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Te aim of the present work is to apply the fractional derivative to the heat transformation of a nanofuid along with ramped wall
temperature. Te fow is analyzed under the efect of magnetohydrodynamic together with heat transfer. A nanofuid under the
application of fractional-order diferential equations by Caputo–Fabrizio derivatives with respect to time has the ability to explain
the behavior of nanofuid under the infuence of memory concept. For the same purpose, Caputo–Fabrizio time-fractional
derivative is applied to investigate the behavior of nanoparticles on the thermal conductivity of a fuid. Appropriate nondi-
mensional variables are engaged in the equation which governs the problem and guides us to obtain the exact solutions for the
felds of velocity and temperature. Tese obtained solutions for the nondimensional set of governing equations are found by
extracting them from the governing equations by applying Laplace transform techniques along with Caputo–Fabrizio time-
fractional derivative. Te infuence of the fractional variable on the velocity, temperature, and Nusselt number is graphically
exposed and discussed. Te velocity for the state of wall temperature as ramped falls down with the enlarging values of the
fractional parameter. Variation in Nusselt number is shown in the tabular form. Solutions are visualized graphically to make an
analysis of how the variation is taking place in the physical behavior of the nanofuid fow with respect to the change in distinct
physical parameters. Te obtained results here will have useful industrial and engineering implementations. It is found that fuid
velocity in the fow direction decreases with the increase in the magnetic parameter. Te relationship of fractional parameter with
the velocity and temperature of the nanofuid is found as direct proportional for a smaller time. However, this direct pro-
portionality converts into inverse proportionality for larger values of time. It is observed that the increase in the nanoparticles
volume fraction causes an increase in temperature distribution. It is due to lower specifc heat of nanoparticles and its higher
thermal conductivity than that of the base fuid.

1. Introduction

Generally, when one speaks about free convection fow, it
can be discovered by the discussion and observed practi-
cally that heat when provided to the lower part of the
container containing liquid reaches to the top of the liquid
by the bulk motion of particles. Te question here is how
the motion of particles of liquid takes place when it is

heated up. Actually, the heating efect lowers down the
density of particles of the liquid due to which they receive
more buoyant force than those of the above particles of the
liquid and hence rises up. Tis leads us to say that the
natural (free) convection is just because of the density
diferences during the cooling or heating activities. Simi-
larly, the buoyant force is also a result of density difer-
ences. Any fuid contained in a component with none zero
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concentration gradient. Tis component of the fuid travels
from the state of higher concentration to the state of lower
concentration till the concentration gradient fall and
eventually becomes zero. Tis process of transformation of
mass due to the concentration gradient is termed as mass
transfer by free convection. Te knowledge about the in-
teraction between the felds of magnetism and moving
fuids that conducts these magnetic electric lines of forces
(fuids containing charged particles) is termed as magne-
tohydrodynamics (MHD). Many natural and man-made
fows are under the efect of magnetic felds. MHD has wide
applications in industries to pump in, heat, stir, etc. Te
magnetic feld produced by the fuid motion in the Earth’s
core is known as the terrestrial magnetic feld and is mainly
used in fnding directions and locations on the Earth. Te
fuid in motion must contain the charged particles that are
to be electrically conducting like molten metal, plasma
whose temperature is around 108k which is a result of
highly ionized gases and strong electrolytes. MHD has also
an important use in the nuclear reactor which is to remove
hot plasma away from the reactor walls. Hannes Alfven
(1908–1995) was the frst who introduced the word mag-
netohydrodynamics and was dignifed with the Nobel Prize
for his esteemed work in the same feld of study [1].

Te frst person who provided an exact solution for the
free convection efect on the fow of fuid with nonzero
viscosity and constant density because of an impulse-ori-
ented infnite vertical plate was Soundalgekar [2]. Te
investigation of the natural mode of heat transfer by bulk
motion of fuid particles of a viscoelastic fuid through an
accelerated plate placed which bears an infnite slope under
the efect of the magnetic feld was done by Raptis and
Singh [3]. Te efects due to the natural mode of heat
transfer by bulk motion of fuid particles on an expo-
nentially accelerated plate placed which bear an infnite
slope were searched by both Singh and Kumar [4]. Te
problem of nondimensional governing equations has been
solved analytically as well as by numerical techniques.
Several time-dependent fow of free convection passing
through a vertical plate introduced by a variety of sets of
heat fow problem restrictions at the plate with fnite
boundaries have been solved [5–7]. Te demands for many
numbers of applied problems are considered to be the wall
condition they are arbitrary or nonuniform. Hayday et al.
studied the free convention from a vertical fat plate with
step discontinuities in surface temperature [8]. Te in-
vestigation of laminar fows which are fully expanded is
provided by Schetz [9]. It was Schetz who provided the
approximation to the analytical solutions for the same
bidimensional fow of fuid. Tis procedure was considered
under the efect of heat. Later on, Kao [10], Kelleher [11],
Lee and Yovanovich [12], refned analytically the previous
solutions for the verifcation of various types of wall
temperatures. Te solution for the fuid which remains
exact having a constant density in the case of the free mode
of heat transfer near the vertical walls was for the frst time
found and further extended by Soundalgekar [2, 13]. Te
examination of mass transfer efects on the accelerated
vertical plate in a rotating fuid with frst-order chemical

reaction is accomplished by Muthucumaraswamy et al.
[14]. Te same work about the conventional mode of
transfer of heat is also investigated by Raptis and Singh [3].
Tey have investigated the efects of magnetic feld on
viscous fuid when in motion. Due to this investigation, a
new direction of research has been provided to the sci-
entists to work on many other problems related to heat in
transit in the presence of magnetic felds. A solution of the
vibrating fow of fuid with nonzero viscosity is obtained. It
was the time during which Khaled and Vafai [15] were
working on the fuid with nonzero viscosity under the efect
of slip boundary conditions.

Te density gradient which causes the buoyant forces
induces the free convection fow in the fuid. Because of the
wide range of applications, most of the physicists and
chemists use the knowledge of free convection fow in the
study of nature and industries. For example, it is applied in
the liquefaction of crystals, the process of cooling down of
electronic components, dilute acids suspensions, and
chemicals when they are in the state of higher temperature
[16]. Scientist faces two types of boundary restrictions in
various fow-related problems namely slip boundary con-
ditions and no-slip boundary condition on the slippage of
the boundary. If there does not exist corresponding motion
between the fuid and wall (plane of the plate facing the
fuid), then it is termed as no-slip boundary restrictions
(condition). In order to simplify a complicated situation, this
condition is preferred more but it has also some hurdles.Te
wall slip efects, fractional derivative, Maxwell fuid, oscil-
lating vertical plate, and the heat transfer fow all are studied
with the help of a new defnition of Caputo–Fabrizio
fractional derivatives by Tahir et al. [17]. As it is under-
stood, the no-slip condition is of no use to be applied in the
capillaries [18] although the restrictions which are intro-
duced by Navier in his initial efort [19] are made easy under
the application of the slip condition. Tis condition is also
termed as the Navier condition.Te slip condition has many
practical implementations in many felds of practical life as
medical science, extrusion, lubrication, predominantly in
fows through a medium having small holes in it, the process
of polishing of heart valves made artifcially, microfuids and
nanofuid, research of friction of various surfaces and fuids
related to the life cycle [20, 21]. In order to have natural
convectional fow in the case of viscous fuids, one needs slip
conditions which are used by many authors [22–24]. Ghara
et al. [25] investigated the natural convection fow which is
composed of electrically charged particles fowing along a
vertically moving plate with temperature as ramped. Seth
et al. [26] searched for the plate which drives fuids due its
sudden change in it under the observation of Soret along
with Hall efects on MHD fows and the suction knowledge
in such fows throughout a plate with small holes in it is
provided by Prabhakar Reddy [27]. Te investigation of the
fuid of second grade for MHD free and bulk motion of
particles of the fuid is fulflled by Samiulhaq et al. [28].
Radiation efects on free convection fow near a moving
vertical plate with newtonian heating is investigated by
Narahari and Ishaq [29]. Rajesh and Varma [30] studied the
infuence of radiation on MHD fow through a porous
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medium with a nonuniform degree of temperature. Heat
transfer over an inclined sheet has been explored by Kimura
et al. [31].

As in the literature it is mentioned that the nanofuid
has a higher heat fow rate as compared to the common
fuid that is why the nanofuid is considered for the re-
search. Here, the base fuid we have used is water while the
nanoparticles used are copper (Cu) and silver (Ag). It is
assumed that at the boundary, there are no-slip conditions.
Te solutions of the nondimensional governing equation in
its generalized form, i.e., temperature and velocity, are
obtained by using the integral transform method (Laplace
transform) and fractional-order derivatives which we fnd
in the fractional calculus. During the time of seventeenth
century when Newton formed the base of calculus related
to the derivatives along with integral calculus, Leibniz also
did a lot in the foundation of integral calculus. It was
Leibniz who gave the method how to show typically themth
derivative of an arbitrary function g. But in 1695, when he
brought into notice about this symbolic representation of
the higher order derivatives in a notifcation to de l’Ho-
spital, de l’Hospital thought and asked about the meaning
of nth order of a derivative of a function if n=½.Tis letter
from de l’Hospital is accepted nowadays in common as the
frst incident of what we today call a fractional-order de-
rivative [32].

To describe the viscoelastic behavior of the material, the
calculus of fractional-order derivatives has not been
avoided. In recent times, the calculus of fractional-order
derivatives has been expanded in miscellaneous directions,
particularly in the study of fuids in motion under the
action of forces, neurons model in biological science,
chemistry related to the electrolysis of the fuids like so-
dium chloride solutions hydrochloric acids, etc. and bio-
engineering. Derivatives are implemented on the large scale
to formulate mathematical models of problems related to
the real life. Truly speaking, the fractional-order derivative
of certain signifcant problems is muchmore suitable than a
derivative having integer order. All of it is because of two
most important reasons frstly, no one is bound to choose a
particular order for the derivative of a dependent variable
and the operators of integration, and not be limited to
integer order only. Secondly, the fractional-order deriva-
tives depend on the local conditions as well as on the past,
and it is also useful for the long-term memory of the
system. It has numerous applications not only in the
physics of modern studies but also has a wide range of
applications in other sciences such as Chemistry of fuids,
Ecology, Geology, Biology, etc. [33].

Flat and oscillating porous plate with time-varying
surface conditions, exact and statistical computations, of
radiated, convective, noncoaxial rotating nanofuids

nonlinear mixed convective fow, Casson and hybrid
nanofuids corresponding to heat transfer of Cu-Al2 O3-H2O
over an infnite vertical plate in the presence of heat and
radioactive sources with polar particles suspension are in-
vestigated by [34–42].

Te purpose of the work in hand is to elaborate MHD in
generalized form in a free mode of heat transfer from one to
another place by bulk motion of particles of fuids passed a
vertical plate with an infnite length, time-dependent motion
under the efect of wall temperature as ramped and stepped
where generalized MHD means that fractional derivative
operator is applied to the constitutive equation which turns
it into the generalized form, and hence, the MHD is termed
as the generalized MHD.

2. Mathematical Formulation and Solution of
the Problem

Consider the unsteady-free convection fow of incom-
pressible nanofuid past, an infnite vertical plate situated in
(x, y) plane of Cartesian coordinates x, y, and z. Te x-axis is
taken along the vertical plate, and the y-axis is taken normal
to the plate. Te fuid is assumed electrically conducting
under infuence of a uniform transverse magnetic feld of
strength B0 applied parallel to the y-axis as depicted in
Figure 1. Te motion of the fuid is induced under the
condition that no slippage of fuid is taking place over the
face of the plate. In order to minimize the induced magnetic
feld, the magnetic Reynolds number is chosen negligibly
small, and also, the external electric feld is taken negligible
because of the absence of applied and polarization voltage
[31]. Just before getting the start of observations, the fuid
and plate both are assumed to be at rest with uniform
(ambient) temperature T∞ at the boundary, and the motion
of plate with oscillating velocity is mathematically given by

U1 0, t1( 􏼁 � U0f t1( 􏼁, (1)

where U0 represents the amplitude of the vibratory motion
of the plate and f(t) � sinωt, f(t) � cosωt (Te case when
wall temperature is kept as ramped) f(t1) � 1 (Te case
when wall temperature is kept as stepped) where ω repre-
sents the frequency of vibration of the plate. Meanwhile, the
plate is heated up or cooled down to Tw which is thereafter
kept fxed. Te geometrical interpretation of the problem is
shown in Figure 1.

Keeping in view the above assumptions, under the ap-
plication of Boussinesq approximation [43], the momentum
and energy-governing equations for the time-dependent free
convection fow of nanofuid for a Newtonian fuid can be
expressed as follows:

ρnf􏼐 􏼑
zu1 y1, t1( 􏼁

zt1
� μnf

z
2
u1 y1, t1( 􏼁

zy
2
1

+(ρβ)nfg T1 − T∞( 􏼁 − σnfB
2
0u1 y1, t1( 􏼁, y1, t1 > 0. (2)
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Te constitutive equation for Newtonian fuid is as
follows:

τ1 y1, t1( 􏼁 � μnf

zu1

zy1
. (3)

Te corresponding energy equation can be expressed as
follows:

ρCp􏼐 􏼑
nf

zT1

zt1
� κnf

z
2
T1

zy1
2; t1 > 0. (4)

Assuming that, the no-slip condition exists between the
plate and the fuid. Te associated initial and boundary
conditions are

u1 y1, 0( 􏼁 � 0, T1 y1, 0( 􏼁 � T∞; y1 ≥ 0,

u1 0, t1( 􏼁 � U1f t1( 􏼁,

T1 0, t1( 􏼁 �

T∞ + Tw − T∞( 􏼁
t1

t0
; 0< t1 ≤ t0,

Tw; t1 > t0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

u1 y1, t1( 􏼁⟶ 0, T1 y1, t1( 􏼁⟶ 0 as y1⟶∞.

(5)

Here, “u1(y1, t1)” is the velocity of the fuid, “T1” is the
fuid temperature, “Tw” is the fuid temperature at the
boundary, “T∞” is the ambient temperature, “g” is the
acceleration due to gravity, “U0” is the constant velocity of
the fuid, “ρnf” is density of nanofuid, “μnf” is the dynamic
viscosity of the nanofuid, “κnf” is thermal conductivity of
nanofuid, “βnf” is the thermal expansion coefcient of the
nanofuid, “(Cp)nf” is the specifc heat of nanofuid at
constant pressure, “βf” is the thermal expansion coefcient
of the base fuid. “(ρCp)nf” is the heat required to produce a

degree rise in temperature of the nanofuid, and “κnf” and
“σnf” are the thermal conductivity and electrical conduc-
tivity of nanofuid, respectively.

Some physical properties of base fuids and nano-
particles, Ag and Cu, are shown in the form of Table 1
[43–45].

Writing in dimensionless form by using the following
dimensionless parameters in equation (2), and neglecting
subscripts notation, the governing equation and conditions
for the velocity feld become

t �
U

2
0t1
υf

, y �
U0y1

υf

, u �
u1

U0
, θ �

T1 − T∞
Tw − T∞

, τ �
υfτ1
μnfU

2
0
,ω �

υf

U
2
0
ω1,

J1ρf

U
3
0

υf

zu

zt
� J2

U
3
0μf

υ2f

z
2
u

zy
2 + J3(ρβ)fg T − T∞( 􏼁θ(y, t) − J4σfB

2
0U0u(y, t); y, t> 0,

J1
zu

zt
� J2

z
2
u

zy
2 + J3Grθ(y, t) − J4Mu(y, t); y, t> 0,

(6)

where each J1 − J5 is the function of the thermophysical
properties of the nanofuid. Te expressions of these pa-
rameters are given as follows [46]:

Thermal
Boundary

layer

Momentum
Boundary

layer

Nanofluid

g

y

x

U
1 (

0,
 t1

) =
 U

0 f
 (t

1)
, T

1 (
0,

 t1
) =

 T
w

B0

Figure 1: Geometry of the problem.
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J1 �
ρnf

ρf

� (1 − φ) + φ
ρs

ρf

􏼠 􏼡, J2 �
μnf

μf

�
1

(1 − φ)
2.5,

J3 �
(ρβ)nf

(ρβ)f

� (1 − φ) + φ
(ρβ)s

(ρβ)f

, J4 �
σnf

σf

� 1 +
3(σ − 1)φ

(σ + 2) − (σ − 1)φ
􏼢 􏼣,

M �
υfB

2
0σf

U
2
0ρf

, Gr �
gβf Tw − T∞( 􏼁υf

U
3
0

,

J5 �
κnf

κf

�
κs + 2κf − 2φ κf − κs􏼐 􏼑

κs + 2κf + φ κf − κs􏼐 􏼑
, σ �

σs

σf

,

(7)

where φ is the nanoparticle volume fraction, and ρs is the
density of the solid nanoparticles used. Te specifc heat at a
constant pressure of the base fuid is denoted by cp. Tese
constants and their expressions are the same as those by
Abbas and Magdy [38]. σnf is electrical conductivity of the
nanofuid, B0 is magnetic feld strength, υf is the kinematic
viscosity of base fuid, and Tw is the plate temperature.
Equation (3) in its dimensionless form can be written as
follows:

τ(y, t) �
zu(y, t)

zy
. (8)

Tis equation (8) is the constitutive equation in its di-
mensionless form. Equation (4) in its dimensionless form
can be written as follows:

Pr
z

zt
θ(y, t) � J5

z
2θ

zy
2 , (9)

where Pr � μCp/k, (ρCp)nf � (1 − φ)(ρCp)f + φ(ρCp)s

It is clear from these expressions that equation (9) is a
function of nanoparticle volume fraction. Te initial and
boundary conditions in its nondimensional form are shown
in (10) while the generalized fractional constitutive equation
is given as follows:

u(y, 0) � 0, θ(y, 0) � 0u(0, t) � U1f(t)θ(0, t) �
t; 0< t≤ 1,

1; t> 1,

⎧⎪⎨

⎪⎩
u(0, t)⟶ 0, θ(y, t)⟶ 0 asy⟶∞,

τ(y, t) �
CF

D
a
t

zu

zy
.

(10)

Te generalized fractional momentum and energy
governing equations for time-dependent free convective

fow of nanofuid for a Newtonian fuid can be expressed as
follows:

J1
zu

zt
� J2

z

zy

CF
D

α
t

zu

zy
􏼢 􏼣 + J3Grθ(y, t) − J4Mu(y, t); y, t> 0. (11)

Table 1: Physical properties of base fuid and nanoparticles.

Physical properties
Base fuid Nanoparticles

Water Kerosene Ethylene glycol Cu Ag
ρ (kg/m3) 997.1 780 1115 8933 10500
cp (J/kg·K) 4179 2090 2386 385 235
κ (W/m·K) 0.613 0.149 0.2499 401 429
β (1/K) 0.0002 0.00099 0.341 0.167 0.000189
σ (Sm− 1) 200 — — 59000000 63000000
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3. Analytical Solution by Laplace Transform

3.1. Solution for Ramped Temperature. Te use of Laplace
transformations is an easy and one of the typical mathe-
matical techniques for the solution related to various
chemical and engineering problems described which may be
ordinary or partial diferential equations. If f(t) is a
piecewise continuous function in the time domain and is of
exponential order, then its Laplace transform f(s) is defned
as follows:

£ f(t)􏼈 􏼉 � f(s) � 􏽚
∞

0
e

− st
f(t)dt. (12)

It is to be noted that this approach of Laplace transform
is universally not applicable [31].

Its restrictions which occur by nature are obtained by the
potential for solving the related equations in the domain of
Laplace transform and the successive application of the

inverse transformation of the solution obtained while, in
many technological problems operated by equations con-
taining ordinary or partial derivatives with unchanging
coefcients, it, however, does not create substantial hurdles
to obtain the subsequent Laplace domain solution, such
solutions are relatively problematical functions depending
on, and their inverse transformation analytically is extremely
difcult if these are possible. However, the numerical
techniques are applied to overcome such type of problems.
But for the case here, the inversion of Laplace transforms is
efectively obtained. For the mathematical model of the
problem in hand to convert into a generalized MHD frac-
tional model, the change is taking place only in the con-
stitutive equation. For this, Caputo–Fabrizio derivative is
applied under the operator of the Laplace transform to
equation (8) and then taking the Laplace transform of both
sides.

£ CF
D

α
t f(t)􏽮 􏽯 �

1
1 − α

􏽚
∞

0
e

− pt
􏽚

t

0
f(τ)

•

e
− α(t− τ)/1− α

dτ dt.£ CF
D

α
t f(t)􏽮 􏽯 �

1
1 − α

£ f(τ)
•

􏼚 􏼛£ e
− α(t− τ)/1− α

􏽮 􏽯. (13)

Simplifying by using initial and boundary conditions
with replacement of f(t) by u(y, t) and then plug it into
equation (8) which takes the form

τ(y, s) �
s

α + s(1 − α)

d

dy
u(y, s). (14)

Tis equation is in agreement with the one obtained by
Samiulhaq et al. [47].

Applying Laplace transforms to equation (11) and using
the above result (11), it takes the form as follows:

J1su(y, s) �
J2s

[α + s(1 − α)]

d
2

dy
2 u(y, s) + J3Grθ(y, s) − J4Mu(y, s); y, t> 0. (15)

Applying Laplace transform to equation (9) and writing
it in its simplifed form.

θ(y, s) �
1 − e

− s

s
2 e

− y

���

s
Pr
J5

􏽳

.
(16)

Te transformation of equation (16) back to the pa-
rameter “t” by using the inverse operator of Laplace
transforms which lead us to the solution for temperature
distribution is obtained as follows:

θ(y, t) �
Pr /J5y

2

2
+ t􏼠 􏼡erfc

y
�����
Pr /J5

􏽰

2
�
t

√􏼠 􏼡 −

���
Prt
π

􏽲

ye
−

Pr /J5y2

4t
􏼠 􏼡

−
Pr /J5y

2

2
+ t − 1􏼠 􏼡erfc

������
Pr /J5y

􏽰

2
������
(t − 1)

􏽰􏼠 􏼡 −

����������

Pr /J5(t − 1)

π

􏽳

ye
−

Pr /J5y2

4(t − 1)
􏼠 􏼡⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠H(t − 1).

(17)
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Put equation (16) in equation (15) after simplifcation
and using the Laplace transform applied to the Capu-
to–Fabrizio fractional derivative as under

£ CF
D

α
t f(t)􏽨 􏽩 �

s£[f(t)] − f(0)

s + α(1 − s)
. (18)

Equation (15) becomes

u(y, s) � u1f(s)e
− ya

�����������������
s + J4/J1M( 􏼁(s + b)

s

􏽲

− J3J5Gr
[α + s(1 − α)] 1 − e

− s
( 􏼁

PrJ2s
2

− J1J5 s + J4/J1M( 􏼁(s + b)(1 − α)􏽨 􏽩s2
e− ya

������������
s+J4/J1M( )(s+b)/s

􏽰

+ J3J5Gr(1 − α)
(s + b) 1 − e

− s
( 􏼁

PrJ2s
2

− s + J1J3M( 􏼁(s + b)􏽨 􏽩s2
e− y

����
sPr /J5

√

,

(19)

where a �
����������
J1(1 − α)/J2

􏽰
, b � α/1 − α 0< α< 1. Where “α” is

a fractional order of the Caputo–Fabrizio derivative.
Te compound function on the right-hand side of

equation (19) is

A(y,w(s)) � e− ya
������������
s+J4/J1M( )(s+b)/s

􏽰

� e− ya
����
w(s)/s

√

, (20)

where w(s) � (s + J4/J1M)(s + b).

Laplace inverse transform of a compound function
A(y,w(s)) implies

£− 1
[A(y, w(s))] � f(t)∗A(y, t),

A(y, t) � £− 1
[A(y, w(s))]

� e
− u b+ J4/J1( )M( ) 􏽚

∞

0

ay

2u
���
πu

√ e
− a2y2/4u( ) δ(t − u) + 􏽚

t

0
δ(t − z − u)

������������

ub J4/J1( 􏼁M( 􏼁

z

􏽳

I1 2

����������

ub
J4

J1
M􏼠 􏼡z

􏽳

⎛⎝ ⎞⎠dz⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦du,

(21)

where the “∗” sign represents the convolution of two
functions.

Equation (19) can be written in a simplifed form as

u(y, s) � u1f(s)A(y,w(s)) +
a2Gr

a02(c + 1)

a7

s
+

a8

s + a5
+

a9

s + a6
−

a7

s
+

a8

s + a5
+

a9

s + a6
􏼠 􏼡e− s

􏼢 􏼣A(y,w(s))

+
a2bGr

a02(c + 1)

a10

s
+

a11

s
2 +

a12

s + a5
+

a13

s + a6
−

a10

s
+

a11

s
2 +

a12

s + a5
+

a13

s + a6
􏼠 􏼡e− s

􏼢 􏼣A(y,w(s))

+
a2Gr

a02(c + 1)

a7

s
+

a8

s + a5
+

a9

s + a6
−

a7

s
+

a8

s + a5
+

a9

s + a6
􏼠 􏼡e− s

􏼢 􏼣e− y
����
Pr /J5

√

+
a2Grb

a02(c + 1)

a10

s
+

a11

s
2 +

a12

s + a5
+

a13

s + a6
−

a10

s
+

a11

s
2 +

a12

s + a5
+

a13

s + a6
􏼠 􏼡e− s

􏼢 􏼣e− y
����
s Pr/J5

√

,

(22)

where c � J2Pr/a2, a0 �

����������

J1(1 − α)/J2
􏽱

, a1 �
J4

J1
, a2 �

− J3J5(1 − α), a02 � − J1J5(1 − α), a3 � a1M+ b/2(c + 1),

a4 �

�������������������������������

(a1M + b)
2

− 4a1Mb(c + 1)/4(c + 1)
2

􏽱

, a5 �

a3 + a4, a6 � a3 − a4, a7 � 1/a5a6, a8 � 1/a5(a5 − a6),

a9 � 1/a6(a6 − a5), a10 � 1/a5a6, a11 � b/a2
5(a6 − a5),

a12 � b/a2
6(a5 − a6), a13 � b/(a6 − a5)(a

2
6 − a

2
5/a

2
6a

2
5)
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f1(y, s) �
1
s
e

− y
�
s

√ ����
Pr /J5

√

, f2(y, s) �
1
s
2e

− y
�
s

√ ����
Pr /J5

√

,

f3(y, s) �
1

s + a5
e

− y
�
s

√ ����
Pr /J5

√
, f4(y, s) �

1
s + a6

e
− y

�
s

√ ����
Pr /J5

√
.

(23)

Taking the inverse Laplace Transform of this equation
(22) which results into

u(y, t) � f(t)∗A(y, t) +
Gra2

a02

a7

c + 1
+

ba10

c + 1
􏼠 􏼡 c1(y, t) − c1(y, t − 1)H(t − 1)􏼂 􏼃

+
ba11

c + 1
c2(y, t) − c2(y, t − 1)H(t − 1)􏼂 􏼃 +

Gra2

a02

a8

c + 1
+

ba12

c + 1
􏼠 􏼡 c3(y, t) − c3(y, t − 1)H(t − 1)􏼂 􏼃

+
Gra2

a02

a9

c + 1
+

ba13

c + 1
􏼠 􏼡 c4(y, t) − c4(y, t − 1)H(t − 1)􏼂 􏼃

+
Gra2

a02

a7

c + 1
+

ba10

c + 1
􏼠 􏼡 f1(y, t) + f1(y, t − 1)H(t − 1)􏼂 􏼃

+
a2Grba11

a02(c + 1)
f2(y, t) + f2(y, t − 1)H(t − 1)􏼂 􏼃

+
Gra2

a02

a8

c + 1
+

ba12

c + 1
􏼠 􏼡 f3(y, t) + f3(y, t − 1)H(t − 1)􏼂 􏼃

+
Gra2

a02

a9

c + 1
+

a13b

c + 1
􏼠 􏼡 f4(y, t) + f4(y, t − 1)H(t − 1)􏼂 􏼃,

u(y, t) � f(t)∗A(y, t) + a14 c1(y, t) − c1(y, t − 1)H(t − 1)􏼂 􏼃

+ a15 c2(y, t) − c2(y, t − 1)H(t − 1)􏼂 􏼃 + a16 c3(y, t) − c3(y, t − 1)H(t − 1)􏼂 􏼃

+ a17 c4(y, t) − c4(y, t − 1)H(t − 1)􏼂 􏼃 + a18 f1(y, t) + f1(y, t − 1)H(t − 1)􏼂 􏼃

+ a19 f2(y, t) + f2(y, t − 1)H(t − 1)􏼂 􏼃 + a20 f3(y, t) + f3(y, t − 1)H(t − 1)􏼂 􏼃

+ a21 f4(y, t) + f4(y, t − 1)H(t − 1)􏼂 􏼃,

Where c1(y, t) � £− 1 1
s

A(y, w(s))􏼔 􏼕 � 1∗A(y, t) � 􏽚
t

0
A(y, ξ)dξ,

c2(y, t) � £− 1 1
s
2 A(y, w(s))􏼢 􏼣 � t∗A(y, t) � 􏽚

t

0
(t − ξ)A(y, ξ)dξ,

c3(y, t) � £− 1 1
s + a5

A(y, w(s))􏼢 􏼣 � e
− a5t ∗A(y, t) � 􏽚

t

0
e

a5(t− ξ)
A(y, ξ)dξ,

c4(y, t) � £− 1 1
s + a6

A(y, w(s))􏼢 􏼣 � e
a6t ∗A(y, t) � 􏽚

t

0
e

a6(t− ξ)
A(y, ξ)dξ,
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f1(y, t) � erfc
y

������
Pr/J5( 􏼁

􏽱

2
�
t

√⎛⎜⎜⎝ ⎞⎟⎟⎠,

f2(y, t) �
1
�
t

√ erfc
y

������
Pr/J5( 􏼁

􏽱

2
�
t

√⎛⎜⎜⎝ ⎞⎟⎟⎠ −
e

− y2 Pr/J5( )/4t( )

2
��
π

√
⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦,

f3(y, t) �
e

− a5t

2
e

− iy
�����
Pr/J5( )

􏽰 ��
a5

√􏼐 􏼑
erfc

y
������
Pr/J5( 􏼁

􏽱

�
t

√ − i
���
a5t

􏽰
⎛⎜⎜⎝ ⎞⎟⎟⎠ + e

iy
�����
Pr/J5( )

􏽰 ��
a5

√􏼐 􏼑
erfc

y
������
Pr/J5( 􏼁

􏽱

2
�
t

√ + i
���
a5t

􏽰
⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦,

f4(y, t) �
e

− a6t

2
e

− iy
�����
Pr/J5( )

􏽰 ��
a6

√􏼐 􏼑
erfc

y
������
Pr/J5( 􏼁

􏽱

�
t

√ − i
���
a6t

􏽰
⎛⎜⎜⎝ ⎞⎟⎟⎠ + e

iy
�����
Pr/J5( )

􏽰 ��
a6

√􏼐 􏼑
erfc

y
������
Pr/J5( 􏼁

􏽱

2
�
t

√ + i
���
a6t

􏽰
⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦.

a14 �
a2

a02

Gra7

c + 1
+

Grba10

c + 1
􏼠 􏼡,

a15 �
ba11

c + 1
,

a16 �
a2

a02

Gra8

c + 1
+

Grba12

c + 1
􏼠 􏼡,

a17 �
a2

a02

Gra9

c + 1
+

Grba13

c + 1
􏼠 􏼡,

a18 �
a2

a02

Gra7

c + 1
+

Grba10

c + 1
􏼠 􏼡,

a19 �
a2Grba11

a02(c + 1)
,

a20 �
a2

a02

Gra8

c + 1
+

Grba12

c + 1
􏼠 􏼡,

a21 �
a2

a02

a9Gr

c + 1
+

a13bGr

c + 1
􏼠 􏼡.

(24)

3.2. Nusselt Number. In this section, the expressions for the
Nusselt number are presented when the wall temperature is
kept as ramped and are termed as the measures of the heat
transfer in unit time on the boundary.

Nu(t) � −
zθ(y, t)

zy
|y�0; t> 0,

Nu(t) �

��
2
π

􏽲 ��
Pr
J5

􏽳

[
�
t

√
−

����
t − 1

√
H(t − 1)].

(25)

3.2.1. Solution for Constant Temperature. In order to explore
the temperature of the walls as constant in the presence of
fuid on the borders, it is necessary to match up to the
motion of the fuid along a plate moving with uniform speed.
Under these circumstances, it can be seen that both the
temperature and velocity variables in their dimensionless
form can be obtained by using Laplace transform operator to
equations (6) and (9), and using initial along with boundary
condition (10), equations (6) and (9) become

J1
zu

zt
� J2

z

zy

CF
D

α
t

zu

zy
􏼢 􏼣 + J3Grθ(y, t) − J4Mu(y, t); y, t> 0,

(26)

θ(y, s) �
1
s
e

− y
����
sPr /J5

√
. (27)

Te transformation of equation (26) back to the pa-
rameter “t” by using the inverse operator of Laplace
transforms which lead us to the solution for the distribution
of the temperature feld is calculated as follows:

θ(y, t) � erfc
y

2
�
t

√

��
Pr
J5

􏽳

⎛⎝ ⎞⎠. (28)

Put equation (27) in equation (26) after simplifcation,
solving and using

£ CF
D

α
t f(t)􏽨 􏽩 �

s£[f(t)] − f(0)

α + s(1 − α)
. (29)

Te solution of equation (26) subject to the transform
condition of equation (10) is
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u(y, s) � u1f(s)A(y,w(s)) +
a2Gr

a02(c + 1)

a22

s + a5
+

a23

s + a6
􏼢 􏼣A(y,w(s))

+
a2Grb

a02(c + 1)

a7

s
+

a8

s + a5
+

a9

s + a6
􏼢 􏼣A(y,w(s)) +

a2Gr

a02(c + 1)

a22

s + a5
+

a23

s + a6
􏼢 􏼣e

− y
����
sPr /J5

√

+
a2Grb

a02(c + 1)

a7

s
+

a8

s + a5
+

a9

s + a6
􏼢 􏼣e

− y
����
sPr /J5

√

,

(30)

where a22 � 1/a6 − a5, a23 � 1/a5 − a6. Taking the Laplace inverse of the equation (30) takes the
form
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y
43210
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(c)

Figure 2: Nondimensional velocity outline for variation in α with M � 0.4, t � 1 (a)f(t) � sinωt (b)f(t) � cosωt and (c)f(t) � 1 (b)
corresponding to ramped temperature of the plate.
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Figure 4: Continued.
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Figure 3: Nondimensional velocity outline for α (a) for large time f(t) � sinωt and (b) for small time f(t) � sinωt corresponding to
temperature as (a) stepped and (b) ramped of the plate.
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Figure 4: Nondimensional velocity versus fractional parameter outline for variation in α with M � 0.6, t � 1: (a)f(t) � sinωt,
(b)f(t) � cosωt, and (c)f(t) � 1 analogous to temperature of the plate as stepped.

2

1.5

1

0.5

0

u

0 1 2 3 4
y

M = 1

M = 1.2
M = 1.1

(a)

2

1.5

1

0.5

0

u

0 1 2 3 4
y

M = 1

M = 1.2
M = 1.1

(b)

Figure 5: Continued.
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u(y, t) � f(t)∗A(y, t) +
a2Gr

a02(c + 1)
a22 c3(y, t) + f3(y, t)􏼈 􏼉 +

a2Gr

a02(c + 1)
a23 c4(y, t) + f4(y, t)􏼈 􏼉􏼢 􏼣

+
a2Grb

a02(c + 1)
a7 c1(y, t) + f1(y, t)􏼈 􏼉 +

a2Grb

a02(c + 1)
a8 c3(y, t) + f3(y, t)􏼈 􏼉 +

a2Grb

a02(c + 1)
a9 c4(y, t) + f4(y, t)􏼈 􏼉􏼢 􏼣

u(y, t) � f(t)∗A(y, t) + a24 c3(y, t) + f3(y, t)􏼈 􏼉 + a25 c4(y, t) + f4(y, t)􏼈 􏼉

+ a26 c1(y, t) + f1(y, t)􏼈 􏼉 + a27 c3(y, t) + f3(y, t)􏼈 􏼉 + a28 c4(y, t) + f4(y, t)􏼈 􏼉

Where a24 �
a2Gr

a02(c + 1)
a22, a25 �

a2Gr

a02(c + 1)
a23, a26 �

a2Grb

a02(c + 1)
a7, a27 �

a2Grb

a02(c + 1)
a8, a28 �

a2Grb

a02(c + 1)
a9.

(31)

3.3. Nusselt Number. In this section, an expression for an
important number named as Nusselt is derived in the case of
constant temperature which are the measures of the heat
transfer rate at the boundary

Nu(t) � −
z

zy
θ(y, t)|y�0 ; t> 0,

Nu(t) �

����
Pr

J5πt

􏽳

.

(32)

4. Results and Discussions

Te time-dependent MHD corresponding to its free con-
vection fow in the case of nanofuid is calculated analytically
by using the technique of the Laplace transform.Te efect of

diferent physical parameters such as fractional parameter(α
), Prandtl number of nanofuid ( Pr ), and MHD (M) on the
profles of nanofuid velocity component and temperature
along with the number named as Nusselt number (Nu) is
existing in Figures 2–8 for ramped and stepped wall tem-
perature. Figure 2 represents the velocity profle for the case
of ramped wall temperature and is increasing with the in-
creasing value of the fractional parameter α which is the
order of fractional derivative.

Figure 3 represents stepped wall temperature in which as
well the velocity increases with the decreasing value of
fractional parameter α for large time, and there is a direct
relationship between velocity and the parameter α for
smaller time. Te dual behavior of velocity with time is also
presented by Raza et al. [48]. Tis behavior validates the
present work. Figure 4 represents stepped and ramped wall
temperature in which as well the velocity increases with the

2

1.5

1

0.5

0

u

0 1 2 3 4
y

M = 1

M = 1.2
M = 1.1

(c)

Figure 5: Nondimensional velocity outline for variation in M with t � 1: (a)f(t) � sinωt, (b)f(t) � cosωt, and (c)f(t) � 1 corre-
sponding to temperature as ramped of the plate.
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decreasing value of fractional parameter α. Figure 5 de-
scribes that the velocity value increases for ramped wall
temperature with the increasing value of MHD parameter
M.Tis behavior of the graph exhibits the memory efect. An
interesting note about the fractional parameter α from the
graph is as it provides the memory efect which is a property
of Newtonian fuids. As the Caputo–Fabrizio fractional-
order operator of the derivative with respect to time has

local, its kernel which is nonsingular has better efects on
memory. Tis behavior arises because the kernel used in
Caputo–Fabrizio with fractional-order diferentiation is
exponential, which appears obviously in many problems of
physical sciences as power law, and for a large time, its
behavior is asymptotic. On this same basis, Caputo–Fabrizio
fractional derivative is a better tool for the temperature to
have memory efect and as well for velocity parameter. It is
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Figure 7: Nondimensional temperature θ graph for diferent values of φ: (a) corresponding to the plate temperature as ramped and (b)
corresponding to the plate temperature as stepped.
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Figure 6: Nondimensional temperature outline for variation in t: (a) corresponding to the plate temperature as ramped and (b) cor-
responding to the plate temperature as stepped.
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evident from Figure 6 that temperature is accelerated (for
both the cases ramped wall temperature as well as in stepped
wall temperature) for the growing value of time t.

Figure 7 represents the temperature outlines for ram-
ped and stepped wall temperature corresponding to the
variation in the nanoparticle volume fraction which shows
that the increase in value of ? causes an increase in tem-
perature of the nanofuid. Tis is because of lower specifc
heat with much higher thermal conductivity of the
nanoparticle than that of the base fuid.Tis is an important
result which increases the validity of the work. In Figure 8,
the efect of Prandtl number Pr brought into the light for

the velocity profle. Te increase in Prandtl number (be-
cause of variation in nanoparticles volume fraction) means
an increase in viscosity which creates some resistance in the
fow of fuid, and fuid velocity decreases by increasing the
value of Prandtl number. Figure 9 represents that the in-
crease in nanoparticle volume fraction φ results in the
promotion of the Nusselt number for both ramped wall
temperature and for isothermal wall. In general, the value
of the Nusselt number is inversely proportional to the value
of the thermal conductivity of the fuid. Tis result is also
verifed in Tables 2 and 3 by using software named as
Mathcad.
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Figure 9: Variation in φ causes changes in Nusselt number Nu: (a) corresponding to temperature of the plate as ramped and (b)
corresponding to temperature of the plate as stepped.
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Figure 8: Variation in Pr causes changes in Nusselt number Nu: (a) corresponding to temperature of the plate as ramped and (b)
corresponding to temperature of the plate as stepped.
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Table 2 shows that the Nu as Nusselt number is a
function of time and prandtl number Pr of the nanofuid.
For increasing value of time, the value of Nusselt number
also increases. Te value of Nusselt number decreases with
increasing value of nanoparticles volume fraction for the
case of ramped wall temperature. It is because of that the
nanoparticles increase the thermal conductivity of the
nanofuid. Table 3 provides the evidence that the Nusselt
number Nu also depends directly on Prandtl number Pr and
accelerates for growing values on Prandtl number Pr.
However, the Nu value is decreasing with the increasing
value of nanoparticle volume fraction for walls temperature
when kept constant.

 . Conclusions

Exact analytical solutions are obtained for the unsteady
MHD-free convection fow of generalized nanofuid
bounded by an infnite vertical plate. A nanofuid under the
application of fractional-order diferential equations by
Caputo–Fabrizio derivatives with respect to time has the
ability to explain the behavior of nanofuid under the in-
fuence of memory concept. For the same purpose,
Caputo–Fabrizio time-fractional derivative is applied to
investigate the behavior of nanoparticles on the thermal
conductivity of a fuid. Closed-form solutions for velocity
and temperature are obtained using the Laplace transform
technique. Te variation in both velocity and temperature
is studied for diferent parameters graphically. In this
continuation, the velocity profle for a larger time has a

quite similar trend over the boundary. Te fractional
diferential equation shows dual behavior for small and
large times. Tis phenomenon for fractional derivatives is
due to the fact of the efective role of a singular kernel. In
this connection, the profle of nanoparticles for smaller
time t and larger time t with Caputo–Fabrizio fractional
derivatives can be predicated. Both cases of ramped and
isothermal plate temperatures are discussed. Te numerical
values are evaluated for the Nusselt number and presented
in tabular forms for both ramped and stepped tempera-
tures. Te following main results are concluded during the
solutions of the problem and graphical analysis:

(i) An increase in nanoparticle volume fraction in-
creases the nanofuid temperature, which leads to an
increase in the heat transfer rates for both ramped
and stepped temperature

(ii) Fractional parameter plays the role of controlling
the thermal and momentum boundary layers for
diferent times and values of the fractional
parameter

(iii) Velocity depreciates for a large value of MHD pa-
rameter in case of ramped wall temperature while
the result is reversed in the isothermal case

(iv) Te Nusselt number increases with increasing
values of Pr and t for ramped wall temperature
whereas the Nusselt number associated with iso-
thermal temperature increases with increasing Pr
but decreases with increasing t as shown in Tables 1
and 2

Table 2: Nusselt number for ramped temperature.

S. no t Nu Pr� 4.896 φ � 0.1 Nu Pr� 3.576 φ � 0.2 Nu Pr� 2.619 φ � 0.3 Nu Pr� 1.905 φ � 0.4
1 0.1 0.782 0.675 0.577 0.492
2 0.2 1.060 0.954 0.817 0.696
3 0.3 1.355 1.169 1.000 0.855
4 0.4 1.565 1.350 1.155 0.985
5 0.5 1.749 1.509 1.291 1.101
6 0.6 1.916 1.653 1.414 1.206
7 0.7 2.070 1.785 1.528 1.303
8 0.8 2.213 1.909 1.633 1.393
9 0.9 2.347 2.024 1.732 1.477

Table 3: Nusselt number for stepped temperature.

S. no t Nu Pr� 4.896 φ � 0.1 Nu Pr� 3.576 φ � 0.2 Nu Pr� 2.619 φ � 0.3 Nu Pr� 1.905 φ � 0.4
1 1.1 1.190 1.017 0.871 0.742
2 1.2 1.140 0.974 0.833 0.711
3 1.3 1.095 0.936 0.801 0.683
4 1.4 1.055 0.902 0.772 0.658
5 1.5 1.019 0.871 0.745 0636
6 1.6 0.987 0.843 0.722 0.616
7 1.7 0.957 0.818 0.700 0.597
8 1.8 0.930 0.795 0.681 0.580
9 1.9 0.906 0.774 0.662 0.565
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Nomenclature

g: Acceleration due to gravity, [LT− 2](ms− 2)

ρ: Fluid density, [ML− 3](kgm− 3)

μ: Dynamic viscosity, [ML− 1T− 1](kgm− 1s− 1)

u: Fluid velocity, [LT− 1](ms− 1)

T: Fluid temperature, [θ](K)

T∞: Fluid temperature at an infnite distance from the
plate, [θ](K)

υ: Kinematic viscosity, [L2T− 1](m2s− 1)

s: Laplace transforms parameter
L: Length of the plate, [L](m)

M: MHD parameter
B2
0: Magnetic feld strength, [T/L3](T)

Nu: Nusselt number
ρnf: Nanofluid density, [ML− 3](kgm− 3)

μnf: Nanofluid dynamic viscosity, [ML− 1T− 1](kgm− 1s− 1)

φ: Nanoparticles volume fraction
Pr: Prandtl number, dimensionless parameter
c− p: Heat capacity at constant pressure,

[ML2T− 1θ− 1](kgm2s− 1K− 1),
t: Time, [T](s)

κ: Termal conductivity of the fuid,
[MLT− 3θ− 1](Wm− 1K− 1)

σnf: Electrical conductivity of nanofuid, [MT− 2](Sm− 1)

σf: Electrical conductivity of base fuid, [MT− 2](Sm− 1)

σs: Electrical conductivity of solid, [MT− 2](Sm− 1)

Tw: Temperature of the plate, [θ](K).

Data Availability

Te data used to support the fndings of this study are
available from the corresponding author upon request.
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