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Extreme weather events can severely affect the operation and power generation of wind farms and threaten the stability and safety
of grids with high penetration of renewable energy. Therefore, it is crucial to forecast the failure and capacity loss of wind farms
under extreme weather conditions. To this end, considering the disaster-causing mechanism of severe weather and the operational
characteristics of wind farms, this paper first uses the density-based spatial clustering of applications with noise algorithm to cluster
the units in the wind farm based on the operating characteristics affected by the weather, and uses correlation analysis methods to
extract key disaster-causing factors in extreme weather; then proposes a prediction model based on feature-weighted stacking
integration. The model adopts the stacking-integrated learning architecture to support multiple learners and performs feature
weighting according to the prediction accuracy of each learner in the base learner, thereby improving the training effect of the
meta-learner and improving the prediction accuracy of the model. The prediction model is used to predict each wind turbine group
based on the extracted key features and to predict the failure and capacity loss of the wind farm. Finally, an example analysis is
performed based on actual data from a wind farm, and the results show that the proposed prediction method can effectively predict
the operational reliability of wind farms.

1. Introduction

In recent years, the energy crisis brought about by rapid
socioeconomic development and the increasing depletion
of fossil energy has become a global concern [1]. Therefore,
accelerating the shift of energy consumption from traditional
fossil fuels to green and clean energy and building low-
carbon and environment-friendly renewable energy systems
is the direction of future development [2]. Wind energy, as a
clean energy source, is one of the most rapidly developing
renewable energy sources. However, wind power is charac-
terized by strong randomness and volatility [3], and is sus-
ceptible to weather [4]. Global climate change has led to
frequent extreme weather, seriously affecting the normal
operation and grid connection of wind power generation.
Especially in extreme weather, such as extreme cold and
typhoons, wind turbines in wind farms are prone to abnor-
mal operation, such as icing, shutdown, and strong wind

cutouts. Such failures are caused by abnormal weather and
have an impact on the normal operation and power supply
capacity of the wind farm, resulting in a large deviation in the
power forecast of the wind farm, which brings many diffi-
culties to the combination of startup and shutdown, the
arrangement and implementation of the grid dispatching
plan, and challenges the safe and stable operation of a high
proportion of renewable energy power systems [5]. It can be
seen that accurately predicting the faults that will occur in
the wind farm in extreme weather and analyzing the impact
of the fault on the wind farm capacity are of great signifi-
cance to improving the power prediction accuracy of the
wind farm and maintaining the stable and safe operation
of the power system.

In recent years, the frequent occurrence of extreme
weather has brought potential risks to the operation of
wind farms. As a result, scholars have conducted many stud-
ies on fault prediction and diagnosis of wind turbines in wind

Hindawi
Mathematical Problems in Engineering
Volume 2023, Article ID 8763185, 13 pages
https://doi.org/10.1155/2023/8763185

https://orcid.org/0009-0003-6618-8130
mailto:2729174391@qq.com
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/8763185


farms under extreme weather conditions. According to
modeling theory, these studies can be classified into methods
based on physical models and data-driven statistical methods.
Among them, statistical methods based on machine learning
(ML) can automatically mine the connections between data fea-
tures [6, 7], are simple to model, have fast calculation speed and
high prediction accuracy, and have been widely used. Literature
[8] selected key features according to the icing mechanism in
extremely cold weather and used particle swarm optimization
(PSO) optimized support vector machine (SVM) to predict the
icing fault of wind turbine blades; Zhang et al. [9] studied the use
ofmonitoring and data acquisition system data to detect icing on
wind turbine blades, and proposed a prediction model based on
the random forest (RF) algorithm; The study fully considers the
mixed characteristics of short-term and long-term icing effects
based on the physical extraction of bottom icing, and uses these
characteristics to establish a Stacked-extreme gradient boosting
(XGBoost) model to realize leaf icing diagnosis [10]; Tang et al.
[11] proposed a fault detection model for doubly-fed wind tur-
bine pitch system based on IHHO-light gradient boosting
machine (LightGBM); literature [12] introduced a modeling
method using weather research and forecasting models to pre-
dict the failure probability of wind turbines under typhoon
weather. In addition, neural network methods have also been
applied due to their efficient feature mining capabilities,
including artificial neural network [13], long short-term
memory [14], recurrent neural network [15], etc. In
response to power loss caused by faults, Gao et al. [16]
considered the impact of extreme weather events such as
extreme cold and proposed a wind farm icing loss predic-
tion model; literature [17] established the statistical correla-
tion between meteorological conditions and icing energy
loss based on wind turbine blade icing events, the proposed
model can quickly and accurately predict the energy loss of
wind turbines with numerical weather forecast data input.
Literature [18] evaluated the loss of wind farm shutdowns
under typhoon disasters and the risks it brought.

However, the abovementioned studies on fault shutdowns
and shutdown losses caused by extreme weather usually take a
single wind turbine in a certain extreme weather scenario as the
experimental object. In actual operation, wind farms will be
affected by different extreme weather conditions, and there
are multiple wind turbines with different installed capacities
in the wind farm, with differences in distribution area and
altitude, different operating state characteristics, and different
affected characteristics. Therefore, research on fault and capac-
ity loss prediction of wind farms under different extreme
weather scenarios needs to take all wind turbines in the wind
farm as research objects and propose more generalizable and
accurate prediction model methods. Existing research has
shown that by using the stacking idea to integrate different
models, the limitations of a single model can be overcome,
the applicable scope and advantages of various learners can
be integrated, and it has better generalization performance,
combining the advantages of various models to obtain better
prediction results [19]. It has been used in the multifault detec-
tion and classification of wind turbines [20]. Literature [20]

used AdaBoost, K-nearest neighbors, and logistic regression
classifiers to adopt a stacking integratedmodel to achieve effec-
tive identification of wind turbine faults.

In summary, in order to overcome the above difficulties
and complete the prediction task of different faults and fault
loss capacity of wind farms under extreme weather condi-
tions. This paper uses the density-based spatial clustering of
applications with noise (DBSCAN) clustering method to
divide the wind turbines in the wind farm into different turbine
groups according to the reliability characteristics affected by
extreme weather and further extracts key disaster-causing fac-
tors in extreme weather using correlation analysis technology.
On this basis, a prediction model that integrates multiple mod-
els applied to wind turbine fault prediction and diagnosis:
SVM, RF, XgBoost, and LightGBM, using the Stacking integra-
tion idea is proposed and combined with the feature weighting
method to improve it to improve prediction accuracy, to pre-
dict faults and capacity losses of wind farms under extreme
weather conditions. The main contributions are as follows:

(1) In order to avoid modeling each turbine in the wind
farm separately, this paper uses the DBSCAN cluster-
ing method to divide the turbines in the wind farm
into different turbine groups and perform fault pre-
diction separately, which not only simplifies the pre-
diction task but also facilitates the analysis of the fault
conditions of different turbines in the wind farm and
calculates the capacity loss caused by the fault.

(2) In order to study the disaster mechanism of extreme
weather and solve the problem of model input redun-
dancy, the correlation analysis method is used to
extract the key weather characteristics that affect
the normal operation of each unit group in the
wind farm, which improves the training speed and
accuracy of the model.

(3) A stacking ensemble that integrates multiple mature
models is proposed to overcome the disadvantage of
a single prediction model. And on the basis of the
traditional stacking ensemble method, an improved
method based on feature weighting is proposed, in
which the outputs of different primary learners are
set with weights based on errors in the model train-
ing process, and the output of the algorithm with the
better prediction effect is amplified, to improve the
overall prediction accuracy.

(4) Using the numerical weather prediction (NWP) fore-
cast data of a wind farm through experimental analy-
sis, the experimental structure verifies the superiority
of the proposed prediction model and the effective-
ness of the prediction method.

The rest part of this study is as follows: Section 2 describes
the stacking integration idea and the principle of the DBSCAN
clustering method. Section 3 introduces the whole modeling
process of the prediction method. In Section 4, the arithmetic
analysis and experimental validation are performed on real
data. Section 5 summarizes the conclusions of the study.
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2. Algorithm and Model Principles

2.1. Stacking Ensemble. Stacking ensemble learning is a
method that can combine the advantages of multiple models
to obtain better and more robust prediction results than a
single model. Stacking is a hierarchical model integration
framework that is usually designed as two layers, where the
first layer consists of several algorithms called base learners,
while the second layer is called meta-learner for stacking
ensemble [21]. The benefit of this ensemble is the estimation
of base learners can be used to teach the meta-learner, result-
ing in more accurate outcome prediction [22]. It uses the
original dataset to train different learners in the base learner,
then combines the output of each learner into a new dataset,
which is finally used by the second-stage meta-learner to
obtain the final prediction [23]. The framework of the stack-
ing ensemble is shown in Figure 1.

The four models, including SVM, RF, XGBoost, and
LightGBM, which have achieved good results in different fault
prediction of wind turbines, are used as the base learners in
this study; LightGBM is selected as a meta-learner because of
its better training performance. Different types of model inte-
gration are adopted to obtain better generalization perfor-
mance so that it can cope with the prediction of multiple
faults. And these learning models are briefly described below:

(a) SVM is a supervised learning model used for classifi-
cation and regression, which uses both classification
and decremental challenges [24]. SVM maps training
data to a multidimensional space called decision
space, creating a separating surface called the deci-
sion boundary, as shown in Equation (1), dividing
the decision space into different regions, and has
been widely used in classification problems;

f xð Þ ¼ sgn ∑
n

i¼1
αiyiK xi ⋅ yið Þ þ b

� �
; ð1Þ

where α is the Lagrange multiplier, K (xi·xj) is the kernel
function, and b is the classification threshold.

(b) RF is a typical bagging integration algorithm, which
uses a decision tree as a base learner and is built by
bagging thought. By adopting the resamplingmethod,

n samples are randomly selected from the original
training set (N) repeatedly and replaced to generate
a new training set. K-classification trees are generated
to form an RF that is determined by the self-service
sample set, and the classification of the new data is
determined by the score formed by how many classi-
fication trees vote [25].

(c) XGBoost is a learning algorithm based on tree inte-
gration., the basic idea of which is to compute the
final classification result by integrating multiple basic
trees. Meanwhile, based on the gradient-augmented
decision tree, the second derivative of the loss func-
tion on the prediction result is introduced, and the
complexity of a tree model is added as a regulariza-
tion term in the objective function to prevent over-
fitting and improve the generalization performance
of the model [26]. Its objective function is shown in
Equation (2).

OBJ¼ ∑
n

i¼1
L yi; byi t − 1ð Þ þ ft xið Þ þΩ ftð Þð Þ; ð2Þ

Ω ftð Þ ¼ γT þ 1
2
λ wk k2: ð3Þ

In Equation (2), the first term represents the loss func-
tion, yi is the true value, byi t −ð 1Þ is the predicted result of the
first t− 1 tree, ft xið Þ is the model prediction result of the tth
tree, and the sum of the two is the prediction result of sample
i after the tth iteration, with Ω as the regularization term. In
Equation (3), the first term γT controls the complexity of the
tree by the number of leaf nodes and their coefficients; the
second item is the L2 norm of the leaf node value, which is
used to control the weight score of the leaf node.

(d) LightGBM is a distributed gradient boosting algorithm
based on decision tree algorithms, which adopts one-
sided gradient sampling and exclusive feature bundling
methods and uses histogram algorithms for optimiza-
tion. It selects the leaf-wise decision tree growth strat-
egy with depth limitation, which has the characteristics
of fast running speed, low memory consumption, and
high accuracy. It is widely used in classification and
regression problems, so it is used as a meta-learner in
model building [27].

2.2. DBSCAN. DBSCAN is a classical clustering algorithm
based on density, and the algorithm considers a class as a
high-density target region, which is divided by the low-
density region in data space [28]. The basic idea of the
DBSCAN algorithm is to find any core point and then find
the sample set so that all core objects can reach the density,
which is a cluster. The specific implementation method is
as follows: First, determine the parameters including the
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FIGURE 1: Framework diagram of stacking ensemble.
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neighborhood radius (epsilon (Eps)) and the threshold value
of the number of data objects in the neighborhood (MinPt);
scan the whole dataset D, the DBSCAN method starts from a
random point and retrieves its neighborhood, and if it is a
core point, find all density connected data points from the
core point to form a cluster; next, a new unvisited point is
retrieved to find a new cluster by repeating the above process,
until there is no new core point in the dataset, and the data
points not included in any cluster are noise points [29]. At the
same time, in order to evaluate the rationality of clustering
results, the widely used silhouette coefficient (SC) in the
evaluation of clustering rationality is used as an indicator to
measure the intragroup aggregation and intergroup separation
of clustering results [30]. Among them, the definition of
contour value s (xi) and SC are shown in Equations (4) and
(5), respectively, the contour value s (xi) is in the range [−1,1],
and the grouping result is optimal when the SC is 1, and the
closer to 1, the more reasonable the grouping result.

s xið Þ ¼ b xið Þ − a xið Þ
max a xið Þ; b xið Þð Þ ; ð4Þ

SC¼ 1
m

∑
m

i¼1
s xið Þ; ð5Þ

where b xið Þ is the minimum of the average distance between
sample point xi and other cluster units, and a xið Þ is the
average of the distance between sample point xi and all sam-
ple points within the same cluster.

DBSCN algorithm, as an unsupervised ML clustering
algorithm, does not need to cluster data points with prela-
beled targets, which facilitates the division of wind turbines
with different extreme weather conditions. In the experi-
ment, we found that there are often some outliers in the
monitoring data of the wind farm, and the records of the
operation status of each wind turbine in the wind farm need
to be included. The DBSCAN algorithm can divide regions
with sufficient density into clusters and discover clusters of
arbitrary shapes in a spatial database with noise. Thus, it has
a unique advantage over popular clustering algorithms such
as K-means and hierarchical clustering.

3. Materials and Methods

The method first uses the DBSCAN algorithm to divide the
wind turbine group based on the data recorded during the
prediction cycle of wind farm failures and capacity losses.
Then, the Spearman correlation analysis method is used to
analyze the most critical factors affecting the operating status
of different wind turbine clusters in extreme weather to lay
the foundation for the input data of the prediction model.
Finally, feature weighting is used to improve the traditional
Stacking integrated model to predict wind farm faults and
capacity loss. The flowchart of fault and capacity loss predic-
tion method based on feature-weighted improved stacking
ensemble is shown in Figure 2.

3.1. Cluster Model of Wind Turbines. There are multiple wind
turbines in a wind farm. In order to accurately judge the wind
farm failure scenario and further analyze the specific operat-
ing conditions of wind turbines arranged in the wind farm
and the capacity loss caused by failures, a cluster model of
wind turbines based on the DBSCAN clustering algorithm is
proposed in this paper. The wind turbines were grouped by
identifying the operating state of each wind turbine and the
similar characteristics affected by extreme weather, and the
operating state of each wind turbine group was predicted by
modeling to analyze the lost capacity.

The specific steps of using the DBSCAN algorithm to
cluster wind farms are as follows: (1) select the running state
and abnormal state reasons at the same time as the charac-
teristic characterization of a single unit to form dataset D; (2)
the grouping algorithm DBSCAN model was established,
and the characteristic dataset D of each unit was taken as
the input for clustering; (3) the clustering contour coefficient
was used to measure the rationality of the clustering results;
and (4) adjust the model parameters to obtain the optimal
grouping results, and output the group results.

3.2. Correlation Analysis and Data Processing. The influence
mechanism of extreme weather on wind farms is complicated
and difficult to analyze. The disaster factors include wind
speed, wind direction, temperature, humidity, and other mul-
tidimensional weather characteristics. Moreover, the wind
tower in wind farms monitors these weather characteristics
at different heights, and the redundancy of characteristic
information will affect the accuracy of the prediction model.
Therefore, in order to reduce the dimension of data and
analyze the weather features that are more critical to the
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FIGURE 2: Flowchart of the fault and capacity loss prediction method
based on feature-weighted improved stacking ensemble.
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operating status of wind farms in extreme weather, the corre-
lation analysis method is adopted to analyze the correlation
between various weather factors and the operating status of
wind farms in different extreme weather conditions on the
basis of wind farm unit groups, and the high correlation data
are selected to reduce the dimension of input characteristics.

The Spearman correlation coefficient can judge the cor-
relation between nonlinear variables. It uses the difference of
rank order to evaluate the nonlinear correlation between two
variables. Spearman’s correlation coefficient ranges from −1
to 1. The larger the absolute value of the correlation coeffi-
cient, the stronger the correlation between variables, and the
smaller the absolute value, the weaker the correlation between
variables. Its expression is as follows:

ρ x; yð Þ ¼ 1 −
6∑n

i¼1 R xið Þ − R yið Þj j2
n n2 − 1ð Þ ; ð6Þ

where n is the number of samples, R xið Þ and R yi

À Á
are the

data of x and y variables sorted by size, respectively, and then
the calculation result of the sorted rank is recorded.

The feature variable data after extraction are cleaned, and
the abnormal and missing sequences are deleted. At the same
time, in order to unify dimensions, the data after cleaning are
normalized, and Max–Min is set as the original continuous
data normalization method, whose expression is as follows:

x∗ ¼ x − xmin

xmax − xmin
; ð7Þ

where xmax and xmin are the maximum and minimum values
of the data sequence, respectively.

3.3. K-Fold Cross Check. After the data processing is com-
pleted, it is input into the stacking integrated model. In order
to avoid overfitting the model, the data are usually divided by
K-fold cross-validation, and then the primary learner in the
Stacking integrated model is trained. They are taking K= 5 as
an example. In combination with Figure 3, the K-fold cross-
check process is described in detail. The specific steps are as
follows:

Step 1: The dataset after feature selection and data pro-
cessing is divided into a training set and a
test set.

Step 2: K-fold cross-verification for primary learners:
The original training set was randomly divided
into K equal parts; each primary learner took 1
part of it as the test set and the remaining K− 1
part as the training set. The training set was used
to train each primary learner, and the test set was
predicted to generate five predictions. The pre-
dicted results of each primary learner were com-
bined as the training set of the meta-learner.
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FIGURE 3: K-fold cross-check flowchart.
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Step 3: Each primary learner predicts the original test
set, respectively, and averages the predicted
results as the verification set of the meta-learner.

Step 4: The new dataset generated by the primary learner
is input as a meta-learner to obtain the prediction
results.

3.4. Feature-Weighted Improved Stacking Ensemble Model.
The stacking integrated model described above is structured
in the same proportion of the output of the predicted results
of each base learner when the primary learner generates the
training data of the meta-learner through K-fold cross-check.
However, the attribute characteristics of the meta-learner
training dataset have a great impact on the performance of
stacking integrated prediction [31]. When the input samples
of the meta-learner have more characteristic information
and fewer errors, it is obvious that the stacking integrated
algorithm has better performance. Therefore, this article
improves the stacking integration based on this. The idea
is to assign a weight value to the prediction result of each
base learner according to the training situation and the error
of each base learner itself so that the input features of the
constructed meta-learner are more affected by the output
part of the algorithm with better prediction effect so that
the meta-learner can obtain better training effect. This
method adjusts the input features of the meta-learner by
means of weighting, which is called feature weighting. The
specific steps to improve the method are as follows:

Step 1: Evaluate the training results of each base learner:
the predicted results of each learner on the train-
ing set after the completion of K-fold cross-
training are taken as the evaluation object of
the training results. For the classifier, the accu-
racy score is taken as the evaluation standard
expression as follows:

accucancy score¼ TPþ TN
TPþ TNþ FPþ FN

; ð8Þ

where TP stands for correct, TN stands for correct, FP stands
for unexpected, and FN stands for missing.

Step 2: Calculation of feature weights: In order to make
the input features of the meta-learner obey the
probability distribution, the construction of fea-
ture weights should be standardized based on the
evaluation results of each base learner. The pro-
cessing method is shown in Equation (9):

ωi ¼ n ⋅ accuracy scorei=∑
n

j¼1
accuracy scorej; ð9Þ

where ωi is the weight of the ith learner in the base learner, n
is the number of learners.

Step 3: In K-fold cross-validation, we set the output of
the base learner to predict. The characteristics of
a probe, including various operating states and
prediction probabilities, as shown in Figure 3.
Based on the output of the base learner and the
weights of each learner of the base learner, a
feature-weighted meta-learner training dataset
is constructed. The specific construction method
is as follows: For the n models of the test set on
the ith fold in the K-fold cross-validation, there
will be n corresponding prediction results. By
multiplying the weight of the corresponding
learner, the prediction result train’ can be written
as follows:

Train0i ¼ ω1Prei;1;ω2Prei;2;…;ωnPrei;n
Â Ã

; ð10Þ

where Train′ represents the training data of the meta-learner,
Prei; n is the predicted value of the ith fold check of the nth
learner, ωn is the feature weight of the nth learner above.

Step 4: The datasets generated after feature weighting are
input into the meta-classifier of the stacking inte-
grated model for training, and the numerical
weather forecasting NWP data of the trained
model is used to predict wind farm faults.

The working principle flowchart is shown in Figure 4.
The specific process description of the improved stacking

integrated forecasting model with feature weights is shown in
Figure 5.

4. Experiments and Analysis

The experimental data were obtained frommultidimensional
NWP information, including wind speed, wind direction,
temperature, humidity, etc., at different heights of a wind
tower in a wind power plant in Guangxi Province, China,
as well as the operation status and failure of the whole wind
power plant and all fans in the plant. The time resolution of
the data was 15min. The test environment used in the exam-
ple experiment was deployed in a local high-performance
computing cluster with the Linux operating system, using
an eight-core Intel i7 processor, 64GB memory, and a work-
ing frequency of 2.3 GHz. Models were trained and tested in
Python 3.8.5.

4.1. Wind Turbine Cluster Scheme. According to the estab-
lished wind turbine cluster model, 35 units of the wind farm
were grouped as research objects. The operating states of
different units within the same time interval were selected
as characteristic characterization, and the different operating
states were coded to form characteristic datasets. By adjust-
ing the parameters to obtain the optimal classification model
with a higher contour coefficient, a clustering model with an
Eps of 3 and the MinPt of 20 was ultimately obtained. The
model contour coefficient was 0.89, and the clustering results
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were obtained; the clustering results are shown in Table 1,
and the Cluster distribution map is shown in Figure 6.

At the same time, in order to characterize the operation
status of the cluster, the average intracluster correlation coef-
ficient (AICC) of each unit in the cluster is used in Equation
(11) [32], and the unit with the highest AICC in the cluster is
the representative unit, and its operation status is defined as
the cluster operation status.

AICCp ¼
1
m

∑
q2C

Cov Xp;Xp

À Áffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Xp

À Á
Var Xq

À Áq ; ð11Þ

where p and q are any two units in the cluster, m is the
number of units in the cluster, Xp;Xp are the real-time oper-
ating characteristics of the two units, Cov Xp;

À
XpÞ is the

covariance of Xp;Xp, Var Xp

À Á
; Var Xq

À Á
are the variances

of Xp;Xp, respectively.

4.2. Feature Selection. The proposed Spearman correlation
analysis method is used to analyze the correlation between
the multidimensional NWP information in the wind farm
and the operation status of the wind farm. Taking the corre-
lation degree of multidimensional weather characteristics,

including wind speed, wind direction, temperature, and
humidity measured at the 10-m height of the wind tower
in the wind farm and the fault type of each unit group in
the wind farm as an example, Equation (3) is used to calcu-
late the correlation of each index, and the correlation result
is obtained. The thermal diagram is drawn as shown in
Figure 6.

As shown in Figure 7, the correlation between unit group 2
and the weather characteristics measured at this height is low,
and the correlation between different unit groups and different
weather characteristics is also different. Therefore, when fore-
casting different unit groups, not only the same weather char-
acteristics measured at different heights but also the correlation
analysis between different characteristics measured at the same
point should be carried out, and the characteristics with the
highest correlation should be selected as the model input to
predict the operation status of the unit group.

4.3. Fault Identification and Capacity Loss Prediction of Wind
Power Station under Extreme Weather. Two experiments
were used to predict the fault and capacity loss of wind
farm stations under extreme weather. Experiment 1 takes
the whole wind farm station as the experimental object for
preliminary analysis, and Experiment 2 takes each wind tur-
bine group in the wind turbine group scheme proposed in
Section 4.1 as the experimental object for in-depth analysis.
The above feature weighted improved stacking ensemble
learning is used as the prediction model to build the overall
prediction framework of the two target features.

Experiment 1: The experimental data used are more than
2,800 sets of data collected from the wind farm during a
period of time affected by cold currents and typhoons during
November–December 2022, and the wind turbine in the
wind farm has abnormal operating conditions, including
icing fault and strong wind cutting. When a certain fault
occurs to a wind turbine in the wind farm, the operation
status of the wind farm will be recorded as the fault condi-
tion. Therefore, the operation status of the wind farm station
in extreme weather is divided into three types: normal, icing,
fault, and cutout by strong wind. The data are randomly
reconstructed according to the proportion of running states.
The training set accounts for 90%, and the rest is the test set.

The comparison of the prediction results of the same
sample data by single classification models such as RF,
XGBoost, and stacking ensemble learning model based on
feature weighting is shown in Figure 8, where the parameters
of each model are obtained by Bayesian optimization, and
the model parameters and optimization settings are shown in

TABLE 1: Group clustering results based on DBSCAN.

Clustering criterion
Clustering
results

Fan unit number
Unit group capacity

(MW)
Representative

unit

Characteristics of wind turbine
operating state

Cluster 1
101, 102, 103, 104, 105, 106, 107, 108,
109, 201, 202, 203, 208, 209, 306, 307

38 102

Cluster 2 204, 205, 206, 207 10 204

Cluster 3
301, 302, 303, 304, 305, 401, 402, 403,
404, 405, 406, 407, 408, 409, 410

32 409

–5.0
–2.5

15
10

5
0

–5
–10–15

0.0
2.5

5.0
7.5

10.0
12.5

15.0

–2
–1

0
1
2
3
4

Clustering results

FIGURE 6: Cluster distribution map. Green color represent Cluster 1
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Table 2. The parameters of each base learner in the stacking
ensemble model are the same as those of the single model.

The accuracy score described in Equation (8) was used to
compare the model prediction results, and the results are
shown in Table 3.

Combining the results in Figure 7 and Table 2, we can find
that the proposed feature-weighted improved stacking ensem-
ble model has higher accuracy in the task of wind farm station
fault discrimination prediction under extremeweather, and it is
applied to the prediction of wind turbine group faults due to its
own strong generalization.

Experiment 2: Due to the insufficient amount of data for
other faults, such as high wind cutouts and lightning strikes
for some groups of units, it is not easy to guarantee experi-
mental accuracy. Therefore, this experimental data selects
more than 1,300 sets of data from wind farms with a high
proportion of icing faults to reclean the data. For each unit
group, the feature-weighted stacking integration model is
used for training prediction. The model input data select
the wind speed, wind direction, temperature, humidity,
and other weather characteristics of the point with the high-
est correlation with each unit group as the model input, and
the ratio of the training set to the test set is set at 8 : 2. The
output is the operation status of each unit group in the wind
farm station under extreme weather, and the affected capac-
ity of the station is calculated according to the status of each
unit group at the same time. The predicted results of the
model are shown in Figure 8. Figure 9(a) shows the compar-
ison between the faults of the three unit clusters and the
actual situation, and Figure 9(b) shows the predicted results
of the capacity loss of the comprehensive unit group opera-
tion state.

As shown in Figure 9(a), the prediction accuracy_score of
the operation status of each unit group has reached 0.996,

0.996, and 1, respectively, compared with other models, it has
higher accuracy and good prediction effect for unit groups with
different reliability characteristics, with strong generalization.
As shown in Figure 8, the prediction error of impact capac-
ity is small, indicating that the proposed method can effec-
tively predict the impact capacity of extreme weather faults.
The causes of the errors are analyzed and summarized as
follows: first, the characteristics of the units in the same unit
group affected by extreme weather cannot be completely
consistent, and the individual units and the unit group
are not consistent with wind turbine clusters; secondly,
the selected representative units cannot fully reflect the
operating state characteristics of the test. The proposed
prediction model cannot guarantee complete accuracy for
the fault prediction of the wind turbine cluster.

Combining the above two experimental results, the results
of Experiment 1 and Experiment 2 prove that the feature-
weighted improved stacking model has the advantages of
adaptability of the traditional stacking model compared
with a single learning tool. Meanwhile, the feature-weighted
improved stacking model highlights the training model with
higher accuracy by introducing a feature-weighted mecha-
nism. The critical characteristics of extreme weather are better
extracted. Compared with the traditional Stacking model, the
feature weighted improved stacking model improves the dis-
crimination accuracy of extreme weather fault types. Experi-
ment 2 proves that the proposed fault-affected capacity
prediction method combining wind farm, wind turbine clus-
ter, and feature-weighted improved stacking model can effec-
tively predict the impact of faults on the overall stacking
capacity of wind farm wind turbines and yards. Therefore,
the method described in this paper can accurately and effec-
tively predict the failure scenario and loss capacity of wind
farm stations in extreme weather.

TABLE 2: Table of parameters and optimization settings for different models.

Model
Parameter
setting

Hyperparameter optimization range Optimal parameter

SVM “kernel,” “C”
[“linear,” “RBF,” “sigmod”];
[0.01, 0.03, 0.1, 0.3, 1, 3]

“linear”; 1

RF
“n_estimators”;
“max_depth”;
“max_features”

[10, 50, 100, 500];
[3, 5–7, 5–7, 9, 12, 15];

[2, 4, 6, 8, 10, 12]
100; 9; 8

XGBoost
“n_estimators”;
“learning_rate”;
“max_depth”

[10, 50, 100, 500];
[0.01, 0.025, 0.05, 0.1];
[3, 5–7, 5–7, 9, 12, 15]

100; 0.05; 7

LightGBM

“n_estimators”;
“num_leaves”;
“learning_rate”;
“max_depth”

[10, 50, 100, 500];
[10, 20, 30; 50];

[0.01, 0.025, 0.05, 0.1];
[3, 5–7, 5–7, 9, 12, 15]

100; 20; 0.1; 6

TABLE 3: Comparison table of fault discrimination accuracy score of different models.

Model SVM RF Xgboost LightGBM Stacking Improved stacking

accuracy_score 95.2% 96.0% 96.4% 98.9% 98.2% 99.6%
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5. Conclusion

We developed a feature-weighted improved stacking ensemble
learning model to solve the problem of wind turbine fault
identification and prediction of capacity loss caused by faults
under extreme weather scenarios. This method completes the

prerequisite work ofmodeling by grouping the wind farm units
and extracting the extreme weather features, and it uses a mul-
titype ensemble learning framework to enhance the prediction
accuracy and adaptability for different faults. We verified our
prediction scheme with experimental cases. It showed that our
stacking model improved its ability to integrate multiple

Improved stacking
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FIGURE 9: Graph of model prediction results. (a) Comparison of prediction accuracy of different algorithms for each unit group. (b) Capacity
loss forecast due to failure.
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learners and adapt to complex multidimensional extreme
weather scenarios by introducing a feature weighting mecha-
nism. Our model outperformed single models in prediction
accuracy and reduced the calculation error of wind power fault
prediction caused by strong fluctuation data under extreme
weather conditions. Implementing effective and high-precision
prediction of wind farm failures under extreme weather con-
ditions provides support for improving the level of safe opera-
tion of the power grid under extreme scenarios.

For future research, we aim to verify the wind turbine
fault prediction results under extreme weather and to apply
our method to other renewable energy equipment operation
predictions. We also plan to study the medium and long-
term operation evaluation under the mixed action of multi-
ple fault factors and to promote the implementation of more
general algorithms and applications.

Nomenclature

SVM: Support vector machine
RF: Random forest
XGBoost: Extreme gradient boosting
LightGBM: Light gradient boosting machine
NWP: Numerical weather prediction
DBSCAN: Density-based spatial clustering of applications

with noise
ML: Machine learning
GBDT: Gradient augmented decision tree
Eps: Epsilon
MinPT: Minimum Points
AICC: The average intracluster correlation coefficient
Cov: Covariance
Var: Variance.
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