
Research Article
A High Utility Itemset Mining Algorithm Based on Particle Filter

Yang Yang ,1,2 Jiaman Ding,3 Honghai Wang ,1 Huifen Xing ,1 and En Li1

1School of Computer and Artifcial Intelligence, Chaohu University, Chaohu 238000, Anhui, China
2Key Laboratory of Data Intelligence and Cyber Security, Chaohu University, Chaohu 238000, Anhui, China
3Kunming University of Science and Technology, Artifcial Intelligence Key Laboratory of Yunnan Province,
Kunming 650500, Yunnan, China

Correspondence should be addressed to Yang Yang; 1023042446@qq.com

Received 1 October 2022; Revised 1 February 2023; Accepted 2 February 2023; Published 23 February 2023

Academic Editor: Breno Jacob

Copyright © 2023 Yang Yang et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

High utility itemset mining is an interesting research in the feld of data mining, which can fnd more valuable information than
frequent itemset mining. Several high-utility itemset mining approaches have already been proposed; however, they have high
computational costs and low efciency. To solve this problem, a high-utility itemset mining algorithm based on the particle flter is
proposed. Tis approach frst initializes a population, which consists of particle sets. Ten, to update the particle sets and their
weights, a novel state transition model is suggested. Finally, the approach alleviates the particle degradation problem by
resampling. Substantial experiments on the UCI datasets show that the proposed algorithm outperforms the other previous
algorithms in terms of efciency, the number of high-utility itemsets, and convergence.

1. Introduction

Data analysis [1] has recently gained prominence as a feld of
study in data mining, which has applications in the aviation
industry [2], medicine [3], manufacturing [4], and many
other felds [5–8]. An essential component of data analysis is
frequent itemset mining (FIM) [9], which identifes frequent
itemsets (FIs) to provide stakeholders with a basis for de-
cision-making. FIs are a dataset whose occurrence frequency
is not less than a user-defned minimum support. However,
other valuable datasets with low frequency but high weight
cannot be found with conventional FIM. To further flter out
high-utility itemsets (HUIs) that can take into account both
frequency and weight, high-utility itemset mining (HUIM)
[10] has been suggested.

Most HUIM algorithms can be categorized into the
following two groups: Apriori-based algorithms and tree
structure-based algorithms.

Te Apriori [11] is an iterative algorithm that uses the
principle of downward closure property to search a dataset
multiple times and flter out FIs. In the Apriori algorithm, a
dataset is frst scanned to obtain candidates. Ten, the
frequent 1-itemsets are retrieved from these candidates. Te

new candidates come from the frequent 1-itemsets, and the
database is scanned again to fnd frequent 2-itemsets. All FIs
must be determined by scanning the database until no more
FIs can be found. Similar to the Apriori method, the Apriori-
based HUIM algorithm flters out HUIs by generating
candidates at each iteration. For example, Liu et al. [12]
suggested a two-stage approach that precisely extracts HUIs
by reducing candidates. A construction utility list [13] has
also been suggested by Liu and Qu to reduce the generation
of candidates.

Since Apriori generates too many candidates and in-
volves multiple scans of a dataset, the FP-growth algorithm
is proposed, which requires only two scans of a dataset and is
based on a tree structure. In the FP-growth algorithm, a
dataset is scanned twice to create an FP-tree, and then
conditional FP-trees are created from the FP-tree to extract
FIs. Te tree structure-based HUIM algorithms, which
employ the idea of FP-growth, frst store a dataset in a tree
structure and then determine HUIs through the conditional
tree structure. Recently, many tree structure-based algo-
rithms have been proposed. For example, Yun et al. [14]
presented the MU-Growth method, which constructs a
MIQ-Tree structure [14] and extracts HUIs using two

Hindawi
Mathematical Problems in Engineering
Volume 2023, Article ID 7941673, 15 pages
https://doi.org/10.1155/2023/7941673

mailto:1023042446@qq.com
https://orcid.org/0000-0001-9631-5661
https://orcid.org/0000-0001-5324-9502
https://orcid.org/0000-0002-5414-3408
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/7941673


efective pruning techniques. Krishnamoorthy [15] pre-
sented three pruning strategies to limit the space con-
sumption of the exploration tree for HUIM.

Conventional HUIM algorithms fnd all HUIs but re-
quire complex iterative calculations and take a long runtime.
Tus, we propose a particle flter-based high-utility itemset
mining (PF-HUIM) algorithm that fnds HUIs from a da-
tabase using a sampling method. Te main contributions of
this work can be summarized as follows: (1) An efcient
algorithm for HUIM based on the particle flter is proposed.
To the best of our knowledge, this is the frst method to
introduce particle flter theory into HUIM. (2) A novel state
transition model is proposed, which provides a reasonable
sampling distribution. Te fltering of HUIs is based on
sampling, which signifcantly reduces the time required by
the HUIM algorithm. (3) A particle degradation condition is
designed, and then resampling is used to improve the ac-
curacy of the algorithm. (4) Extensive experiments have
shown that the particle flter-based HUIM algorithm out-
performs three existing algorithms in terms of efciency,
convergence, and the number of HUIs.

Te rest of this paper is organized as follows: In Section
2, we give a concise summary of the related work, Section 3
discusses the related theory that is applied in this paper, in
Section, we provide a detailed description of the proposed
algorithm and examples, Section 5 presents the experiments,
and Section 6 gives the conclusion and future work.

2. Related Work

Recently HUIM has become a hot topic, and it is beyond the
scope of this paper to thoroughly review the research content
of HUIM. Interested readers can consult the relevant lit-
erature. In this paper, we give a brief review of the following
two diferent categories of HUIM: Apriori-based HUIM
algorithms and tree structure-based HUIM algorithms.

TeApriori-based HUIM approach generates candidates
and then flters HUIs from the candidates, which is similar to
Apriori. Unlike classical FIM, the downward closure
property is no longer applicable to HUIM. Tus, Chan et al.
[16] introduced a new pruning strategy for HUIM that al-
lows users to fnd HUIs from candidates. To ensure that only
promising itemsets are added to the candidates, Liu et al.
[17] have proposed a transaction-weighted utilization
model, which is also applicable to large databases. Yao and
Hamilton [18] then designed two innovative pruning
strategies and two algorithms for HUIM. Tese two algo-
rithms improved HUIM performance by reducing the
number of candidates. Moreover, an isolated item discarding
strategy [19] is presented, which can skip unpromising in-
dependent items and further minimize the size of candi-
dates. Such algorithms [12, 13, 16–21] generate too many
candidates and require high space complexity.

Te tree structure-based HUIM approaches are similar
to FP-growth, where the storage of data and the extraction of
HUIs are realized through tree structures. For example,
CTU-PRO [22] frst creates a novel bottom-up utility pattern
tree (CUP-tree) and then detects HUIs by traversing this
tree. To improve the efciency of HUIs’ discovery, CHUI-

Mine [23] has been proposed, which can only capture high-
utility candidates from a novel CHUI-Tree [23]. Moreover,
Yun and Ryang [24] developed a novel HUPID-tree
structure for high-utility pattern mining and designed
HUPID-Growth [24] to improve the efciency of the ap-
proach. Tese trees structure-based HUIM algorithms
[14, 15, 22–25] alleviated the problem of excessive time and
space consumption in the Apriori-based HUIM algorithms.
However, they are expensive to update and create a tree
structure. Tey should be improved.

Unlike the HUIM algorithms described above, this paper
designs a particle flter-based HUIM method that uses
sampling to flter out HUIs in a dataset. Among the nu-
merous research studies on HUIM algorithms, the heuristic-
based HUIM algorithms [26–38] are the most relevant to us.
Inspired by the heuristic methods [39, 40], heuristic-based
HUIM algorithms frst generate random initial candidates,
then update the candidates using behavioral patterns of
natural organisms, and fnally, flter out the HUIs from the
candidates.

GA [39] is a classical heuristic method that employs
three biologically inspired operators to solve a problem.
Kannimuthu and Premalatha [26] proposed two GA-based
HUIM methods to search HUIs, which generate initial
candidates by random numbers and update the candidates
by three operators. Zhang et al. [27] then proposed a novel
neighborhood exploration strategy that updates candidates
according to the rules of GA.

PSO [40] is another common heuristic method that
approximates the solution of the problem by three diferent
operators. Lin et al. [28] presented a PSO-based method
called HUIM-BPSOsig that determines current candidates
by their previous best position, their global best position, and
a sigmoid function. Lin et al. [29] then proposed HUIM-
BPSO, which creates an OR/NOR tree based on HUIM-
BPSOsig to reduce the computation of unpromising can-
didates. After that, HUIM-SPSO [30] suggested a bit longer
edit distance to fnd more HUIs and reduce the required
runtime. HUIM-IBPSO [31] combines a restart strategy, a
modifed strategy, a particle movement direction adjustment
strategy, and a ftness value hashing strategy with PSO to
further improve the performance of HUIM algorithms.

Another heuristic-based algorithm has also been pro-
posed for HUIM. For example, HUIM-HC [32] uses current
HUIs as target values for the next population (candidates) to
generate HUIs. HUIM-SA [33] then adds an acceptance
probability that determines whether the current HUIs are
used as target values to avoid the algorithm falling into a
locally optimal solution. TKU-CE [34] iteratively fnds the
top-k HUIs with higher utility values using a probability
vector. TKU-CE+ [34] then further improves the accuracy of
TKU-CE by ignoring low-utility candidates and randomly
generating new itemsets. In addition, HUIM-ABC [35],
HUIM-ACS [36], and GWO [37] are all heuristic-based
algorithms. Tey discover HUIs from candidates.

Since heuristic-based algorithms generate candidates
based on random numbers or operators, they tend to lose
data and lack a rational basis for the candidates generated.
Diferent from the heuristic-based algorithms, we propose a

2 Mathematical Problems in Engineering



sampling method based on particle flter theory that uses a
novel state transition model to provide a reasonable sam-
pling distribution and resampling to reduce data loss.

3. Related Theory

3.1.HighUtility ItemsetMining. Let I � i1, i2, . . . . . . , im{ } be
a fnite set of m distinct items, and ip denotes an item in I.
Each item has an external utility p(ip) that indicates the
weight of ip. Let itemset be a set of items all contained in I,
and let k-itemset be an itemset containing k items. Te x
denotes a particle, which in this paper also denotes an
itemset. Since the particle flter-based HUIM method needs
multiple iterations, we denote the particle generated in the
ith iteration (time) as xi, and since multiple particles are
generated in each iteration, we denote the jth particle
generated in the ith iteration as x

j
i . DB � T1,{

T2, . . . . . . , Tn} denotes a database, where Td denotes a
transaction in DB, and the items are contained in I. Each
item ip has a corresponding internal utility q(ip,Td) rep-
resenting the quantity of item ip in transaction Td.

Defnition 1. Te utility of an itemset x in transaction Td is
denoted as u(x,Td) and defned as the following equation:

u(x, Td) � 􏽘
ip∈x∧x⊆Td

u(ip, Td),
(1)

where u(ip,Td) � p(ip) × q(ip,Td). For instance, Table 1
gives a database DB, where T1 contains items b, c, and e.
From Table 1, we can fnd that q (b, T1)� 8, q (c, T1)� 10, and
q (e, T1)� 10. Table 2 shows the external utility of items,
therefore, u (bc, T1)� p (b)× q (b, T1) + p (c)× q (c, T1)�

9× 8 + 10×1� 82.

Defnition 2. Utility of an itemset x in a database is denoted
as u (x) and is calculated as

u(x) � 􏽘
x⊆Td∧Td∈DB

u(x, Td). (2)

For instance, u (bc)� u (bc, T1) + u (bc, T3) +u (bc, T5) + u
(bc, T10)� 82 + 62 + 67 + 82� 293, u (ac)� (ac, T5) + u (ac,
T6) + u (ac, T8)� 12.

Defnition 3. A high-utility itemset is defned as

HUI � x | u(x)> � min util{ }, (3)

where minutil represents user-defned minimum support.
Let minutil� 168, because u (bc)≥ minutil, bc is a HUI,
while u (ac)<minutil, and ac is not a HUI.

Defnition 4. Utility of a transaction is denoted as TU (Td)
and is calculated as

TU(Td) � 􏽘
i∈Td

u(i, Td). (4)

For example, TU (T1)� u (b, T1) + u (c, T1) + u (e, T1)� p
(b)× q (b, T1) + (c)× q (c, T1) + p (e)× q (e, T1)� 162. Simi-
larly, we can calculate that TU (T2)� 68, TU (T3)� 62, TU

(T4)� 136, TU (T5)� 68, TU (T6)� 32, TU (T7)� 75, TU
(T8)� 67, TU (T9)� 85, and TU (T10)� 98.

Defnition 5. Te transaction-weighted utilization (TWU)
of an itemset x is denoted as TWU (x) and is calculated as

TWU(x) � 􏽘
x⊆Td∧Td∈DB

TU(Td). (5)

For instance, TWU (a)�TU (T5) +TU (T6) +TU (T8)�

167, Similarly, TWU (b)� 390.

Defnition 6. High transaction-weighted utilization itemset
(HTWUI) is denoted as the following equation:

HTWUI � x|TWU(x)> � min util{ }. (6)

Otherwise, x is a low transaction-weighted utilization
itemset (LHTWUI). Tus, the b is an HTWUI since TWU
(b)≥ minutil. Te a is a LHTWUI since TWU (a)<minutil.

Defnition 7. Te weight of a particle x is denoted by the
following equation:

W(x) � 􏽘
k

i�1
w(i), (7)

where k is the number of items contained in a particle. In this
paper, the particle x is represented as a bitmap, where each
bit represents an item, so a k-itemset is represented by a
bitmap of k bits. Let w(i) denote the change probability for
bit i of x.Tus, the weight of a particle x is equal to the sum of
the change probability for each bit in x. It should be noted
that, if we denote a particle by xij, its weight is given by
W(xj).

3.2. Particle Filter. Te particle flter is an algorithm that
approximates a probability density function by fnding a set
of random samples that propagate through the state space. It
has been widely applied in target tracking [41], indoor
positioning [42], indoor navigation [43], urban trafc [44],

Table 1: Database.

Td Transactions
T1 (b, 8) (c, 10) (e, 10)
T2 (c, 8) (d, 6) (f, 7)
T3 (b, 6) (c, 8)
T4 (d, 4) (e, 8) (f, 10)
T5 (a, 1) (b, 7) (c, 4)
T6 (a, 1) (c, 3) (d, 4) (e, 2)
T7 (d, 5) (f, 10)
T8 (a, 1) (c, 2) (e, 8)
T9 (d, 7) (e, 8)
T10 (b, 8) (c, 10) (e, 2)

Table 2: External utility table.

Item a b C d e f
External utility 1 9 1 3 8 6

Mathematical Problems in Engineering 3



battery management systems [45], and other felds. How-
ever, there are no studies that have applied the particle flter
to HUIM.

To facilitate the subsequent derivation of its prediction
and update procedures, the particle flter algorithm frst
assumes a system. Te system consists of a state transition
function and an observation function. According to the
particle flter theory, the state random variable at time i (xi) is
related to and only related to the state random variable of the
previous time, and the observation random variable at time i
(yi) is related to and only related to the state random variable
of time i. Let the state transition function f and the ob-
servation function h be as follows:

xi � f(xi − 1),

yi � h(xi).
􏼨 (8)

Te particle flter algorithm consists of the following
main steps: initialization, prediction, updating, and
resampling. Te purpose of initialization is to generate
particles and their weights initially. Prediction and updating
predict the prior probability of the next time by updating the
particle positions, and the posterior probability is deter-
mined by the prior probability and the likelihood probability
to correct the particle weights. Resampling is intended to
alleviate the problem of particle degradation caused by
updating particle weights.

Based on the particle flter algorithm, the proposed al-
gorithm PF-HUIM consists of the following three steps:
initialization, state transition, and resampling. PF-HUIM
frst determines whether particles are HUIs by the likelihood
probability of particle sets (population), then designs a state
transition model to update the particle positions and correct
particle weights, and fnally employs resampling to alleviate
the particle degradation problem.

3.2.1. Initialization. In PF-HUIM, each iteration (time)
generates a population consisting of many particles. Suppose
PF-HUIM frst randomly generates a population. Te
population has three particles, x00, x01, and x02, while the
corresponding weights of the three particles are W (x00), W
(x01), and W (x02), where x00 represents the frst particle at
the initial time, and W (x00) represents the weight corre-
sponding to the frst particle at the initial time.

3.2.2. State Transition. Let the prior probability at time i be
p(xi | yi−1), which is the sampling proposal distribution of
particles at time i resulting from the observation at time i− 1.
Te observation in PF-HUIM is whether the current par-
ticles are HUIs or not. Te likelihood probability p(yi | xi)

represents the observation from the sampling proposal
distribution of particles at time i in PF-HUIM.Te posterior
probability p(xi | yi) represents the sampling proposal
distribution of particles at time i due to the observation at
time i in PF-HUIM. In the state transition procedure, the
prior probability of the next time is frst predicted by
updating the particles, then the likelihood probability is
calculated by the observation of the current time, then the

likelihood probability is combined with the prior probability
to obtain the posterior probability, and fnally, the weights of
the particles are corrected by the posterior probability.

Since,

p xi yi−1
􏼌􏼌􏼌􏼌􏼐 􏼑 � 􏽚 p xi, xi−1 yi−1

􏼌􏼌􏼌􏼌􏼐 􏼑dxi−1

� 􏽚 p xi xi−1
􏼌􏼌􏼌􏼌 , yi−1􏼐 􏼑p xi−1� yi−1

􏼌􏼌􏼌􏼌􏼐 􏼑dxi−1

� 􏽚 p xi xi−1
􏼌􏼌􏼌􏼌􏼐 􏼑p xi−1� yi−1

􏼌􏼌􏼌􏼌􏼐 􏼑dxi−1.

(9)

In the above equation, p(xi | xi−1) is a state transition
function. It is obvious that the prior probability can be
derived from the state transition function and the posterior
probability.

It is easy to see from the Bayes formula that

p xi yi

􏼌􏼌􏼌􏼌􏼐 􏼑 �
p yi xi

􏼌􏼌􏼌􏼌􏼐 􏼑p xi yi−1
􏼌􏼌􏼌􏼌􏼐 􏼑

􏽒
+∞
−∞ p yi xi

􏼌􏼌􏼌􏼌􏼐 􏼑p xi yi−1
􏼌􏼌􏼌􏼌􏼐 􏼑dxi−1

. (10)

Since the infnite integral in the formula given above is
difcult to calculate, the posterior probability can be de-
termined by sampling from a set of weighted particles
according to particle flter theory. Te particles are then
obtained from the Monte Carlo sampling distribution and
their weights are updated. Now, the posterior probability can
be approximately estimated as follows:

p xi yi

􏼌􏼌􏼌􏼌􏼐 􏼑 ≈
1
N

􏽘

N

k�1
δ xi − x

k
i􏼐 􏼑k ∈ [0, N], (11)

where N represents the number of particles sampled at time
i, and δ(xi − xk

i ) is the Dirac delta function. It can be seen
that the posterior probability can be approximated byMonte
Carlo sampling. So, we need to design a state transition
model to give the proposal distribution that can sample and
update particles and particle weights.

3.2.3. Resampling. After several particle updates, the vari-
ance of particle weights becomes larger and causes the
problem of particle degradation. We introduce multinomial
resampling to alleviate the problem of particle degradation.
Te multinomial resampling frst calculates the distribution
of particle weights, then generates a random number that
obeys the uniform distribution, and fnally locates the region
of the random number in the distribution to obtain
resampled particles.

4. A High-Utility Itemset Mining Algorithm
Based on Particle Filter

Tis section describes the proposed PF-HUIM algorithm.
First, we briefy describe the overall framework of PF-
HUIM. Ten, the individual procedures of PF-HUIM are
described in detail and illustrated with examples.

4.1. Overall Framework of PF-HUIM. PF-HUIM is proposed
based on particle flter theory and fnds HUIs from a dataset

4 Mathematical Problems in Engineering



by sampling. Te overall framework of PF-HUIM, which
consists of the following three procedures, is shown in
Figure 1.

Initialization: in this procedure, an original database is
frst fltered, then the fltered database is converted to a
bitmap for storage, and fnally, an initial population is
generated from the bitmap by random sampling. Once the
initial population has been generated, it must be determined
whether the number of iterations at the current time has
reached the maximum number of iterations. If this is the
case, the algorithm is terminated. Otherwise, the state
transition procedure is followed.

State transition model: this procedure frst initializes the
change probabilities of the populations, then loops several
times to update the populations and their change proba-
bilities, and fnally flters the HUIs from the updated
populations.

Resampling: after several particle updates, the algorithm
sufers from particle degradation. To generate the next
population, PF-HUIM resamples the particles from the
bitmap with multinomial resampling. Ten PF-HUIM goes
into the next iteration of state transition and resampling. PF-
HUIM outputs all HUIs at the end of the iteration.

4.2. Initialization. Algorithm 1 describes the initialization
procedure in detail. In Algorithm 1, DB represents a
database,minutil represents a user-defned minimum sup-
port, and maxiter represents a maximum number of iter-
ations. Let the database be as shown in Table 1, and let
minutil� 168. In lines 1–3, each item i in the database with
TWU (i) not less than minutil is stored in candidates’ SHUIs.
For example, b is stored in SHUIs since TWU (b)≥ minutil.
Similarly, c, d, e, and f are also stored in SHUIs. Line 4
removes nonexistent items in SHUIs from DB. Te updated
DB is then converted into a bitmap in which each item is
represented by a bit (Line 5).Te bitmap is shown in Table 3.
Te IS (DB) returns 1 if the item i exists in the updated
database, otherwise, it returns 0. Lines 6–7 randomly gen-
erate an initial population and let itertime� 1. Let the initial
population be as shown in Figure 2. It contains three par-
ticles x00 � {11110}, x01 � {11010}, x02 � {01010}. Since the top
four bits of x00 are 1 and the ffth bit is 0, x00 represents the
itemset bcde. Similarly, x01 represents bce and x02 represents
ce.

4.3. State Transition Model. After generating an initial
population, we propose a state transition model (Algo-
rithm 2) to change the particles in the population and their
weights. Te model initializes the weight of each particle x in
the current population and lets the change probability of
each bit in x be 1/2 (lines 1–3). For each particle, the model
determines whether its TWU (x) is less than minutil. If
this is the case, the algorithm calls the procedure hui()
(Algorithm 3), otherwise, u (x) determines whether x is
HUIs. We store x in HUIs only if x is a HUI and does not
exist in HUIs (lines 4–16). Te procedure hui() frst ran-
domly selects a bit i from x that is 1 to become a 0 bit, then
sets the change probability of all 0 bits to 0, and fnally

decides whether the changed particle should be stored in
HUIs (lines 2–9). In line 10, the condition for particle
degradation is set as W (x) = 1/2. If W (x) = 1/2, the pro-
cedure hui() terminates. An example of a state transition
model is shown in Figure 3. Suppose there are three particles
in the initial population x00 = {11110}, x01 = {11010}, and
x02 = {01010}. Algorithm 2 frst sets the change probability of
each bit of x00 to 1/2, and then calls the procedure hui()
because TWU (x00)<minutil. If the frst bit in x00 is selected
and changed to 0, the updated particle is x00 = {01110}, then
the change probability of the 1st and 5th bits is reduced to 0
and the change probability of the other bit is kept at 1/2.
According to equation (2), u (x00) (=31)<minutil, x00 is not a
HUI. Te loop then continues sinceW (x00) = 3/2 (according
to equation (7)). Since the change probability of 1 bit is 1/2,
there is a 1/2 chance that 1 bit will become 0 bit, and 0 bit will
never become 1 bit since the change probability of 0 bit is 0.
As a result, the particle x will have only one 1 bit (W (x00)
= 1/2), where x represents 1-itemsets and there is no need to
fnd its subset. Terefore, we propose that W (x) = 1/2 is the
condition for particle degradation. For x01, since TWU (x01)
> minutil, Algorithm 2 goes to line 7. Since u (x01) (=260)
> minutil and no x01 is present inHUIs, x01 is stored inHUIs
and the procedure hui() is called.

4.4. Resampling. Te relationship between resampling and
state transition is shown in Figure 4, and Algorithm 4
represents the entire pseudocode of PF-HUIM. From the
state transition model, it is known that the particle degra-
dation problem occurs after the particle is continuously
updated. To solve this problem, PF-HUIM must change the
particle weights, i.e., reset the change probability of each bit
in the particle to 1/2. After that, PF-HUIM resamples the
database by multinomial resampling and lets itertime++.
Finally, themaxiter is used to determine whether PF-HUIM
should proceed to the next iteration.

5. Experiments

Extensive experiments were conducted to verify the per-
formance of the proposed method PF-HUIM. PF-HUIM
was compared with three heuristic-based algorithms which
are HUPEumu-GRAM [26], BIO-HUIF-PSO [38], and
HUIM-BPSO [30]. HUPEumu-GRAM is a classical GA-
based algorithm, HUIM-BPSO is a PSO-based algorithm,
and BIO-HUIF-PSO [38] is an optimized PSO-based al-
gorithm. We chose these three algorithms for comparison
because they are most similar to PF-HUIM in that they all
generate HUIs by selecting candidates. Since the way we
proposed to update the population by state transition model
is signifcantly diferent from the way used by the other three
algorithms, the population number in PF-HUIM is not
suitable for the analogy with other algorithms. Tus, we do
not discuss the population number in this article. In addi-
tion, in all of the following experiments, we set the pa-
rameters of HUIM-BPSO w1 to 0.9, c1 to 1, and c2 to 2.

PF-HUIM was written in Java and all experiments were
conducted on a PC with a 4-core 2.70GHz CPU, 8GB RAM,

Mathematical Problems in Engineering 5



Database

Original database

Bitmap

T1:1010100000...1

T2:0010100000...0

Tn:1011100000...1

Initial population

population

101...1

0...1

01000000...1

State transition model

update change probability 
and population

(0,0) (0,0)... (1,0.5)

(0,0)... (1,0.5)

(0,0) (1,0.5) (0,0)... (1,0)

Filter out HUIsInitial change probability 
of population

(1,0.5) (0,0.5)... (1,0.5)

(0,0.5)... (1,0.5)

(0,0.5) (1,0.5) (0,0.5)... (1,0.5)

0...1

0100...1

loop until particle 
degeneration 

Iteration 

Resampling 

population

000001...1
101011111...1

0011001...1

HUIs

Output HUIs

Initialization

Figure 1: Overall framework of PF-HUIM.

6 Mathematical Problems in Engineering



and Microsoft Windows 10 operating system. Table 4 shows
the datasets used for these experiments, with each dataset
having the following four parameters: transaction count (T),
average item count per transaction (A), and item count (I).
We note that chess, mushroom, and connect are density
datasets, while foodmart, BMS, and crimes in Chicago are
sparse datasets. All of these datasets can be downloaded at

https://www.philippe-fournier-viger.com/spmf/index.php?
link�datasets.php.

5.1. Runtime. To validate the efciency of PF-HUIM, we
compare the runtime of HUPEumu-GRAM, BIO-HUIF-
PSO, HUIM-BPSO, and PF-HUIM on six datasets.

Table 3: Bitmap.

Td b c d e f
T1 1 1 0 1 0
T2 0 1 1 0 1
T3 1 1 0 0 0
T4 0 0 1 1 1
T5 1 1 0 0 0
T6 0 1 1 1 0
T7 0 0 1 0 1
T8 0 1 0 1 0
T9 0 0 1 1 0
T10 1 1 0 1 0

x0
0

x0
1

x0
2

1 1 1 1 0

1 1 0 1 0

0 1 0 1 0

b c d e f

Figure 2: Initial population.

Input: DB, minutil
Output: population

(1) For each i DB
(2) If TWU (i)≥minutil
(3) i−> SHUIs
(4) Update (DB)
(5) i� IS (DB)
(6) Initial population
(7) Itertime� 1

ALGORITHM 1: Initializiton.

1 1 1 1 0

1 1 0 1 0

0 1 0 1 0

0 1 1 1 0

1 1 0 0 0

0 0 0 1 0

0 1 0 0 0

1 0 0 0 0

•••

•••

HUIs

x0
0

x0
1

x0
2

x0
0

x0
1

x0
0

x0
1

x0
2

w (x0
2) =1/2

w (x0
1) =1/2

w (x0
0) =1/2

Figure 3: State transition model.

Mathematical Problems in Engineering 7

https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php


Figure 5 shows the experimental results of the four al-
gorithms after 1,000 iterations. We can see that the designed
algorithm PF-HUIM has the shortest runtime for the same
minutil compared to the other three algorithms on the dense
datasets chess, mushroom, and connect. Tere are two main
reasons for these experimental results.Te frst reason is that

PF-HUIM reduces duplicate calculations by resampling.Te
second reason is that the state transition model is designed
so that the algorithm does not sample the same particles
repeatedly. Furthermore, we can see that the runtime of PF-
HUIM decreases steadily with increasing minutils, while the
runtime of the other three methods is not directly related to
theminutil. Tis is because the three algorithms use random
sampling, whereas the particle flter-based algorithm PF-
HUIM uses a more reasonable sampling.

Figures5(c), 5(d), and 5(f) show the experimental results
of the four algorithms on the sparse datasets foodmart, BMS,
and crimes in Chicago. On BMS and crime s in Chicago, it is
obvious that the designed method PF-HUIM still performs
the best. However, on the foodmart, BIO-HUIF-PSO is the
most efcient and PF-HUIM comes second. Te state
transition model in FP-HUIM has to repeatedly update the
particles (itemsets) that are similar to the original particles.
Since the similar itemsets in foodmart are sparse and un-
evenly distributed, the state transition model requires more
runtime. Finally, we note that HUPEumu-GRAM is not
shown in Figure 5(c) because its runtime is too long to be
compared with the other methods on foodmart.

5.2. Number ofHUIs. In this section, the four algorithms are
compared on six datasets to verify the number of HUIs
generated by PF-HUIM.Te number of iterations was set to
1,000 for all experiments, and the results of the experiments
are shown in Figure 6.

PF-HUIM can fnd the most HUIs on three dense
datasets. Tis is because PF-HUIM designs a state transition
model based on the particle flter theory. Te state transition
model updates the particles according to the current particle
state. Tis makes the particle sampling method more

Input: population
Output: HUIs

(1) For each x in the population
(2) For each bit in x
(3) W (bit)� 1/2
(4) For each x
(5) If TWU (x)<minutil
(6) hui()
(7) else
(8) {
(9) if u (x)≥minutil
(10) {
(11) If x not in HUIs
(12) x->HUIs hui()
(13) }
(14) else
(15) hui()
(16) }

ALGORITHM 2: State transition model.

Input: x
Output: HUIs

(1) Do
(2) {For each i x
(3) {if i� � 1
(4) {Random one i� 0}
(5) if i� � 0
(6) {w (i)� 0 }
(7) if u (x)≥minutil
(8) {if x is not in HUIs
(9) x->HUIs}
(10) }While (w (x)� � 1/2)

ALGORITHM 3: hui().

x1
0 x2

0 xi
0

xi
1

xi
n

x2
1

x2
n

x1
1

x1
n

State
transition •••

•••

State
transition •••

•••

HUIs

Figure 4: Resampling and state transition.

Input: DB, minutil, maxiter
Output: HUIs

(1) Algorithm 1
(2) While (itertime≤maxiter)
(3) {
(4) Algorithm 2
(5) Multinomial resampling()
(6) Itertime++
(7) }

ALGORITHM 4: PF-HUIM.

Table 4: Datasets characteristics.

Dataset
name

Transaction
count (T)

Average item
count per

transaction (A)

Item
count
(I)

Density (%)
(A/I) ∗
100%

Chess 3196 37 75 49.33%
Mushroom 8416 23 119 19.33%
Foodmart 4141 4.42 1559 0.28%
BMS 77512 4.62 3340 0.14%
Connect 67557 43 129 33.33%
Crimes in
Chicago 2662309 1.795 35 5.13%

8 Mathematical Problems in Engineering



1.88 2.5 3.13 3.76 4.38 5.01 5.63

chess

Minutil

0
50

100
150
200
250
300
350
400

Ru
nt

im
e (

s)

BIO-HUIF-PSO
PF-HUIM

HUIM-BPSO
HUPEumu-GRAM

(a)

0.7129 0.9506 1.1882 1.4258 1.6634 1.9011 2.1287

mushroom

Minutil

0

200

400

600

800

1000

1200

Ru
nt

im
e (

s)

PF-HUIM
BIO-HUIF-PSO
HUIM-BPSO
HUPEumu-GRAM

(b)

0.0048 0.0096 0.0148 0.0193 0.0241 0.0289 0.0338
Minutil

foodmart

0
500

1000
1500
2000
2500
3000

4000
3500

Ru
nt

im
e (

s)

PF-HUIM
BIO-HUIF-PSO
HUIM-BPSO

(c)

0.0129 0.0258 0.0387 0.0516 0.0645 0.0774 0.0903

BMS

Minutil

0

500

1000

1500

2000

2500
Ru

nt
im

e (
s)

PF-HUIM
BIO-HUIF-PSO
HUIM-BPSO

(d)

14.802 16.283 17.763 19.243 20.723 22.203 23.684
Minutil

connect

0
5

10
15
20
25
30
35
40
45

Ru
nt

im
e (

s)

PF-HUIM
BIO-HUIF-PSO
HUIM-BPSO
HUPEumu-GRAM

(e)

0.0014 0.0018 0.0022 0.0026 0.003 0.0034 0.0038
Minutil

crimes in Chicago

0
20
40
60
80

100
120
140
160

Ru
nt

im
e (

s)

PF-HUIM
BIO-HUIF-PSO
HUIM-BPSO
HUPEumu-GRAM

(f )

Figure 5: Runtime performance of PF-HUIM against three heuristic-based algorithms.

Mathematical Problems in Engineering 9



1.88 2.50 3.13 3.76 4.38 5.01 5.63
Minutil

chess

Th
e n

um
be

rs
 o

f H
U

Is

0

10000

20000

30000

40000

50000

60000

PF-HUIM
BIO-HUIF-PSO
HUIM-BPSO
HUPEumn-GRAM

(a)

6658
6153 6020 5668 5379 5446

5042
4276

5092 5202
4745 4388

4813 4782

3 7 6 7 1 3 8
190 250 243 238 144 268 180

0.7129 0.95 1.1882 1.4258 1.6634 1.9011 2.1387
Minutil

mushroom

Th
e n

um
be

rs
 o

f H
U

Is

0

1000

2000

3000

4000

5000

6000

7000

PF-HUIM
BIO-HUIF-PSO
HUIM-BPSO
HUPEumn-GRAM

(b)

23 29 21 29 23 26 19

713 732
674 699 708

641
718

0 0 0 0 0 0 0
0.0048 0.0096 0.0148 0.0193 0.0241 0.0289 0.0338

Minutil

foodmart

Th
e n

um
be

rs
 o

f H
U

Is

0
100
200
300
400
500
600
700
800

PF-HUIM
BIO-HUIF-PSO
HUIM-BPSO

(c)

1351 1270 1179 1100 968 898 830

2719 2602

1685

2767 2786 2811 2810

0 1 0 1 1 0 00
0.0129 0.0258 0.0387 0.0516 0.0645 0.0774 0.0903

Minutil

BMS

Th
e n

um
be

rs
 o

f H
U

Is

500

1000

1500

2000

2500

3000

PF-HUIM
BIO-HUIF-PSO
HUIM-BPSO

(d)

14.802 16.28 17.763 19.243 20.723 22.203 23.684
Minutil

connect

Th
e n

um
be

rs
 o

f H
U

Is

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

PF-HUIM
BIO-HUIF-PSO
HUIM-BPSO
HUPEumn-GRAM

(e)

0.0014 0.0018 0.0022 0.0026 0.003 0.0034 0.0038

Th
e n

um
be

rs
 o

f H
U

Is

Minutil

crimes in Chicago

0
50

100
150
200
250
300
350
400
450
500

PF-HUIM
BIO-HUIF-PSO
HUIM-BPSO
HUPEumn-GRAM

(f )

Figure 6: Performance analysis of the numbers of HUIs.

10 Mathematical Problems in Engineering



Table 5: Te numbers of HUIs.

Chess Mushroom Foodmart BMS Connect Crimes in Chicago
FP-HUIM 52543 6658 23 1351 4445 435
UP-growth — 10206 37 — — 650
UP-growth+ — 10206 37 — — 650
HUI-miner — 10206 37 — — 650

0

10000

20000

30000

40000

50000

60000

1.8773 2.5031 3.1289 3.7547 4.3804 5.0063 5.632

800
1000

200
400
600

number of iterations

chess

Minutil

Th
e n

um
be

rs
 o

f H
U

Is

(a)

800
1000

200
400
600

number of iterations

0

1000

2000

3000

4000

5000

6000

7000

0.7129 0.9506 1.1882 1.4258 1.6634 1.9011 2.1387

mushroom

Th
e n

um
be

rs
 o

f H
U

Is
Minutil

(b)

200
400 800

600
number of iterations

0

5

10

15

20

25

30

35

0.0048 0.0096 0.0148 0.0193 0.0241 0.0289 0.0338

foodmart

Minutil

Th
e n

um
be

rs
 o

f H
U

Is

(c)

800
1000

200
400
600

number of iterations

0

200

400

600

800

1000

1200

1400

1600

0.0129 0.0258 0.0387 0.0516 0.0645 0.0774 0.0903

BMS

Th
e n

um
be

rs
 o

f H
U

Is

Minutil

(d)

800
1000

200
400
600

number of iterations

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

14.802 16.28 17.763 19.243 20.723 22.203 23.684

connect

Minutil

Th
e n

um
be

rs
 o

f H
U

Is

(e)

800
1000

200
400
600

number of iterations

0

50

100

150

200

250

300

350

400

450

500

0.0014 0.0018 0.0022 0.0026 0.003 0.0034 0.0038

crimes in Chicago

Minutil

Th
e n

um
be

rs
 o

f H
U

Is

(f )

Figure 7: Performance analysis of the iteration numbers.

Mathematical Problems in Engineering 11



reasonable. From the experimental results, we can see that
the designed state transition model performs well on dense
datasets. In addition, Figure 6 shows that the number of
HUIs extracted by PF-HUIM decreases asminutil increases,
while the relationship between the number of HUIs
extracted by the other three algorithms and minutil is not
signifcant. In classical HUIM algorithms [12–19, 22–25], the
higher the user-defned threshold value, the lower the
number of HUIs.Tese phenomena prove that the proposed
method, based on particle flter theory, is rational. Te three
heuristic-based algorithms, however, rely heavily on random
numbers, resulting in algorithms that lack sound bases.

It is not difcult to see that on the sparse datasets from
foodmart and BMS, BIO-HUIF-PSO generates the largest
number of HUIs, PF-HUIM follows, HUIM-BPSO can

barely generate HUIs, and HUPEumu-GRAM takes too
much runtime to be shown.Tere are a large number of long
average length transactions in foodmart and BMS, and most
similar long average length itemsets are sparsely distributed
in the transactions. If the average length of the population is
long, the state transition has a tendency to generate many
particles that do not exist in the database. Tis is the reason
why PF-HUIM generates fewer HUIs on foodmart and BMS.
On the sparse dataset crimes in Chicago, the proposed al-
gorithm PF-HUIM fnds the most HUIs when the minutil
was set to 14.062, 14.802, 14.542, or 17.022, but when the
minutil is 17.763 or 18.503, PF-HUIM fnds slightly fewer
HUIs than BIO-HUIF-PSO. Tese phenomena are due to
the fact that the number of HUIs generated from PF-HUIM
always decreases as the minutil increases. Terefore, we can

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

200 400 600 800 1000 1200

PF-HUIM
BIO-HUIF-PSO

HUIM-BPSO
HUPEnmn-GRAM

chess

The number of iterations

Th
e n

um
be

rs
 o

f H
U

Is
 

Minutil=21.9

(a)

PF-HUIM
BIO-HUIF-PSO

HUIM-BPSO
HUPEnmn-GRAM

0

1000

2000

3000

4000

5000

6000

7000

200 400 600 800 1000 1200
The number of iterations

Th
e n

um
be

rs
 o

f H
U

Is
 

mushroom

Minutil=1.5

(b)

PF-HUIM
BIO-HUIF-PSO
HUIM-BPSO

0
100
200
300
400
500
600
700
800
900

200 400 600 800 1000 1200

foodmart

Minutil=0.24

Th
e n

um
be

rs
 o

f H
U

Is
 

The number of iterations

(c)

PF-HUIM
BIO-HUIF-PSO
HUIM-BPSO

0
200
400
600
800

1000
1200
1400
1600
1800

200 400 600 800 1000 1200
Th

e n
um

be
rs

 o
f H

U
Is

 

BMS

Minutil=0.12The number of iterations

(d)

PF-HUIM
BIO-HUIF-PSO

HUIM-BPSO
HUPEnmn-GRAM

0

1000

2000

3000

4000

5000

6000

200 400 600 800 1000 1200

connect

The number of iterations

Th
e n

um
be

rs
 o

f H
U

Is
 

Minutil=14.802

(e)

PF-HUIM
BIO-HUIF-PSO

HUIM-BPSO
HUPEnmn-GRAM

0
20
40
60
80

100
120
140
160
180

200 400 600 800 1000 1200

crimes in Chicago

The number of iterations

Th
e n

um
be

rs
 o

f H
U

Is
 

Minutil=0.0038

(f )

Figure 8: Convergence analysis of PF-HUIM against three heuristic-based algorithms.

12 Mathematical Problems in Engineering



see from the experimental results that the designed state
transitionmodel is more suitable for dense datasets or sparse
datasets with short average lengths.

Since PF-HUIM generated a diferent number of HUIs
than the other three heuristic-based algorithms, we con-
ducted the following experiments. We compared PF-HUIM
with three Apriori-based or tree structure-based algorithms
which are HUI-Miner [13], UP-Growth [20], and UP-
Growth+ [21]. Te iteration number of PF-HUIM was set to
1000, the minutil for chess was set to 1.88, the minutil for
mushroom was set to 0.7129, the minutil for foodmart was
set to 0.0048, the minutil for BMS was set to 0.0129, the
minutil for connect was set to 14.802, and the minutil for
crimes in Chicago was set to 0.0014.Te experimental results
are shown in Table 5.

From Table 5 we can see that HUI-Miner, UP-Growth,
and UP-Growth + extracted exactly the same number of
HUIs on the same datasets. Since HUI-Miner, UP-Growth,
and UP-Growth + are 100% accurate, we can assume that
FP-HUIM is 64.3% (6658/10206 ∗ 100%) accurate on a
mushroom, 60.5% (23/37 ∗ 100%) accurate on foodmart,
and 66.92% (435/650 ∗ 100%) accurate on crimes in Chi-
cago. Due to the fact that FP-HUIM generates HUIs by
sampling, the accuracy of FP-HUIM is lower than that of the
other three algorithms. All experiments were conducted in
the same experimental environment. Note that HUI-Miner,
UP-Growth, and UP-Growth + give no results on chess,
BMS, or connect in Table 5. Tis is because they are beyond
the computational power of this environment. FP-HUIM
took 185 seconds to generate 52543 HUIs on chess,
179 seconds to generate 1351 HUIs on BMS, and only
9 seconds to generate 4445 HUIs on connect. Furthermore,
FP-HUIM is over 100 times faster than the three algorithms
onmushroom, foodmart, and crimes in Chicago. As a result,
FP-HUIM is signifcantly more efective than the other three
methods. Tis is because Apriori-based or tree structure-
based algorithms require multiple scans of a dataset and too
many calculations.

5.3. Number of Iterations. To verify whether PF-HUIM can
fnd more HUIs by increasing the number of iterations, we
set diferent iterations on six datasets to compare the
number of HUIs.

From the experimental results in Figure 7, it can be seen
that the number of HUIs produced by PF-HUIM on six
datasets increases with the number of iterations. Tis is
because each iteration of PF-HUIM involves a state tran-
sition and resampling. Te state transition updates the
particles, and the resampling generates a new population.
Te HUIs are fltered from these particles and populations.
Terefore, PF-HUIM generates more HUIs by increasing the
number of iterations. Tis means that the accuracy of PF-
HUIM can be improved by increasing the number of
iterations.

5.4. Convergence. To verify the convergence of the proposed
method, we compared four algorithms on six datasets. Te

minutil set by diferent algorithms for the same dataset is
identical to ensure the rigor of the experiment.

From Figures 8(a), 8(b), and 8(e), it can be seen that PF-
HUIM performs best on the dense dataset, while
HUPEumu-GRAM and HUIM-BPSO can barely detect
HUIs. Terefore, the convergence of PF-HUIM has the best
performance on dense datasets.

Figures 8(c) and 8(d) show the performance of three
algorithms on foodmart and BMS. We do not show the
experimental results of HUPEumu-GRAM.Tis is due to the
lack of comparability caused by the long runtime on sparse
datasets. It can be observed that PF-HUIM performs second
only to BIO-HUIF-PSO. Tis is because the itemsets in
foodmart and BMS are less similar, and PF-HUIM always
produces many similar itemsets that do not exist in the
database.Tese itemsets are eventually discarded. On crimes
in Chicago, PF-HUIM not only fnds more HUIs in the same
number of iterations but also ensures that the number of
HUIs increases steadily as the number of iterations increases.
Tis is because the average transaction length in crimes in
Chicago is short, and PF-HUIM goes to particle degradation
rapidly without producing a signifcant number of duplicate
long candidates.

6. Conclusion and Future Work

HUIM provides more valuable information than FIM and
has recently become an important study. Apriori-based and
tree structure-based algorithms make up the majority of
HUIM algorithms. Te Apriori-based HUIM algorithms
require multiple scans of a dataset to generate candidates.
Tey take a lot of time andmemory.Te tree structure-based
HUIM algorithms are expensive because they need to create
and update the tree structures. Tus, we propose an efcient
HUIM algorithm based on particle flter theory, which uses a
novel state transition model and resampling to solve the
problems mentioned above. Numerous experiments have
demonstrated that the PF-HUIM discovers HUIs quickly
and accurately. However, the performance of PF-HUIM still
needs to be improved on sparse datasets with long average
lengths. To improve the performance of PF-HUIM on sparse
datasets, we will develop more appropriate state transition
models and resampling methods in the future.

Data Availability

Te .txt type data used to support the experiments in this study
and the description of the data can be found at https://www.
philippe-fournier-viger.com/spmf/index.php?link�datasets.php.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis work was supported in part by the School-Level Sci-
entifc Research Project of Chaohu University (Research on
frequent pattern mining algorithms for uncertain datasets),
(XLY-202108); the Provincial Natural Science Research

Mathematical Problems in Engineering 13

https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php


Program of Higher Education Institutions of Anhui Prov-
ince, (KJ2021A1030); the Quality Improvement Project of
Chaohu University on Discipline Construction,
(KJ21GCZX03); Special Support Plan for Innovation and
Entrepreneurship Leaders in Anhui Province; and School-
Level Key Scientifc Research Projects of Chaohu University
(Research on the intelligent elderly service platform around
Chaohu Lake based on big data and deep learning), (XLZ-
202108).

References

[1] K. Muhammad, M. S. Obaidat, T. Hussain et al., “Fuzzy logic
in surveillance big video data analysis: comprehensive review,
challenges, and research directions,” ACM Computing Sur-
veys, vol. 54, no. 3, pp. 1–33, 2021.

[2] D. Miltiadou, S. Pitsios, and D. Spyropoulos, “A secure ex-
perimentation sandbox for the design and execution of
trusted and secure analytics in the aviation domain,” Security
and Privacy in New Computing Environments, vol. 344,
pp. 120–134, 2020.

[3] D. Kim, S. Gamboa, and V. Hernandez, “Medical big data
analysis system to discover associations between genetic
variants and diseases,” in Proceedings of the IEEE Interna-
tional Conference on Communications, pp. 1–6, IEEE, Mon-
treal, QC, Canada, June 2021.

[4] Y. Lu, Y. Zheng, W. Jing, C. Xu, and Y. Li, “An asynchronous
consistency algorithm in smart manufacturing cloud data
centers,” Journal of Physics: Conference Series, vol. 2206, no. 1,
Article ID 012020, 2022.

[5] Y. Chen, M. Lin, and D. Zhuang, “Wastewater treatment and
emerging contaminants: bibliometric analysis,” Chemosphere,
vol. 297, pp. 133932–133942, 2022.

[6] M. Zhong and M. Lin, “Bibliometric Analysis for Economy in
COVID-19 pandemic,” Heliyon, vol. 8, no. 9, Article ID
e10757, 2022.

[7] Y. Luo and M. Lin, “Flash translation layer: a review and
bibliometric analysis,” International Journal of Intelligent
Computing and Cybernetics, vol. 14, no. 3, pp. 480–508, 2021.

[8] J. Zhang and M. Lin, “A comprehensive bibliometric analysis
of Apache Hadoop from 2008 to 2020,” International Journal
of Intelligent Computing and Cybernetics, vol. 12, 2022.

[9] G. Grahne and J. Zhu, “Fast algorithms for frequent itemset
mining using FP-trees,” IEEE Transactions on Knowledge and
Data Engineering, vol. 17, no. 10, pp. 1347–1362, 2005.

[10] P. Wu, X. Niu, P. Fournier-Viger, C. Huang, and B Wang,
“UBP-Miner: an efcient bit based high utility itemset mining
algorithm,” Knowledge-Based Systems, vol. 248, Article ID
108865, 2022.

[11] R. Agrawal and R. Srikant, “Fast algorithms for mining as-
sociation rules,” in Proceedings of the 20th International
Conference on Very Large Data Bases, pp. 487–499, San
Francisco, CA, USA, September 1994.

[12] Y. Liu, W. Liao, and A. Choudhary, “A fast high utility
itemsets mining algorithm,” in Proceedings of the 1st Inter-
national Workshop on Utility-Based Data Mining, pp. 90–99,
ACM, Chicago Illinois, August 2005.

[13] M. Liu and J. Qu, “Mining high utility itemsets without
candidate generation,” in Proceedings of the 21st ACM In-
ternational Conference on Information and Knowledge
Management CIKM, pp. 55–64, Maui, Hawaii, USA, October
2012.

[14] U. Yun, H. Ryang, and K. H. Ryu, “High utility itemset mining
with techniques for reducing overestimated utilities and
pruning candidates,” Expert Systems with Applications, vol. 41,
no. 8, pp. 3861–3878, 2014.

[15] S. Krishnamoorthy, “Pruning strategies formining high utility
itemsets,” Expert Systems with Applications, vol. 42, no. 5,
pp. 2371–2381, 2015.

[16] R. Chan, Q. Yang, and Y. D. Shen, “Mining High Utility
Itemsets,” in Proceedings of the Tird IEEE International
Conference on Data Mining, p. 19, IEEE, Melbourne, FL, USA,
November 2003.

[17] Y. Liu, W. Liao, and A. Choudhary, “A two-phase algorithm
for fast discovery of high utility itemsets,” in Proceedings of the
9th pacifc-Asia Conference on Advances in Knowledge Dis-
covery and Data Mining PAKDD, pp. 689–695, Hanoi Viet-
nam, May 2005.

[18] H. Yao and H. J. Hamilton, “Mining itemset utilities from
transaction databases,” Data & Knowledge Engineering,
vol. 59, no. 3, pp. 603–626, 2006.

[19] Y. C. Li, J. S. Yeh, and C. C. Chang, “Isolated items discarding
strategy for discovering high utility itemsets,” Data &
Knowledge Engineering, vol. 64, no. 1, pp. 198–217, 2008.

[20] V. S. Tseng, C. W. Wu, and B. E. Shie, “UP-growth: An
Efcient Algorithm for High Utility Itemset mining,” in
Proceedings of the 16th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 253–
262, Washington DC USA, July 2010.

[21] V. S. Tseng, B. E. Shie, C. W. Wu, and P. S. Yu, “Efcient
algorithms for mining high utility itemsets from transactional
databases,” IEEE Transactions on Knowledge and Data En-
gineering, vol. 25, no. 8, pp. 1772–1786, 2013.

[22] A. Erwin, R. P. Gopalan, and N. R. Achuthan, “A Bottom-Up
Projection Based Algorithm for Mining High Utility Item-
sets,” in Proceedings of the 2nd International Workshop on
Integrating Artifcial Intelligence and Data Mining, pp. 3–11,
Gold Coast Australia, December 2007.

[23] W. Song, Y. Liu, and J. Li, “Mining high utility itemsets by
dynamically pruning the tree structure,” Applied Intelligence,
vol. 40, no. 1, pp. 29–43, 2014.

[24] U. Yun and H. Ryang, “Incremental high utility pattern
mining with static and dynamic databases,” Applied Intelli-
gence, vol. 42, no. 2, pp. 323–352, 2015.

[25] D. Kim and U. Yun, “Efcient algorithm for mining high
average-utility itemsets in incremental transaction databases,”
Applied Intelligence, vol. 47, no. 1, pp. 114–131, 2017.

[26] S. Kannimuthu and K. Premalatha, “Discovery of high utility
itemsets using genetic algorithm with ranked mutation,”
Applied Artifcial Intelligence, vol. 28, no. 4, pp. 337–359, 2014.

[27] Q. Zhang, W. Fang, J. Sun, and Q. Wang, “Improved genetic
algorithm for high-utility itemset mining,” IEEE Access, vol. 7,
pp. 176799–176813, 2019.

[28] J. C. W. Lin, L. Yang, P. Fournier-Viger et al., “Mining high-
utility itemsets based on particle swarm optimization,” En-
gineering Applications of Artifcial Intelligence, vol. 55,
pp. 320–330, 2016.

[29] J. Lin, L. Yang, P. Fournier-Viger, T. P. Hong, andM. Voznak,
“A binary PSO approach to mine high-utility itemsets,” Soft
Computing, vol. 21, no. 17, pp. 5103–5121, 2017.

[30] W. Song and J. Li, “Discovering high utility itemsets using set-
based particle swarm optimization,” ADMALNCS, vol. 12447,
pp. 38–53, 2020.

[31] W. Fang, Q. Zhang, H. Lu, and J. Lin, “High-utility itemsets
mining based on binary particle swarm optimization with

14 Mathematical Problems in Engineering



multiple adjustment strategies,” Applied Soft Computing,
vol. 124, Article ID 109073, 2022.

[32] S. Bagui and P. Stanley, “Mining frequent itemsets from
streaming transaction data using genetic algorithms[J],”
Journal of Big Data, vol. 7, no. 1, pp. 1–20, 2020.

[33] M. S. Nawaz, P. Fournier-Viger, U. Yun, Y. Wu, andW. Song,
“Mining high utility itemsets with hill climbing and simulated
annealing,” ACM Transactions on Management Information
Systems, vol. 13, no. 1, pp. 1–22, 2021.

[34] W. Song, C. Zheng, and C. Huang, “Heuristically Mining the
Top-K High-Utility Itemsets with Cross-Entropy optimiza-
tion,” Applied Intelligence, vol. 52, pp. 1–16, 2021.

[35] W. Song and C. Huang, “Discovering high utility itemsets
based on the artifcial bee colony algorithm,” Pacifc-Asia
Conference on Knowledge Discovery & Data Mining,
vol. 10939, pp. 3–14, 2018.

[36] J. M. T. Wu, J. Zhan, and J. C. W. Lin, “An ACO-based
approach to mine high-utility itemsets,” Knowledge-Based
Systems, vol. 116, no. 15, pp. 102–113, 2017.

[37] N. Pazhaniraja, S. Sountharrajan, and B. Sathis Kumar, “High
utility itemset mining: a Boolean operators-based modifed
grey wolf optimization algorithm,” Soft Computing, vol. 24,
no. 21, pp. 16691–16704, 2020.

[38] W. Song and C. Huang, “Mining high utility itemsets using
bio-inspired algorithms: a diverse optimal value framework,”
IEEE Access, vol. 6, no. 1, pp. 19568–19582, 2018.

[39] D. E. Golberg, Genetic Algorithms in Search Optimization and
Machine learning, Addion wesley, no. 102, Boston, MA, USA,
1989.

[40] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm opti-
mization,” Swarm intelligence, vol. 1, no. 1, pp. 33–57, 2007.

[41] X. Lu, F. Li, and J. Tang, “A new performance index for
measuring the efect of single target tracking with Kalman
particle flter[J],” International Journal of Modern Physics C,
vol. 33, no. 09, pp. 1–14, 2022.

[42] W. Shao, F. Zhao, H. Luo, H. Tian, J. Li, and A. Crivello,
“Particle flter reinforcement via context-sensing for smart-
phone-based pedestrian dead reckoning,” IEEE Communi-
cations Letters, vol. 25, no. 9, pp. 3144–3148, 2021.

[43] G. Raja, S. Suresh, S. Anbalagan, A. Ganapathisubramaniyan,
and N. Kumar, “PFIN: an efcient particle flter-based indoor
navigation framework for UAVs,” IEEE Transactions on
Vehicular Technology, vol. 70, no. 5, pp. 4984–4992, 2021.

[44] L. Wei, Y. Wang, and P. Chen, “A particle flter-based ap-
proach for vehicle trajectory reconstruction using sparse
probe data,” IEEE Transactions on Intelligent Transportation
Systems, vol. 22, no. 5, pp. 2878–2890, 2021.

[45] Y. Bi, Y. Yin, and S. Y. Choe, “Online state of health and aging
parameter estimation using a physics-based life model with a
particle flter,” Journal of Power Sources, vol. 476, Article ID
228655, 2020.

Mathematical Problems in Engineering 15




