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Physical layer security has recently emerged as a promising approach to achieve security and communication integration. The
built-in security mechanism based on the characteristics of the wireless channel provides a feasible idea for the realization of “one
secret at a time.” It has significant potential applications in high-rate data transmission encryption, authentication, integrity
protection of service data, and Internet of Things lightweight encryption. This paper investigates the robust secure transmit design
problem for amplify-and-forward multiantenna relay networks in the presence of multiple single-antenna eavesdroppers. A robust
artificial noise (AN) aided secure beamforming design is proposed by taking into account the imperfect channel state information
(CSI) of the eavesdroppers. The goal is to jointly design the beamforming matrix and the AN covariance matrix at the relay based
on the imperfect CSI of eavesdroppers, such that the worst-case secrecy rate is maximized subject to the total power and the per-
antenna power constraints. Aiming at the nonconvex optimization problem, a two-level optimization algorithm based on semi-
definite relaxation (SDR) and S-procedure is proposed. It is proven that there is a rank-one optimal solution for the SDR problem.
Simulation results show that the proposed scheme is robust and superior to existing schemes.

1. Introduction

With the rapid development of mobile communication
network, its security has become a research hotspot [1, 2].
Traditionally, information security is guaranteed through the
key-based encryption technique. However, key management
(including key generation and distribution) is challenging in
mobile wireless networks [3]. For this reason, physical layer
security, which exploits the characteristics of wireless chan-
nels to encrypt confidential messages, has recently attracted
much attention [4–6]. The emerging physical layer security
technology takes advantage of the diversity and time variation
of wireless channels and the uniqueness and interoperability of
both channels of legitimate communication and explores the
built-in security mechanisms based on the characteristics of
wireless channels in the physical layer. It has important appli-
cation prospects in high-rate data transmission encryption,

authentication, integrity protection of service data, and Internet
of Things lightweight encryption [7–9]. The key idea is to safely
deliver confidential information by exploiting the physical
characteristics of the wireless channel [10, 11]. The research
on physical layer security has been used in relay communica-
tion and point-to-point communication system [12, 13] and
could be extended to various wiretap channels such as broad-
cast channels [14], interference channels [15], and cooperative
relay channels [16, 17].

There have been several studies addressing the physical
layer security problem in cooperative relay communications.
For the case of single-antenna relays, secure transmit schemes
have been designed by Yang et al. [17], Feng et al. [18], Xu
et al. [19], Wang et al. [20], Yang et al. [21], Li et al. [22], and
Park et al. [23]. Yang et al. [17] designed the relay beamform-
ing vector to obtain an optimal secrecy rate. An intelligent
reflecting surface is deployed to modulate the received
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confidential signal to achieve secure transmission by Feng
et al. [18] and Xu et al. [19]. The hybrid of cooperative beam-
forming and jamming has been proposed by Wang et al. [20]
and Yang et al. [21] to improve security performance, where the
beamforming vector and the artificial noise (AN) covariance
matrix are jointly designed for the secrecy rate maximization
(SRM) problem. All these works are conducted based on perfect
channel state information (CSI). Taking into account the deter-
ministic channel error, the authors by Li et al. [22] investigated
the robust design to maximize the worst-case secrecy rate. Based
on the statistical CSI of the eavesdropper, three jamming strate-
gies performed at the destination were proposed for minimizing
the secrecy outage probability by Park et al. [23].

For the case of a multiantenna relay, the physical layer
security problem was studied by Vishwakarma and Chock-
alingam [24], Jilani and Ohtsuki [25], Li et al. [26], Wang
et al. [27], Yang et al. [28], Zhang et al. [29, 30], Wang et al.
[31, 32]. Using the decode-and-forward (DF) protocol, the
secure transmit design was explored by Vishwakarma and
Chockalingam [24] and Jilani and Ohtsuki [25]. Compared
to the DF protocol, the transmit design for the SRM problem
is more complex when using the amplify-and-forward (AF)
protocol due to the noise amplification effects at the relay.
Under perfect CSI, the SRM problem was studied by Li et al.
[26] and Wang et al. [27], where an iterative algorithm was
proposed by Li et al. [26], and a suboptimal joint source-relay
linear precoding and power allocation scheme was developed
by Wang et al. [27]. Under imperfect CSI, the robust design
was investigated by Yang et al. [28], Zhang et al. [29, 30],
Wang et al. [31, 32]. From the quality of service view, an
optimal resource allocation strategy was proposed by Yang
et al. [28], and the robust joint beamforming design of the
source and relay for minimizing the overall power was pro-
posed by Zhang et al. [29]. In the study of Zhang et al. [30],
Wang et al. [31, 32], the suboptimal beamforming matrix was
designed in order tomaximize the worst-case secrecy rate. It is
noteworthy that only one eavesdropper is considered in most
works on the multiantenna relay networks mentioned above.
And the methods are not applied to the scenarios with multi-
ple eavesdroppers directly, or they are applied to special chan-
nels [33].

In this paper, we consider a two-hop AF multiantenna
relay network. It is assumed that the CSI of the eavesdrop-
pers is imperfectly known at the relay, and the channel
uncertainties are bound in ellipsoidal regions. Our work is
different from Wang et al. [31] in the following aspects: (1)
we assume that multiple eavesdroppers exist; (2) the AN is
adopted to enhance the security performance; (3) the per-
antenna power constraints are considered in addition to the
total power constraint. The goal is to jointly design the beam-
forming matrix and the AN covariance matrix at the relay
based on the imperfect CSI of eavesdroppers, such that the
worst-case secrecy rate is maximized subject to the total
power and the per-antenna power constraints. We show
that the nonconvex worst-case secrecy rate maximization
(WCSRM) problem can be recast into a two-level optimiza-
tion. The outer part is a one-variable optimization problem,

which can be handled by one-dimensional search. The inner
part can be solved by the combination of the semidefinite
relaxation (SDR) technique [34, 35] and the S-procedure
[36]. Moreover, we prove that the SDR is tight, i.e., a rank-
one solution always exists. Simulation results are provided to
show the efficacy of the proposed AN-aided secure beam-
forming design.

1.1. Notations. Tr ⋅ð Þ; ⋅ð Þ−1; ⋅ð Þ∗; ⋅ð ÞH ; ∥ ⋅ ∥ and Rank ⋅ð Þ
denote the trace, inverse, conjugate, Hermitian transpose,
Euclidean norm, and rank of a matrix, respectively. CN and
CN×N denote the spaces of N × 1 complex vector and N ×N
complex matrix, respectively. ⊗;⊙; IN and 1N×1 stand for
the Hadamard product, Kronecker product, identity matrix
of dimension N and the all-one column vector of dimension
N , respectively. D qð Þ represents a diagonal matrix with q on
the main diagonal. Re ⋅ð Þ extracts the real part of a complex
variable.Q ⪰ 0 Q≻0ð Þmeans that Q is a positive semidefinite
(definite) matrix, q = vec(Q) denotes a column vector by
stacking all the elements of Q and vec−1 qð Þ is the inverse
operation of vec Qð Þ for recovering Q. x ∼CN ^ c;ð QÞ
means that x is a complex circular Gaussian random vector
with mean c and covariance Q.

2. System Model and Problem Formulation

As shown in Figure 1, we consider a two-hop AF relay net-
work consisting of one source (Alice), one relay, one legiti-
mate destination (Bob), and multiple eavesdroppers (Eves).
Each of the nodes is equipped with a single antenna, except
that the relay is equipped withN N ⩾ 2ð Þ antennas. There are
no direct links between Alice and Bob, nor between Alice and
Eve, due to the weak quality of the channels. Alice intends to
transmit the confidential information to Bob, assisted by the
trusted relay, while keeping it secret from the Eves. This
model corresponds to the following scenario: each user
belongs to the same system but subscribes to different ser-
vices, e.g., pay-TV services. When a relay node sends a sub-
scription service to a paying user, other users who do not
subscribe to the service cannot access the service and are
treated as eavesdroppers.

All the nodes work in a half-duplex mode. Hence, one
round of information exchange includes two phases. In the
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FIGURE 1: System model for the secure multiantenna relay network.
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first phase, the signals are transmitted from Alice to the relay.
The signal vector received at the relay can be written as
follows:

yr ¼ fsþ nr; ð1Þ

where f 2CN denotes the channel vector from Alice to the
relay; s ∼CN 0;ð PsÞ is the confidential information with
average power Ps; and nr ∼CN 0;ð INÞ denotes the additive
white Gaussian noise (AWGN) vector received at the relay.
In the second phase, the relay forwards the signals multiplied
by a beamforming matrix. At the same time, the AN is trans-
mitted to confuse the Eves. Hence, the signal vector to be
transmitted by the relay can be expressed as follows:

x ¼ Afsþ Anr þ v; ð2Þ

where A2CN×N is the beamforming matrix, v ∼CN 0;ð ΩÞ
is the artificial noise vector with Ω ⪰ 0 being the AN covari-
ance matrix. Note that the channel vector f, the AWGN
vector nr and the AN vector v are mutually independent.
From Equation (2), the total power of all antennas and the
power of the nth antenna are computed, respectively, as
follows:

Pr ¼ Tr PsAffHAHð Þ þ Tr AAHð Þ þ Tr Ωð Þ; ð3aÞ

Pn ¼ eTn PsAffHAH þ AAH þΩð Þen; 8n 2N; ð3bÞ

where en is a unit vector with the nth entry being one and
N≜ 1;f …;Ng. The signals received at Bob and the kth Eve
can be written, respectively, as follows:

yb ¼ hHAfsþ hHAnr þ hHv þ nb; ð4aÞ

yk ¼ gHk Afsþ gHk Anr þ gHk v þ nk; 8k 2K; ð4bÞ

where h2CN is the channel vector between the relay and
Bob; gk 2CN ; 8k2K, is the channel vector between the
relay and the kth Eve,K≜ 1;f …;Kg; and nb ∼CN 0;ð 1Þ and
nk ∼CN 0;ð 1Þ are the AWGN terms at the receivers.

According to Equation (4), the received signal-to-inter-
ference-plus-noise ratios (SINRs) at Bob and the kth Eve are,
respectively,

SINRb ¼
Ps hHAfj j2

1þ hHΩhþ ∥hHA∥2
; ð5aÞ

SINRe;k ¼
Ps gHk Af
�� ��2

1þ gHk Ωgk þ ∥gHk A∥
2 ; k 2K: ð5bÞ

Similar to the model by Wang et al. [31], only partial CSI
of Eves is available at the relay. The worst-case ellipsoidal
error model is adopted to characterize the imperfect CSI of
Eves. In this model, the actual channel vector of the kth Eve
takes the form the following:

gk ¼ bgk þ Δgk; 8k 2K; ð6Þ

and

Δgk 2Gk≜ Δgk Δj gHk ΣkΔgk ⩽ ε2k
È É

; 8k 2K; ð7Þ

where bgk is the estimated channel vector from the relay to the
kth Eve; Δgk is the corresponding error vector; Σk≻0 defines
the shape of the uncertainty region Gk; and εk ⩾ 0 controls
the size of the region.

In this paper, we investigate the WCSRM problem. The
objective is to jointly design the beamforming matrix and
the AN covariance matrix at the relay in order to maximize
the worst-case secrecy rate. Let R∗

s denote the optimal worst-
case secrecy rate. TheWCSRM problem is subject to the total
power constraint, and the per-antenna power constraints can
be formulated as follows:

R∗
s ¼ max

A;Ω⪰0
min
k2K

1
2
log 1þ SINRbð Þ − 1

2
max
Δgk2Gk

log 1þ SINRe;k

À Á� �
s:t: Pr ⩽ Pmax; Pn ⩽ ρn; 8n 2N;

; ð8Þ

where 1/2 is inserted due to the fact that the relay transmis-
sion is divided into two phases; log ⋅ð Þ denotes the logarith-
mic function; Pmax and ρn are the maximum total power of
all the antennas and the maximum power of the nth
antenna at the relay, respectively. The optimization prob-
lem (Equation (8)) is nonconvex and it is difficult to get the
solution. In the following, we focus on handling this
WCSRM problem.

3. Robust AN-Aided Transmission Design

In this section, we propose a two-level optimization algorithm
to solve the WCSRM problem (Equation (8)) and obtain the
secure beamforming matrix and AN covariance matrix. Substi-
tuting the expressions of SINRb and SINRe; k in Equation (5)
as well as the expressions of Pr and Pn in Equation (3) into
Equation (8), we can rewrite Equation (8) as follows:
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R∗
s ¼ max

A;Ω⪰0

1
2
log 1þ Ps hHAfj j2

1þ hHΩhþ ∥hHA∥2

� �
−
1
2
log

1
τ

� �
s:t: max

Δgk2Gk

log 1þ Ps gHk Af
�� ��2

1þ gHk Ωgk þ ∥gHk A∥
2

� �
⩽ log

1
τ

� �
; 8k 2K;

Tr PsAffHAH þ AAH þΩð Þ ⩽ Pmax;
eTn PsAffHAH þ AAH þΩð Þen ⩽ ρn; 8n 2N;

ð9Þ

where τ is the introduced auxiliary variable. Applying the
matrix identities Tr BHCDFð Þ¼ vec Bð ÞH FT ⊗ Cð Þvec Dð Þ
and Tr BCð Þ¼Tr CBð Þ, Equation (12) can be equivalently
expressed as follows:

R∗
s ¼ max

a;Ω⪰0

1
2
log 1þ aHB1a

1þ Tr hhHΩð Þ þ aHB2a

� �
þ 1
2
log τð Þ;

ð10aÞ

s:t: max
Δgk2Gk

log 1þ aHC1;ka

1þ Tr gkg
H
k Ω

À Áþ aHC2;ka

 !
⩽ log

1
τ

� �
;

8k 2 K;

ð10bÞ

aHD1aþ Tr Ωð Þ ⩽ Pmax; ð10cÞ

aHD2;naþ Tr eneTnΩð Þ ⩽ ρn; 8n 2 N; ð10dÞ

where a = vec(A); B1 ¼Ps f∗ ⊗ hð Þ f∗ ⊗ hð ÞH ; B2 ¼
IN ⊗ hhHð Þ; C1; k ¼Ps f∗ ⊗ gkð Þ f∗ ⊗ gkð ÞH ; C2; k ¼
IN ⊗ gkg

H
k

À Á
; D1 ¼ Psf∗fT þð INÞ⊗IN ; D2; n¼ Psf∗fT þð

INÞ⊗ eneTnð Þ.
3.1. Two-Level Optimization Formulation. Equation (10) is
nonconvex and can not be solved directly. However, if τ is
fixed in Equation (10), due to the monotonicity of log ⋅ð Þ
function, we just need to consider the following optimization
problem

γ τð Þ ¼ max
a;Ω⪰0

aHB1a
1þ Tr hhHΩð Þ þ aHB2a

s:t: 10bð Þ; 10cð Þ and 10dð Þ:
; ð11Þ

which has the same optimal solution to Equation (10).
Equation (11) can be converted into an SDP, which can be
solved efficiently using CVX [37], as it will be shown later in
the next subsection. Motivated by this, Equation (10) can be
equivalently reformulated as a two-level optimization prob-
lem [14, 21]. The inner part is Equation (11) with fixed τ. The
outer part can be written as follows:

R∗
s ¼max

τ

1
2
log 1þ γ τð Þð Þ þ 1

2
log τð Þ

s:t: τmin ⩽ τ ⩽ τmax;
ð12Þ

where τmin and τmax, which will be determined later in this
subsection, are the lower bound and the upper bound on τ,
respectively, and γ(τ) is the optimal objective value of the
inner-level optimization problem (Equation (11)) for a given
τ. Equation (12) is a single-variable optimization problem
with respect to τ. It can be solved through the one-
dimensional linear search over τ2 τmin;½ τmax�. During the
search process, the γ(τ) is obtained by solving the inner opti-
mization problem (Equation (11)). In the next subsection, we
will concentrate on handling the inner-level optimization
problem (Equation (11)).

To complete the description of the two-level optimiza-
tion problem, we determine the values of τmin and τmax in
Equation (12). Given the optimization problem (Equation
(10)), the auxiliary variable τ is inside the interval τmin;½
τmax�. Let us observe the constraints in Equation (10b).
Due to the monotonicity of log ⋅ð Þ function, we simplify
Equation (10b) as follows:

1þ max
Δgk2Gk

aHC1;ka

1þ Tr gkg
H
k Ω

À Áþ aHC2;ka
⩽
1
τ
; 8k 2 K:

ð13Þ

The second term on the left-hand side of the above
inequality is nonnegative, and its minimal value 0 is achieved
when the optimization variable a is set to 0. Hence, the rela-
tion 1 ⩽ 1=τ holds true, meaning that τmax ¼ 1.

According to Equation (10a), the relation τ ⩾ 1þ γbð Þ−1
must hold true for guaranteeing the nonnegative secrecy rate
with γb being the maximum value of SINRb. The maximum
value γb can be achieved under the scenario, where all the
power is used to transmit the information to Bob neglecting
the security problem. Hence, we have the following:

γb ¼max
a

aHB1a
1þ aHB2a

s:t: aHD1a ⩽ Pmax:
ð14Þ

Equation (14) can be rewritten as a generalized Rayleigh
quotient problem [38]. Using the results of [38], we have
γb ¼PsuH D1=Pmax þ B2ð Þ−1u, where u¼ f∗ ⊗ h. Based on
the derivation above, we have the following:

τmin ¼ 1þ Ps f∗ ⊗ hð ÞH D1=Pmax þ B2ð Þ−1 f∗ ⊗ hð Þð Þ−1:
ð15Þ
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3.2. Tight SDR of Inner Optimization Problem. Equation (11)
is a fractional quadratically constrained quadratic problem,
which is difficult to solve. To circumvent this difficulty, we
resort to the SDR technique [34]. Let us define A¼ aaH and
drop the nonconvex constraint Rank A

À Á¼ 1. Then, we can
get a relaxed version of Equation (11) as follows:

ϕ αð Þ ¼ max
A⪰0;Ω⪰0

Tr B1A
À Á

1þ Tr hhHΩð Þ þ Tr B2A
À Á ; ð16aÞ

s:t: Tr C1;kA
À Á

− αTr C2;kA
À Á

− αgHk Ωgk
⩽α; 8Δgk 2 Gk; 8k 2 K;

ð16bÞ

Tr D1A
À Áþ Tr Ωð Þ ⩽ Pmax; ð16cÞ

Tr D2;nA
À Áþ Tr eneTnΩð Þ ⩽ ρn; 8n 2 N: ð16dÞ

Here α¼ 1=τ − 1. Note that ϕ αð Þ⩾γ τð Þ, because the non-
convex rank-one constraint is dropped in Equation (16). It
can be seen that there are infinitely many constraints in
Equation (16b), which make it hard to solve Equation (16).
It is necessary to convert these constraints into quadratic
forms in terms of Δgk for the use of the S-procedure [36]
later.

To proceed, we define the following notations: f̃≜f ⊗
1N×1; gk≜Lbgk;Δgk≜LΔgk; g^k≜Lgk ¼ gk þΔgk; 8k2K , with
L≜1N×1 ⊗ IN . Besides, E≜IN ⊗ EN , with EN an all-one
N ×N matrix.

First, we deal with the first term, denoted by ℓ1, on the
left-hand side (LHS) of the inequality in Equation (16b). It
can be easily shown that f∗ ⊗ gk ¼ f̃ ∗ ⊙ gk; 8k2K . Then,
we can written ℓ1 as follows:

ℓ1 ¼ Ps f∗ ⊗ gkð ÞHA f∗ ⊗ gkð Þ
¼ Ps ef ∗ ⊙ g

^
k

� �
H
A ef ∗ ⊙ g

^
k

� �
¼ Psg

^H
k D ef� �

AD ef ∗� �
g
^
k:

ð17Þ

After some mathematical manipulations, the ℓ1 can be
rewritten as follows:

ℓ1 ¼ ΔgHk T1;k A
À Á

Δgk þ 2Re tH1;k A
À Á

Δgk
� �

þ c1;k A
À Á

;

ð18Þ

where

T1;k A
À Á¼ PsLTD ef� �

AD ef ∗� �
L;

tH1;k A
À Á¼ Ps ef ∗ ⊙ gk

� �
H
AD ef ∗� �

L;

c1;k A
À Á¼ Ps ef ∗ ⊙ gk

� �
H
A ef ∗ gk
� �

:

ð19Þ

Next, we proceed with the second term, denoted by ℓ2,
on the LHS of the inequality in Equation (16b). It can be
shown that IN ⊗ gkg

H
k

À Á¼E⊙ g
^
kg
^H
k

À Á
; 8k2K . Then, the

ℓ2 can be expressed as follows:

ℓ2 ¼ αTr IN ⊗ gkg
H
k

À ÁÀ Á
A

À Á
¼ αTr E⊙ g

^
kg
^H
k

À ÁÀ Á
A

À Á
¼ αg

^H
k E⊙ A
À Á Þg^k:

ð20Þ

After some mathematical manipulations, the ℓ2 is given
by the following:

ℓ2 ¼ −ΔgHk T2;k A
À Á

Δgk − 2Re tH2;k A
À Á

Δgk
� �

− c2;k A
À Á

;

ð21Þ

where

T2;k A
À Á¼ αLT E⊙ A

À Á
L;

tH2;k A
À Á¼ αgHk E⊙ A

À Á
L;

c2;k A
À Á¼ αgHk E⊙ A

À Á
gk:

ð22Þ

Finally, we consider the third term, denoted by ℓ3, on the
LHS of the inequality in Equation (16b). It is obvious that the
ℓ3 has the following quadratic forms:

ℓ3 ¼ −ΔgHk αΩð ÞΔgk − 2Re αbgHk ΩΔgk
À Á

− αbgHk Ωbgk:
ð23Þ

According to Equations (18), (21), and (23), the con-
straints in Equation (16b) are equivalent to the following
implication:

ΔgHk ΣkΔgk ⩽ ε2k ⇒ ΔgHk Tk A;Ω
À Á

Δgk
þ 2Re tHk A;Ω

À Á
Δgk

À Áþ ck A;Ω
À Á

− α ⩽ 0; 8k 2K;

ð24Þ

where

Tk A;Ω
À Á¼ T1;k A

À Á
− T2;k A

À Á
− αΩ;

tHk A;Ω
À Á¼ tH1;k A

À Á
− tH2;k A

À Á
− αbgHk Ω;

ck A;Ω
À Á¼ c1;k A

À Á
− c2;k A

À Á
− αbgHk Ωbgk: ð25Þ

By applying the S-procedure [36], the constraints in
Equations (24) and (16b) can be equivalently rewritten as
the following linear matrix inequalities:
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Fk α;A;Ω; μk
À Á

≜
μkΣk − Tk A;Ω

À Á
−tHk A;Ω

À Á −tk A;Ω
À Á

−μkε
2
k − ck A;Ω

À Áþ α

" #
⪰ 0; 8k 2K; ð26Þ

where μk ⩾ 0 is an auxiliary variable. Now, by replacing
Equation (16b) with Equation (26), Equation (16) can be
reformulated as follows:

ϕ αð Þ ¼ max
A⪰0;Ω⪰0

Tr B1A
À Á

1þ Tr hhHΩð Þ þ Tr B2A
À Á

s:t: Fk α;A;Ω; μk
À Á

⪰ 0; μk ⩾ 0; 8k 2K;
Tr D1A
À Áþ Tr Ωð Þ ⩽ Pmax;

Tr D2;nA
À Áþ Tr eneTnΩð Þ ⩽ ρn; 8n 2N:

ð27Þ

By applying the Charnes–Cooper transformation [39],
the quasi-convex problem (Equation (27)) can be recast
into a convex SDP. Specifically, let A¼W=η;Ω¼ S=η;
μk ¼ νk=η; η>0. Equation (27) can be equivalently converted
into the following:

ϕ αð Þ ¼ max
W⪰0;S⪰0

Tr B1Wð Þ
s:t: ηþ Tr hhHSð Þ þ Tr B2Wð Þ ¼ 1;

Ψ k α;W; S; νkð Þ ⪰ 0; νk ⩾ 0; 8k 2K;
Tr D1Wð Þ þ Tr Sð Þ ⩽ Pmaxη; η>0;
Tr D2;nW
À Áþ Tr eneTnSð Þ ⩽ ρnη; 8n 2N;

ð28Þ

where

Ψ k α;W; S; νkð Þ≜ νkΣk − Tk W; Sð Þ
−tHk W; Sð Þ

−tk W; Sð Þ
−νkε

2
k − ck W; Sð Þ þ αη

" #
:

ð29Þ

The resulting problem (Equation (28)) is a convex SDP,
which can be efficiently solved by existing conic optimization
software, e.g., CVX [37]. When the optimal solution W∗;ð S∗;
η∗Þ of Equation (28) is obtained, the optimal solution A∗;

À
S∗Þ of Equation (27) can be recovered through the variable
change A∗;

À
Ω∗Þ¼ W∗=η∗;ð S∗=η∗Þ.

Now, the inner-level optimization problem (Equation
(12)) has been solved by using the SDR technique and the
S-procedure. In the following, we will show that there always
exists a rank-one optimal solution for Equation (27). That is
to say, the relaxation problem (Equation (16)), which is
equivalent to Equation (27) is tight to Equation (12).

We consider the following power minimization problem
as follows:

min
A⪰0;Ω⪰0

Tr D1A
À Á

; ð30aÞ

s:t: Ψ k α;A;Ω; μk
À Á

⪰ 0; μk ⩾ 0; 8k 2K; ð30bÞ

Tr D1A
À Áþ Tr Ωð Þ ⩽ Pmax; ð30cÞ

Tr D2;nA
À Áþ Tr eneTnΩð Þ ⩽ ρn; 8n 2N; ð30dÞ

Tr ϕ αð ÞB2 − B1ð ÞAÀ Áþ ϕ αð ÞTr hhHΩð Þ þ ϕ αð Þ ⩽ 0;

ð30eÞ

where ϕ(α) is the optimal objective value of Equation (27).
The constraint in Equation (30e) is converted from
Tr B1A
À Á

=1 þ hHΩh þTr B2A
À Á

⩾ ϕ αð Þ. For Equation (30),
we can derive two important properties listed in Propositions
1 and 2.

Proposition 1. Any optimal solution of Equation (30),
denoted by A†;

À
Ω†Þ, is also the optimal solution of Equation

(27).

Proof. By checking the constraints of Equations (30) and
(27), we can find that A†;

À
Ω†Þ is also the feasible solution

of Equation (27). Hence, Tr B1A
†

À Á
=1 þTr hhHΩ†ð Þ þ

Tr B2A
†

À Á
⩽ ϕ αð Þ. From Equation (30e), we have

Tr B1A
†

À Á
=1 þTr hhHΩ†ð Þ þTr B2A

†
À Á

⩾ ϕ αð Þ. As a result,
Tr B1A

†
À Á

=1 þTr hhHΩ†ð Þ þTr B2A
†

À Á¼ϕ αð Þ must hold
true, which implies that A†;

À
Ω†Þ is optimal to Equation

(27). □

Proposition 2. When ϕ(α) > 0, the optimal solution A† of
Equation (30) is rank-one.

The proof of Proposition 2 is given in Appendix.
From Propositions 1 and 2, we can derive the following

theorem.

Theorem 1. When ϕ αð Þ>0, there always exists an optimal
solution A†;

À
Ω†Þ for Equation (27) such that Rank A†

À Á¼ 1.
Furthermore, the rank-one solution can always be obtained by
solving Equations (27) and (30).

According to Theorem 1, we can get the optimal beam-
forming matrix A∗ ¼ vec−1 að Þ of Equation (8) with A† ¼ aaH

being the rank-one optimal solution of Equation (27).

4. Simulation Results

In this section, we use Monte Carlo simulations to evaluate
the worst-case secrecy rate performance of the proposed AN-
aided beamforming design. The CVX [37] is used to solve the
optimization problem (Equation (28)). Each curve is
obtained by averaging over 1,000 independent channel rea-
lizations. In all the simulations, the channel coefficients are
independently generated following the complex Gaussian
distribution with zero-mean and unit covariance. We set
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the signal power of Alice as Ps= 20 dB. The relay is equipped
with N ¼ 6 antennas, and the maximum transmit power is
Pmax= 20 dB unless specified otherwise. It is assumed that
each antenna’s maximum transmit power is ρ= ρn= Pmax/N,
8n. Without loss of generality, we set Σ¼Σk ¼ IN and ε2 ¼
ε2k; 8k.

We compare the performance of our proposed design
(labeled “AN-aided SRM”) with the ones of the following
three designs: (1) the “Nonrobust AN-aided SRM,” where
the estimated CSI with errors is considered as the perfect
CSI; (2) the “No-AN SRM” which is the same as the “AN-
aided SRM,” except that the AN covariance matrix is set as
zero; (3) the “Isotropic AN,” where the AN is transmitted in
the null space of the main channel, and the power is equally
allocated between the beamforming matrix and isotropic
AN [14, 40]. Note that the “Isotropic AN” design does
not take into account the per-antenna power constraints.
Hence, the obtained solution A;

À
ΩÞ in the “Isotropic AN”

design should be multiplied by the scaling factor min 1;f
ρn= Tr D2; nA

À Áþ Tr eneTnΩð ÞÀ ÁÈ É
N
1 g for satisfying the per-

antenna constraints in Equation (10d).
In Figure 2, we present the worst-case secrecy rate versus

the maximum transmit power Pmax for different designs with
K ¼ 3 and ε2= 0.2, 0.3, and 0.5. As can be clearly seen from
Figure 2, the proposed AN-aided SRM design surpasses the
other three methods over the whole region of powers tested.

Moreover, we find that the nonrobust design is sensitive to the
imperfect CSI, i.e., it has lower performance than the robust
method. This demonstrates the necessity to design the robust
method. When the power is small, e.g., Pmax= 0 dB, all the
designs approach the same performance nearly, but the rate
gap between the proposed design and the other methods
becomes wider with the increasing power. This indicates that
the AN can improve the secrecy performance; also, the pro-
posedAN pattern ismore efficient for confusing the Eves than
the isotropic AN. We also compared the case with different
impact parameter values ε2= 0.2, 0.3, and 0.5, and as can be
clearly seen from Figure 2, the worst-case secrecy rate
decreases as ε2 increases.

Figure 3 plots the worst-case secrecy rate against the
number of Eves with Pmax= 20 dB and ε2= 0.3. As expected,
we can observe that the worst-case secrecy rates of all the
designs decrease with an increasing number of Eves. The
performance of the No-AN SRM design drops dramatically.
By contrast, the proposed AN-aided SRM design always
shows the best performance under the different number of
Eves. This confirms that the AN can enhance security signif-
icantly. Even though both the AN-aided SRM design and the
Isotropic-AN use the AN, the former has better performance
than the latter. This is attributed to the fact that AN-aided
SRM design fully uses the CSI of all channels, including Eves’
channels with errors and Bob’s channel, to optimize the
beamforming matrix and the AN covariance matrix. On
the contrary, for the Isotropic-AN, the relay can not fully
exploit the degrees of freedom of its own since the beam-
forming matrix and the AN pattern are fixed according to the
CSI of Bob.

To investigate the impact of imperfect CSI of Eves on the
worst-case secrecy rate performance, in Figure 4, we show
the worst-case secrecy rate behaviors of different designs
with fixed maximum transmit power and the fixed number
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FIGURE 2: Worst-case secrecy rate versus the maximum transmit
power Pmax with N ¼ 6;K ¼ 3 and ε2= 0.2, 0.3, and 0.5.
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FIGURE 3: Worst-case secrecy rate versus the number of Eves K with
Pmax ¼ 20 dB, N ¼ 6, and ε2= 0.3.
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of Eves, i.e., Pmax= 20 dB and K= 3. As is expected, the
worst-case secrecy rate is a monotonically decreasing func-
tion of ε2. This is because the relay has to allocate more
power to the artificial noise for jamming the Eves when the
CSI error variance ε2 increases. As a result, the signal power
becomes less, and the worst-case secrecy rate decreases corre-
spondingly. In addition, the performance of the Nonrobust AN-
aided SRMdesign degrades rapidly when the CSI errors variance

ε2 becomes larger. By contrast, the proposed AN-aided SRM
design provides substantial performance improvements com-
pared to the other designs due to the joint optimization of the
beamforming matrix and AN covariance matrix. This phenom-
enon again confirms the robustness and effectiveness of the
proposed design.

5. Conclusion

In this paper, we explore robust and secure transmission for
AF multiantenna relay networks in the presence of multiple
single-antenna eavesdroppers. The beamforming matrix and
the AN covariance matrix of the relay are jointly optimized
to maximize the worst-case secrecy rate under total power
and per-antenna power constraints. Due to the intractability
of the resulting WCSRM problem, it is converted into a two-
level optimization. The outer part can be handled by 1D
search, while the inner part can be handled by SDR tech-
nique. The simulation results have effectively showcased the
performance enhancements and robustness achieved by the
proposed AN-aided transmit design.

Appendix

It can be verified that the convex problem (Equation (8))
satisfies Slater’s conditions [36]. Hence, the strong duality
holds between Equation (30) and its dual problem, and the
optimal solutions satisfy the Karush–Kuhn–Tucker (KKT)
conditions. The Lagrangian function of Equation (30) is
given by the following:

L¼ Tr D1A
À Á

− Tr XA
À Á

− Tr YΩð Þ − ∑
K

k¼1
Tr ZkFk α;A;Ω; μk

À ÁÀ Á
− ∑

K

k¼1
δkμk

þ θ Tr D1A
À Áþ Tr Ωð Þ − Pmax

À Áþ ∑
N

n¼1
ψn Tr D2;nA

À Áþ Tr eneTnΩð Þ − ρn
À Á

þ ζ Tr ϕ αð ÞB2 − B1ð ÞAÀ Áþ ϕ αð ÞTr ΩhhHð Þ þ ϕ αð ÞÀ Á
;

ð31Þ

where X ⪰ 0; Y ⪰ 0; Zk ⪰ 0; δk ⩾ 0; 8k2K; θ ⩾ 0;ψn; 8n2
N; and ζ ⩾ 0 are the optimal dual variables associated with the
constraints A ⪰ 0;Ω ⪰ 0; Fk α;ð A;Ω; μkÞ⪰0; νk ⩾ 0; 8k2K,
Equations (30c), (30d), and (30e), respectively.

For ease of expression, we first rewrite Fk α;ð A;Ω; μkÞ as
follows:

Fk α;A;Ω; μk
À Á¼ blkdiag μkΣk;−μkε2k þ α

À Á
− PH

1;kAP1;k þ αPH
2;k E⊙ A
À Á

P2;k

þ αPH
3;kΩP3;k;

ð32Þ

where blkdiag(.) represents the block diagonal matrix;
P1; k ¼ D f̃ ∗

À Á
L f̃ ∗ ⊙ gk
À ÁÂ Ã

; P2; k ¼ Lgk½ �; and P3; k ¼ IN bgk½ �.

Substituting Equation (32) into Equation (31), we can get
some KKT conditions related to the proof as follows:

X¼ 1þ θð ÞD1 þ ∑
N

n¼1
ψnD2;n þ ζ ϕ αð ÞB2 − B1ð Þ

þ ∑
K

k¼1
P1;kZkPH

1;k − α E⊙ P2;kZkPH
2;k

� �� �� �
;

ð33aÞ
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FIGURE 4: Worst-case secrecy rate versus the CSI errors variance ε2

with Pmax ¼ 20 dB, N ¼ 6 and K ¼ 3.
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Y¼ −α ∑
K

k¼1
P3;kZkPH

3;k þ θIN þ ∑
N

n¼1
ψneneTn þ ζϕ αð ÞhhH ;

ð33bÞ
XA ¼ 0; A ⪰ 0: ð33cÞ

According to Equation (33b), the Kronecker product of
IN and Y can be expressed as follows:

IN ⊗ Y¼ −α ∑
K

k¼1
IN ⊗ P3;kZkPH

3;k

� �
þ θIN ⊗ IN

þ ∑
N

n¼1
ψnIN ⊗ eneTnð Þ þ ζϕ αð ÞIN ⊗ hhHð Þ:

ð34Þ

It can be easily shown that IN ⊗ P3; kZkPH
3; k

� �
¼

E⊙ P2; kZkPH
2; k

� �
. Hence, subtracting Equation (34) from

Equation (33a), we can get the following:

X ¼Q − ζB1; ð35Þ

where

Q¼ 1þ θð ÞPs f∗fTð Þ⊗ INð Þ þ IN2 þ ∑
K

k¼1
P1;kZkPH

1;k

þ ∑
N

n¼1
ψnPs f∗fTð Þ⊗ eneTnð Þ þ IN ⊗ Y:

ð36Þ

By postmultiplying both sides of Equation (35) by A, and
using the Equation (33c), we can obtain the following:

QA ¼ ζB1A: ð37Þ

It can be found that IN2≻0, and all the other term on the
right-hand side of Equation (36) are positive semidefinite matri-
ces, therefore Q≻0. Hence, we have the following relation:

Rank A
À Á¼ Rank QA

À Á¼ Rank ζB1A
À Á

⩽ Rank B1ð Þ ¼ 1:

ð38Þ

Since ϕ(α)> 0, the constraint in Equation (30e) will be
violated if A¼ 0. As a result, Rank A

À Á¼ 1 holds true, which
completes the proof.
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