi-
ronment factors effect on other response points. The non-
causal model still has the highest prediction accuracy, but as
the results of the analysis in Section 3.4 show that the model
uses the correlation between response points as the main
basis for prediction and thus has serious robustness pro-
blems in the anomaly recognition stage.

As stated in the content of Section 3.3, a good anomaly
recognition model should not only have more accurate pre-
diction but also a reasonable distribution of feature impor-
tance. Still taking the steel stress measurement point R3 as an

example, the feature importance of each model is expressed
in SHAP summary plot, as shown in Figure 4. The summary
plot ranks each input feature from top to bottom according to
feature importance. Each row depicts the relationship between
the feature value and its SHAP value, with the magnitude of
the feature value indicated by color and the SHAP value indi-
cated by the horizontal coordinate of the sample point.

The summary plot of the causal model shows that the
model considers the environment factors to be influencing in
the order of soil pressure, water level, time, and temperature
on the steel stress. The summary plot of the noncausal model
shows that although the ranking of the importance of envi-
ronmental factors by the noncausal model does not change,
the model bases its predictions more on the stress measure-
ment points at other locations, where the importance of the R1
feature in particular almost dominating. Then, it can be seen
that the distribution of feature importance of two improved
models is more reasonable. First, there is no change in the
importance ranking of the observed environment factors by
two improved models compared to causal model. Second,
compared to noncausal model, two improvedmodels consider
the importance of the observed environmental factors to be
higher, but the correlation between adjacent response points
has a nonnegligible influence, as shown by the fact that the R2
measurement point with the strongest data correlation is no
longer used as the dominant basis in the prediction, and its
importance is lower than that of the soil pressure E3.

4.3. False Alarm Performance. Regression-based anomaly
recognition method uses a regression model to accomplish
a classification task. Although regression models are trained
with similarly distributed data, some training data cannot be
fitted well when the input features considered for construct-
ing regression models are not sufficient, such that some nor-
mal data in the historical data can be misclassified as
abnormal data. In the anomaly recognition task, this phe-
nomenon is called false alarm, and the generated alarms do
not imply that there is a potential risk to structural safety and
thus do not directly have serious consequences. However, a
high rate of false alarms can lead to frequent use of human

TABLE 2: Regression models and related input features.

Input feature Causal model Noncausal model

Soil pressure Adjacent soil pressure gauge T Adjacent soil pressure gauge T
Temperature Adjacent temperature gauge E Adjacent temperature gauge E
Water level P P
Time t t
Noncausal features — Other steel stress gauges R

TABLE 3: Mean absolute error (KPa) of different BRT models.

Model R1 R2 R3 R4 Average

Causal model 0.387 0.163 0.234 0.643 0.357
Noncausal model 0.079 0.085 0.068 0.163 0.099
Two-stage BRT 0.116 0.124 0.128 0.252 0.155
Copula debiased BRT 0.08 0.091 0.076 0.182 0.107
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resources for verification, which in the long run can lead to
mistrust of the model by the operation managers, so that
when a real structural anomaly is identified by the model,
it cannot be effectively brought to the attention of the opera-
tion managers. Thus, false alarms need to be attended to.

In order to compare the false alarm performance of dif-
ferent models, this paper performs anomaly recognition on
the validation dataset, and the false alarm performance of the
model can be evaluated based on the ratio of the number of
anomalies recognized by the model. The false alarm rates of
different models and different structural stress measurement
points are shown in Table 4. Comparing with Table 3, we can
find that the model false alarm rate is inversely proportional
to the prediction accuracy of the model in general. The non-
causal model has the lowest false alarm rate, and the two

models proposed in this paper, TSBRT and CDBRT, perform
close to it, while the noncausal model has the highest false
alarm rate. Anomaly recognition on selected data of stress
measurement R3 is plotted and compared, as shown in
Figures 5 and 6.

By comparing the anomaly recognition plots, the differ-
ences between different models can be identified. As men-
tioned in Section 3.2, regression model tends to be less
effective in good operating conditions of the structure if it
does not take into account the effects of unobserved environ-
mental factors. Figure 5 depicts the differences between the
causal model and the noncausal model for anomaly recogni-
tion on the validation dataset. The causal model has a lower
prediction accuracy and a wider anomaly discrimination inter-
val. At the same time, when the unobserved environmental
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FIGURE 4: SHAP summary plot of each models: causal model summary plot (a); noncausal model summary plot (b); TSBRT summary plot (c);
and CDBRT summary plot (d).

TABLE 4: False alarm rate (%) of different BRT models.

Model R1 R2 R3 R4 Average

Causal model 7.91 9.28 8.47 7.53 8.30
Noncausal model 1.61 4.88 2.27 1.98 2.69
Two-stage BRT 3.24 7.06 5.82 5.29 5.35
Copula debiased BRT 1.63 5.14 2.71 2.15 2.91
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variables changed, the causal model was unable to identify
them and could easily misclassify the structure as anomalous.
The improved TSBRT and CDBRT take into account the influ-
ence of unobserved environmental variables in the modeling
process from adjacent response points, and therefore rarely
misjudge, as shown in Figure 6.

4.4. Anomaly Recognition Performance. The key purpose of
anomaly recognition models is to accurately identify abnor-
mal data when structural anomalies occur, and this section
uses simulated data to evaluate the anomaly recognition per-
formance of different models. In order to verify the models’
robustness of anomaly detection, this paper processes the
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FIGURE 5: Anomaly detection result of causal model and noncausal model.

Fewer false alarms generated
by TSBRT and CDBRT

5

6

St
ee

l s
tr

es
s 

(k
Pa

)

7

8

9

10

0 20 40 60 80 100

CDBRT
TSBRTSame recognition result

Different recognition result

Days

FIGURE 6: Anomaly detection result of TSBRT and CDBRT.
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raw monitoring data to simulate the different forms of
anomalies that occur on the culvert structure. This is done
by randomly selecting 30% of the segmented data from the
original dataset, and then applying different forms of deviations
to these segmented data to simulate three structural anomaly
scenarios, including single measurement point local anomaly
(scenario 1), nonuniform overall anomaly (scenario 2), and
uniform overall anomaly (scenario 3). They are generated by
adding time-linearly correlated deviations to 10% of original
data for each exception scenario. Scenario 1 only adds
deviations to the steel stress measurement points to be
tested; scenario 3 adds equivalent deviations to all steel
stress measurement points; and scenario 2 also adds devia-
tions to all steel stress measurement points, but with differ-
ent deviations for different points.

A robust anomaly detection model should accurately
identify normal data (true positive, TP) and abnormal data
(true negative, TN), thus have a lower frequency of missing
alarm (false positive, FP) and false alarms (false negative,
FN). This paper evaluates the anomaly recognition perfor-
mance of each model by accuracy, measured as below:

Accuracy ¼ TPþ TN
TPþ FPþ TNþ FN

: ð10Þ

TP, TN, FP, and FN in Equation (10) mean the count of
anomaly recognition result for each test monitoring data. In
this paper, three structural anomaly scenarios are used to test
four models, including causal model, noncausal model,
TSBRT, CDBRT, and the experiment results are shown in
Table 5.

As can be seen in Table 5, the improved TSBRT and
CDBRT models have a more robust anomaly recognition
performance. This is demonstrated by the fact that the
improved models not only has the better anomaly recogni-
tion ability than causal model in scenario 1 but also has the
best anomaly recognition in scenarios 2 and 3 where overall
structural anomalies are detected. Although the noncausal
model has the best anomaly recognition accuracy in scenario 1,
it is unable to effectively identify deviations of overall structural
stress distribution, which is demonstrated in Figures 7 and 8.

From the anomaly discrimination intervals of the differ-
ent models in Figures 7 and 8, it can be seen that the

TABLE 5: Anomaly detection accuracy of models in different scenarios.

Model Scenario 1 Scenario 2 Scenario 3 Average

Causal model 0.862 0.862 0.862 0.862
Noncausal model 0.936 0.824 0.745 0.835
TSBRT 0.917 0.912 0.908 0.912
CDBRT 0.922 0.919 0.904 0.915
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FIGURE 7: Anomaly detection result of causal model, noncausal model, and TSBRT in scenario 3.

12 Mathematical Problems in Engineering



noncausal model is unable to identify overall structural
anomalies. It is because its estimation dependent on other
steel stress measurement points too much. The improved
TSBRT and CDBRT, however, are able to accurately identify
causation from the correlation of adjacent effect measure
points, thus have more reasonable anomaly recognition
results. In addition, the improved model is able to recognize
anomalies and alerts earlier relative to the causal model. It is
because the improved model takes into account the effect of
unobserved environmental quantities in the estimation and
has a higher prediction accuracy, i.e., a narrower discrimina-
tory interval for anomalies.

5. Conclusions

The use of monitoring data to recognize structural anomalies
is a typical intelligent application of structural safety moni-
toring, which is of great significance to hydraulic engineering
operational management. A large number of studies have
paid attention to constructing regressionmodels with advanced
method to obtain a better in-bag prediction accuracy, like
machine learning, deep learning, etc. However, few researchers
focus on how to improve the anomaly recognition performance
which is the ultimate goal of regression modeling. This paper
proposed a novel anomaly detection method and revealed that
integration of causal inferencemethod could reduce the risks of
false alarms and missing alarms significantly, especially when
correlated response points are taken into consideration. In the
process, two deconfounding machine learning models inspired
by methods of handling endogeneity problems in economics,
TSBRT and CDBRT, are proposed to restore the causal effect
between adjacent response points. The validation was carried

out with the Shanmen River culvert monitoring data, and the
experimental results showed that anomaly recognition meth-
ods proposed in this paper has higher average recognition
accuracy in different structural anomaly scenarios than existing
regression models, which has good application prospects.

The solutions and methods proposed in this paper still
hold incomplete issues that should be further investigated.
These issues to study in future research include: first, the
causal graph of culvert monitoring variables proposed in
this paper is derived from expert experience, and how to
improve the causal graph to better guide the regression
modeling process needs further exploration. Second, the
anomaly data used in the case study are generated based
on hypothetical structural anomaly scenarios, and research
on combining with physical simulation methods such as
finite element analysis should be conducted to obtain more
realistic anomaly data to evaluate the model anomaly recog-
nition performance more accurately. In addition, the causal
inference model proposed in this paper is based on boosted
regression trees, and future research will attempt to adapt
more machine learning models and validate them on more
types of hydraulic structures.

Nomenclature

x, y, z, u, v: Variables (set) used in regression modeling
f(·), g(·), h(·): Regression functions with a set of input

variables
P(y|x): The conditional probability distribution of y

on x, while P(y|do(x)) means interference
distribution on x

α; β; λ;ϕ; ρ: Scalar value of specific parameters
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FIGURE 8: Anomaly detection result of causal model, noncausal model, and CDBRT in scenario 3.
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{(·)}: Dataset with a set of features
|·|: Cardinality of a set
F(·), G(·), H(·): Probability integral transformation function

of variables
σ: Standard error of a variable
Φ−1 ⋅ð Þ: Inverse normal distribution of a variable
∂L xð Þ
∂x : Derivative of loss function L(x) with respect

to a variable xbx;by; bw;bc; bβ : Estimated value of variables or parameters
x̃; ỹ; w̃: Variables generated by sampling from data-

set or distributions.
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