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In this study, we present a framework for improving the accuracy of speech emotion recognition in a multilingual environment. In
our prior experiments, where machine learning (ML) models were trained to predict emotions in Korean and then tested in English,
as well as vice versa, we observed a dependency on language in emotion recognition, resulting in poor accuracy. We suspect that this
may be related to the spectral differences in certain emotions between Korean and English and to the tendency for different formant
values to have different acoustic frequencies. For this study, we investigated several different methods, including models with mixed
databases, a single database, and bagging, boosting, and voting ML algorithms. Finally, we developed a framework consisting of two
branches: one for the aggregation of high-dimensional features from multilingual data and one for a two-layered ensemble frame-
work for emotion classification. In the ensemble framework for Korean and English (EF-KEN), features are extracted and ensemble
models are trained, boosted, and evaluated by applying them to different spoken languages (English and Korean). The final
experimental result demonstrates a meaningful improvement in an environment with two different languages.

1. Introduction

With the expansion of the global economy and the gradual
end of the coronavirus disease 2019 (COVID-19) pandemic,
worldwide mobility is once again on the rise. Fueled by the
growth of Korean culture, tourism in South Korea continues
to thrive, attracting increasing numbers of foreign visitors
who are also showing a growing interest in the Korean lan-
guage. Additionally, the number of South Korean travelers,
immigrants, and international students heading toward
English-speaking countries is steadily increasing.

In this global everyday-life context, the role of voice emo-
tion recognition technology is becoming increasingly impor-
tant. Being able to detect emotions while considering the
speaker’s culture and language can enhance mutual under-
standing and communication. This can help identify emo-
tional cues that nonnative speakers might find challenging
to express abroad, thus bridging the gap between language
and culture. Moreover, detecting emotions in foreigners can
enhance communication and human interaction in various
fields, such as airport services, telephone guidance, and online
education. Multilingual speech emotion recognition (SER)

technology can overcome language barriers and facilitate
effective communication in diverse societies.

Against this backdrop, this study aims to improve emo-
tion recognition rates in English or Korean spoken by non-
native speakers. The expected outcome of this research is to
aid nonnative speakers in their daily lives abroad, assisting
them in communication and cultural adaptation. The goal is
for SER technology to become the cornerstone for facilitating
mutual understanding and communication among people
from diverse linguistic and cultural backgrounds, thus serv-
ing as a universal service enhancer.

The contribution of this research is twofold: addressing
crucial challenges in crosslingual emotion recognition and
effectively countering emotion class imbalance:

(1) Improving emotion recognition in crosslingual
environments: Korean and English exhibit distinct
cultural and linguistic differences that result in varied
ways of expressing emotions. Traditional voice emo-
tion recognition models often fail to account for
these disparities. To address this, an ensemble frame-
work is proposed, which involves combining Korean
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and English datasets to extract acoustic features and
then developing models that consider the character-
istics of each language. This framework aims to
enhance emotion recognition performance in cross-
lingual environments.

(2) Resolving emotion class imbalance: The Interactive
Emotional Motion Capture (IEMOCAP) dataset [1]
suffers from an imbalance issue where certain emo-
tion classes have fewer data instances compared to
others. This imbalance can limit the performance of
conventional voice emotion recognition models. The
ensemble framework seeks to mitigate emotion class
imbalance by using diverse models and data combi-
nations. Thus, the proposed ensemble technique aims
to balance the training of each class’s data, thereby
ameliorating the imbalance issue in the number of
samples for each emotion class.

In summary, our research’s notable contributions lie in
its pioneering solution to enhance emotion recognition
across different languages by harnessing an ensemble frame-
work to tackle crosslingual disparities and its novel approach
to alleviate emotion class imbalance concerns, ultimately
advancing the field of crosslingual emotion recognition.

We focus on phonetic information to apply this model to
multiple languages. We carry out experiments with the frame-
work in a bilingual environment. The use of databases for both
languages poses a formidable academic challenge because of the
differences in the nature of phonograms in word orders. In
English sentences, the subject is followed by the verb and then
an object, whereas, in Korean, the subject is followed by an object
and then the verb.We develop and experimentwith a number of
machine learning (ML) algorithms and ensemble approaches to
see how different combinations of databases affect the model. In
Section 2, related research on SER is reviewed. Section 3
describes the database that we used for both Korean and English,
including preprocessing and the analysis of acoustic feature
extraction. We introduce the framework for building high-
dimensional features for multiple languages, namely high-
dimensional feature mapping (HDFM). Section 4 describes a
two-layer classification model for the HDFM called ensemble
framework for Korean and English (EF-KEN). Section 5 pro-
vides the experimental results for comparisons of the types of
databases and levels of the classification model.

2. Related Work on SER

Various techniques using emotion databases and artificial
intelligence are employed to detect human emotions in
speech.

(1) Acoustic analysis: Acoustic features, such as pitch,
intensity, and duration, are analyzed to detect emo-
tional cues in speech. For instance, high pitch,
increased intensity, and prolonged duration can be
associated with excitement or anger [2, 3].

(2) Language analysis: Words and phrases used in
speech are analyzed to detect emotional content.

Specific words and phrases, like “happy,” “joyful,”
and “ecstatic,” can indicate happiness [4, 5].

(3) Prosody analysis: Variations in pitch, intensity, and
tempo are analyzed to detect emotional cues. For
example, a rising pitch at the end of a sentence can
imply a question or uncertainty [3, 6].

(4) Deep learning: Large datasets are analyzed and
learned using artificial neural networks to identify
speech patterns associated with specific emotions
[7, 8].

We classify research works on SER into three categories:
neural network-based work, feature representation-based
work, and multiple modality-based work. The categories
are summarized in Table 1.

As the convolutional neural network (CNN) has contrib-
uted to research on image classification and regression, models
have been used effectively to classify emotions by imaging voice
signals through preprocessing [9, 10]. In order to learn voice
emotion data using a CNN, it is necessary to image the char-
acteristics of voice data [8, 11, 12]. One of the features of audio
data is its spectral features. Learning emotions using the spec-
tral features of voice has proved effective in previous studies
[9, 13]. In this study, almost 200 high-dimensional acoustic
features need to be converted to graphical images to be classi-
fied. However, this requires a significant amount of computing
power for CNN to process such large amounts of data.

The long short-term memory (LSTM) is a recurrent neu-
ral network (RNN) [9, 14] learning model for solving the
long-term dependency of RNN. LSTM can remember and
connect information from the past to the present. Each unit
has three gates: an input gate to learn what information is to
be stored in memory, a forget gate to learn how long infor-
mation is stored, and an output gate to learn when the stored
information can be used [9]. The SER system receives the voice
signal as input and preprocesses the data, and then the pro-
cessed data enter the LSTM layer. It then connects all the nodes
of the previous layer in the connected layer and outputs the
resulting value through the softmax function [15–18].

The performance of voice-based emotion recognition is
not satisfiable when an algorithm is implemented with one
deep learning model. Therefore, in most cases, algorithms
are created by connecting two or more deep learning models
[19, 20]. The information gathered from speech and text has
been developed into a methodology for a multimodal emo-
tion recognition model with its speech features and text
embeddings. Spectrograms generated from the voice signals
are input to the CNN, which is integrated with an RNN

TABLE 1: Classification of SER research: neural networks, feature
representation, and multimodal.

Neural net-
work

Features representation Multimodal

CNN Spectrogram Speech+ text
RNN Numeric value Speech+ video

CNN+RNN
Spectrogram+ numeric

value
Speech+ text

+ video
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method for recognizing emotions using data extracted from
content information in text format, as illustrated in Figure 1
[21]. In this study, CNN is not included because it requires
excessive computing power to process large amounts of
graphic data in a spectrogram. The RNN is also not included
because it requires a text-processing model that could be
applied universally across multiple languages. However,
only a limited number of databases contain text information
for LSTM multimodal systems. Hence, this study focuses
solely on acoustic information. With this approach, we can
easily expand our framework to other languages.

The main contributions of this study are (1) the intro-
duction of a novel end-to-end multilingual framework for
SER, (2) the creation of a methodology for extracting acous-
tic features from two different corpora and combining them
to form a single training dataset, and (3) the development of
a two-layered ensemble framework to improve the accuracy
of emotion recognition in speech.

3. High-Dimensional Features for
Multiple Languages

The research focuses on SER using ensemble techniques in
both Korean and English environments. As shown in
Figure 2, the proposed EF-KEN is structured with two
main layers. The first layer, known as HDFM, involves the
extraction and synthesis of high-dimensional Korean and
English acoustic features. The second layer connects the pre-
classifiers of the ML algorithms and the ensemble voting
(EV) metaclassifier [23–25]. When connecting HDFM and
EF-KEN, the training is performed on a combined dataset
containing both English and Korean data, whereas the test-
ing is conducted separately for each language [26–28].

We chose the emotion databases in English and Korean.
Each database includes the characteristics and composition
of the language dataset and the composition of the acoustic
features for emotion recognition.

For the English data, we use voice-only waveform audion
format (WAV) files from the IEMOCAP database developed
by the University of Southern California. This database was
designed for the collaborative analysis of speech and gestures
[1]. It consists of 12 hr of audio and video data in English and
consists of video, voice, text, and movement detection signals
of the face, head, and hands. This includes a file recorded by
10 actors with a total of 10 emotions, such as happiness,
anger, sadness, frustration, and neutral. There are five men
and five female actors, and the database consists of data from
five sessions recorded with one man and one woman.
Regarding the Korean data, WAV files were collected by
volunteers who naturally communicated with the internet

application for a certain period of time using an emotional
conversation application and were labeled with seven emo-
tions (happiness, anger, disgust, fear, sadness, surprise, and
neutral) by the Korea Electronics Technology Institute (KETI).

IEMOCAP is a well-established and widely used dataset
for emotion recognition in English speech. It encompasses
diverse emotional expressions and captures real-world sce-
narios, making it a reliable benchmark for English emotion
recognition models. Likewise, the KETI dataset is a promi-
nent resource for Korean SER, specifically tailored to capture
the nuances of emotions expressed in the Korean language.
Thus, we chose to use these language-specific datasets in our
experimental design because they enabled us to capture the
distinct cultural and linguistic characteristics that influence
emotional expression in each language.

Furthermore, by using language-specific datasets, we
ensure that our models are optimized to recognize emotions
accurately within the linguistic and cultural contexts of each
language. This approach enhances the generalization ability
of our models when deployed in real-world scenarios where
emotional expressions may differ considerably between lan-
guages. Leveraging language-specific datasets also enables us
to tailor the model’s architecture and hyperparameters
according to the unique characteristics of each language,
ultimately leading to improved performance.

3.1. Extraction of Acoustic Data. In our research, we aimed to
extract as many acoustic features as possible fromWAV files.
We obtained 200 acoustic features and normalized them to
values between 0 and 1. Some of the important features we
extracted include the zero crossing rate (ZCR), the Mel fre-
quency cepstral coefficient (MFCC), and chroma, which con-
tain important frequency information [29, 30].

As humans can only perceive frequencies on a logarithmic
scale, a Mel scale is used to represent perceptually relevant
frequencies and amplitudes. A distance on the Mel scale
represents the same perceptual distance. The frequency con-
tent of audio signals in speech and audio processing was
obtained by converting theMel scale value,m, into frequency,
f, through Equations (1) and (2), where m is a dimensionless
value corresponding to a linear frequency on the Mel scale:

m¼ 2; 595 log 1þ f
500

� �
 ; ð1Þ

f ¼ 700 10m=2;595
− 1

À Á
 : ð2Þ

After the voice signal is converted to a Mel scale value, it
is ready to acquire the MFCC by Fourier transform. In order
to calculate the value of the MFCC, the human voice is
divided into 25ms frames, and Fourier transform is applied
to each frame to extract the frequency information. The
results of the Fourier conversion in each frame are called
the Mel spectrum. The Mel spectrum is obtained by applying
the Mel filter bank, which is sensitive to human speech rec-
ognition. The logarithmic Mel spectrum is called the log-Mel
spectrum. The MFCC is obtained from the conversion of the
frequency domain information into the time domain by
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input
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input 

FIGURE 1: SER using feature vectors and embedding vectors with
CNN and LSTM.
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applying the inverse Fourier transform to the log-Mel spectrum.
MFCC is also used as input to theGaussianmixturemodel in the
existing voice recognition system [30]. The mean of the MFCC
features is calculated, and then short-time Fourier transform and
Mel spectrogram features are obtained by setting the sampling
rate for the audio files, and the number of MFCCs is set to 12
[27]. This entire process of extracting MFCCs is shown in
Figure 3. In this study, the Librosa, Pandas, and NumPy libraries
are used to perform feature extraction.

Other crucial features for emotion recognition are the
chromagram and ZCR. The chroma features represent 12
pitch levels, including C, C#, D, D#, E, F, F#, G, G#, A, A#,
and B. Chroma features are intended to represent the har-
monic content of a short-lived sound window. Chroma fea-
tures can show a high degree of robustness to changes in
timbre. The number of chroma features is set to 12, the
same as the pitch levels [31]. The ZCR shown in Figure 4
represents the number of times a voice signal from the
human vocal tract crosses the horizontal axis [29].

In Equation (3), ZCRt represents the ZCR at a specific
time frame t. The variable t denotes the time frame or sample
index for the calculation. K signifies the total number of
samples or time frames and sets the upper limit for the
summation. The summation, denoted by ∑, ranges from
index k equal to t·K to (t+ 1)·K−1 representing the sum
over a range of samples spanning t and the subsequent
time frame (t+ 1). The sgn(s(k)) and sgn(s(k + 1)) are sign
functions applied to the signal values at indices k and k + 1,
respectively. These functions return −1 for negative values, 0
for zero, and 1 for positive values. The s(k) and s(k + 1)
represent the values of the signal at the respective indices.
The ZCRt quantifies the frequency of zero crossings within
the specified time frame, providing valuable information
about the signal’s waveform characteristics.

ZCRt ¼
1
2
⋅ ∑

tþ1ð Þ⋅K−1

k¼t⋅K
∣sgn s kð Þð Þ − sgn s kþ 1ð Þð Þ∣: ð3Þ

3.2. Preprocessing and Combining Feature Sets. These large
numbers of features from IEMOCAP and KETI were
preprocessed to equalize the number of emotions and the total
number of each sample. After that, they were combined into one
high-dimensional feature set called the HDFM. As shown in
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FIGURE 2: Graphical representation of proposed two-layered EF-KEN [22].
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FIGURE 3: Process of extracting MFCC using Fourier transform.
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Table 2, there were 10,039 WAV files in English and 19,374
WAV files in Korean. Both databases were reduced to 8,000
random samples, and 200 voice features were extracted from
each sample. We preprocessed the dataset in order to adjust
the number of emotion classes.

In order to provide the same experimental environment,
we equalize the number of samples from each corpus as well
as the number of emotions. After the min–max scaling of
values of features, two feature sets are combined into a train-
ing feature set called HDFM.

4. Ensemble Classification for Korean
and English

The ensemble classification for Korean and English is com-
posed of two layers: one for the preclassification of the speech
emotion and one for the metaclassification of the earlier
classifications. The preclassification consists of four classi-
fiers: logistic regression (LR), random forest (RF), gradient
boosting (GB), and multilayer perceptron (MLP). The meta-
classifier is called the EV. Figure 5 shows the components of
ensemble classification.

4.1. Preclassifiers. We introduce a novel approach to discover
the optimal hyperparameters for each model and subse-
quently use them for predicting optimal values through EV,
using grid search (GS) as the initial step within the ensemble
framework, encompassing models such as RF, LR, MLP, and
GB. Our focus here is on the advantages of GS in managing
model complexity and addressing parameter uncertainty. By
extensively testing various hyperparameter combinations, GS
effectively manages model complexity, thus mitigating over-
fitting and enhancing generalization performance. Addition-
ally, GS minimizes parameter uncertainty by considering all
possible hyperparameter combinations, providing an oppor-
tunity to maximize model performance through the identifi-
cation of optimal hyperparameter values.

LR is a supervised learning algorithm that uses regression
to classify data into categories that are more likely to fall into a
category. Most LR applications are used for binary classifica-
tion.When there are three ormore classes to be distinguished,
LR analysis is an effective approach for multiple classification.
The softmax function, represented by Equation (4), replaces
the role of the sigmoid function in converting the z-values to
probabilities in binary classification. It compresses the output
values of multiple linear equations between 0 and 1 and adds
the probability of all classes:

σ ~zð Þi ¼
ezi

∑K
j¼1e

zi
 : ð4Þ

To compute the probability of the z-value, the softmax
function applies the standard exponential function (e) to

each element, σð~zÞi of the input vector and normalizes these
values by dividing by the sum of all these exponentials. In
detail, the softmax function, denoted σð~zÞi, takes an input
vector, ~z , and computes a probability distribution over K
classes (where K is the number of classes). Each element,
σð~zÞi, of the output vector represents the probability that
the input belongs to the ith class. In the context of the soft-
max equation, the variable j serves as a summation index,
ranging from 1 to K. It is used to represent the individual
elements or components of the input vector, ~z , which allows
for the calculation of probabilities for each class.

Figure 6 shows the multinomial classification with linear
regression in this study. The scikit-learn library is applied to

TABLE 2: Comparison of original sample count and preprocessed sample count with extracted features.

Corpus Language Number of original samples Number of preprocessed samples Number of features

IEMOCAP English 10,039 8,000 200
KETI Korean 19,374 8,000 200

Ensemble voting

Preclassifiers

Ensemble framework

LR classifier

RF classifier

GB classifier

MLP classifier

FIGURE 5: Components of a two-layered ensemble framework.
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FIGURE 6: Multinomial emotion classification using linear regression
algorithm.
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seven different kinds of multinomial emotions. The hyper-
parameters for LR include “penalty” (regularization term), C
(inverse of regularization strength), and “solver” (optimiza-
tion algorithm). These settings would impact the trade-off
between model complexity and overfitting.

The random forest classifier (RFC) is based on a model
comprising several decision trees. It randomly draws data to
create several small trees and combines them [7]. If a single
decision tree predicts the y-value using all features as vari-
ables, an overfitting problem arises. Thus, the RFC is applied
to alleviate overfitting concerns. For example, when 30 input
variables exist, one input variable, A, is the most important
for prediction, and the rest play a minor role. In this case, for
the majority of the bagged trees, the input variable, A, is used
for the top branch. Eventually, even though several trees can
be used to improve performance, most trees have a similar
form. Due to the characteristics of bagging, which takes the
average of several trees, if the results of each prediction
model are similar, the results are similar, even if the average
is taken. Therefore, the RFC randomly selects five of them to
make a tree, then randomly selects five features to make a
second tree, and it makes several trees in this way. All the
trees in the forest are independently trained, and in the test
phase, the data point, v, is simultaneously entered into all the
trees to reach the end node. The number of predicted values
is the same as the number of trees, and the result is selected
through voting [32]:

p c vj j ¼ 1
T

∑
T

t¼1
Pt cð Þv

� �
 : ð5Þ

In this study, the RFC algorithm as a preclassifier is used
to avoid dependency on features that play a critical role.
After 10 random features were selected out of 200 features
per sample, and the leaf depth was set to 30, the final emotion
was classified by a majority of emotions with 700 trees per
sample [7]. Figure 7 represents the procedures of the RFC,
from creating trees to voting classification from trees. The
RFC (“rf_best”) is tuned using GS with hyperparameters,
such as “n_estimators” (number of trees in the forest), “cri-
terion” (splitting criterion), “max_depth” (maximum depth
of trees), and “max_features” (maximum number of features
considered for splitting). The “class_weight” is set to “bal-
anced” to handle class imbalance.

Boosting uses the results of a particular model as the
input of the next model and calculates the results by giving
weight between models. It is also called a sequential ensem-
ble. In the first data, it can be seen in the order of 1-2-3
classifiers. According to the first model results, in the case
of data with a large error, the weight is given to the next
classifier. The data with a large error, named the weak
learner, grant high weights, and the well-predicted data
give low weights and are passed on to the next model. GB
is a method of gradating the inputs handed over to the next

Emotions Emotions Emotions Emotions

Emotions

p(
c|v

)

p(
c|v

)

p(
c|v

)

p(
c|v

)

p(
c|v

)

FIGURE 7: Graphical representation of RF algorithm in SER.

6 Mathematical Problems in Engineering



model and weighting them. GB uses the derivative value for
the loss function (equal to the negative slope for the residual)
to find the direction in which the loss function value
decreases. By passing this result to the input of the new
model, the new model is updated in the direction of reducing
this value. That is, the models continue to learn in the direc-
tion of reducing the residual (difference between the actual
value and the predicted value).

When y is the true value and f(x) is the prediction of y,
then:

Loss function : y; f xð Þð Þ ¼ 1
2

y − f xð Þð Þ2 ; ð6Þ

Negative gradient :
∂ y; f xð Þð Þ
∂f xð Þ ¼ ∂ 1

2 y − f xð Þð Þ2Â Ã
∂f xð Þ

¼ − f xð Þ − yð Þ ¼ y − f xð Þ :
ð7Þ

Therefore, the model performs residual fitting with a
square error loss function.

In this study, we used the gradient boosting classifier
(GBC) as one of the preclassifiers. With GBC, the number
of weak learners is limited to 500 : 20 out of the 200 features
are selected to configure the weak learner, and the deviance
function is applied with a learning rate of 0.1 to increase the
weight of the error value to reduce the value of the error
when the prediction is made. By reducing the error, 500 trees
are sequentially connected. In Equations(8)–(10), A(x) is the
first weak learner tree and E is the error in the corresponding
model, that is, the residual, where E (residual) is again fitted
with a weak learner named B(x). Figure 8 shows the sum-
ming of the residual to the next tree to reduce the error rate:

F xð Þ ¼ A xð Þ þ E ; ð8Þ

E ¼ B xð Þ þ E0
 ; ð9Þ

F xð Þ ¼ A xð Þ þ B xð Þ þ C xð Þ þ…þ E00
 : ð10Þ

The GBC (“gbm_best”) is also optimized using GS.
Parameters like “n_estimators” (number of boosting stages),
“learning_rate” (step size for updates), “loss” (loss function),
and “max_features” (maximum number of features consid-
ered) are explored. The “class_weight” is “balanced” for
addressing the class imbalance.

The perceptron consists of an input layer and an output
layer. At this point, the output layer is one node. The input
layer is a d+ 1 node, where d is the dimension of the feature
vector. The perceptron multiplies the input node by its

weight and passes it to the output node. A bias node
(denoted by node 0) is almost always included in the input
layer to account for a constant offset in the data and has a
constant value of 1, as depicted in Figure 9 [31, 33].

As shown in Figure 9, we multiply all xi and wi and add
them to a function called the activation function:

o¼ τ sð Þ ¼ τ ∑
d

i¼1
wixi þ w0

� �
 : ð11Þ

In this study, the MLP classifier (MLP-C) uses rectified
linear unit (ReLU) as an activation function and adaptive
moment estimation (Adam) as the gradient-based solver
for weight optimization. The entire input layers are set to
200, and the number of nodes in the hidden layer is limited
to 500. The learning rate is set to an adaptive value, which is
set to an average value if the training loss is not reduced.
Adam optimization adopts gradient descent with momen-
tum and root mean square propagation (RMSProp). We use
ReLU instead of the sigmoid to activate the hidden layer. This
function returns 0 if the value is less than 0 and the actual value
if it is greater than 0 [33]. The MLP-C (“nnet_best”) involves a
wide range of hyperparameters set in the “params” dictionary.
These include “activation” (activation function), “hidden_-
layer_sizes” (number of neurons in hidden layers), “alpha”
(L2 regularization term), “solver” (optimization algorithm),
“learning_rate” (learning rate schedule), “warm_start” (reuse
the solution of the previous call), and “momentum” (momen-
tum for gradient descent).

The hyperparameter settings of the preclassifier of the
proposed model are thoroughly discussed in this section.
Starting with LR, key hyperparameters, such as “penalty,”
C, and “solver,” are meticulously selected to manage the
trade-off between model complexity and overfitting. The
RFC (“rf_best”) is optimized using GS with parameters like
“n_estimators,” “criterion,” “max_depth,” and “max_fea-
tures.” The “class_weight” is set to “balanced” to tackle class

+ + ... +

FIGURE 8: Application and equations of the GB algorithm in SER.
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FIGURE 9: Application of MLP algorithm in SER.
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imbalance effectively. Similarly, the GBC (“gbm_best”)
undergoes GS optimization involving “n_estimators,” “lear-
ning_rate,” “loss,” and “max_features.” The “class_weight” is
also “balanced” to address the class imbalance. The MLP-C
(“nnet_best”) employs a diverse range of hyperparameters
such as “activation,” “hidden_layer_sizes,” “alpha,” “solver,”
“learning_rate,” “warm_start,” and “momentum.”

These hyperparameters are meticulously tuned to optimize
each classifier’s performance while accounting for diverse
model complexities, regularization effects, and data attributes.
The application of GS ensures a systematic exploration of the
hyperparameter space to identify the most favorable configu-
ration. This experimentation is essential to strike a balance
between model intricacy and generalization. However, it is
noteworthy that GS bears the risk of overfitting due to evalua-
tion across all hyperparameter combinations, potentially lead-
ing to overfitting on specific validation data and consequently
compromising overall generalization performance. Further-
more, the inherent limitation of GS lies in its independent
exploration of individual parameters without considering their
interaction. This constraint may impede the optimization of
model performance during hyperparameter search. Tomitigate
these limitations, we propose future investigations into more
flexible exploration strategies. For instance, considering meth-
ods, such as randomized search (RandomizedSearchCV) or
Bayesian optimization, can account for parameter interactions,
enabling effective hyperparameter search. Through such
endeavors, the complexities of model intricacies and parameter
uncertainties would be navigated more adeptly.

The ensemble approach is further exemplified through
the voting classifier (VC), which combines predictions from

base classifiers (“log_best,” “rf_best,” “gbm_best,” and
“nnet_best”) using a specified voting mechanism, particu-
larly “soft” voting. While the VC itself has fewer hyperpara-
meters to fine-tune, its efficacy relies heavily on the
performance of its underlying base classifiers. These base
classifiers were optimized using GS as well, each with distinct
hyperparameter settings.

By amalgamating predictions from multiple classifiers,
the VC aims to counteract individual classifier weaknesses
while capitalizing on their strengths, leading to improved
predictive accuracy. This ensemble technique, through a
strategic selection of hyperparameters, serves to enhance
classification outcomes, address class imbalance, and
uncover intricate data patterns. The overall result is a more
robust and potent classification framework capable of deliv-
ering enhanced results across diverse scenarios.

4.2. Ensemble Voting. In the framework, the EF-KEN is
represented in Figure 10. The EV classifier makes the final
decision about the predicted emotion among the recognized
emotions from the preclassifiers with high-dimensional fea-
tures. In the framework, five modules are executed serially to
deliver the most likely prediction of emotions: preprocessing,
extracted feature sets, normalization of emotion classes,
combining feature sets, preclassifier layers, and EV, as shown
in Figure 10.

EV is themetaclassifier that determines the final prediction
result through voting [34]. It is the last layer before the pre-
classification layer, which is composed of the LRC, RFC, GBC,
and multilayer perceptron classifier (MLP-C). EV collects the
best parameters and predictions from the preclassifications

Ensemble
voting

Preclassifiers

Ensemble framework

Corpora
(English)

Corpora
(Korean)

Ensemble classification
for Korean and English

Combining
feature sets Extraction of

acoustic features

High dimensional features
for multiple languages

LRC

RFC

GBC

MLP-C

Preprocessing
(1) Equalizing
      (i) Number of emotion
      (ii) Number of samples
(2) Scaling

Emotion
prediction

���
���

���
���

+
���

���

FIGURE 10: Procedures leading to EV in the ensemble framework.

8 Mathematical Problems in Engineering



layer and uses them as inputs for the VCs. This results in
combining classifiers with a relatively higher probability of
prediction. Voting is classified into two types: hard voting
and soft voting. Hard voting follows most of the results of
each classifier. That is, it follows the principle of the majority
rule. Soft voting adds the probabilities of the classifier and
averages each to select the result with the highest probability.
In this study, we use soft VCs, as defined in Equation (12).
Essentially, we combine predictions from different models (j)
bymultiplying themwith their respective weights (wⱼ) and their
corresponding scores or probabilities (pᵢⱼ). The summation
over j aggregates these weighted predictions for each class, i,
and the “argmax” operator selects the class (i) with the highest
aggregated score as the final prediction, ŷ. The process of the
final prediction is illustrated in Figure 11:

by ¼ arg max|{z}
i

∑
m

j¼1
wjpij: ð12Þ

In a multilingual environment, we overcome the short-
comings of ML algorithms by combining various classifiers
to learn various situations. As alluded to above, the advan-
tage of EF-KEN is that it can maximize the effects of a biased
trade-off while complementing the shortcomings. In 2021,
Zehra et al. [28] conducted similar approaches for multilin-
gual SER. They used the corpora of English, German, Italian,
and Urdu with ensemble classifiers. The classifiers used for
Zehra et al.’s [28] study were support vector machine based
on sequential minimal optimization (SMO), RF, decision
tree, and majority voting. Although the datasets are different
from our study, we also used majority voting as a final clas-
sifier. Our approach proves that the concept of sequential
layers of classifiers could have a significant impact on

predicting emotions. In 2020, Heracleous et al. [35] com-
bined audio features for emotion detection with three data-
sets of European languages (English, Italian, and Spanish) for
detecting emotion.

Recall, precision, recognition accuracy (RA), and F-score
metrics are used to measure the performance of the EF-KEN
as evaluation metrics. We experiment with EF-KEN under
balanced data conditions with an equal number of samples in
both languages. RA is a commonly used metric in SER
research and is chosen to evaluate the performance of the
framework. The final RA was averaged across the RA results
for each emotion. We also use recall, precision, and F1 scores
for estimating each emotion.

5. Experimental Results

5.1. Preliminary Experiments. The classifiers designed for
preclassification of the framework were evaluated in prelimi-
nary experiments. The English dataset was first tested using
LRC, RFC, GBC, and MLP-C trained on English data, and
the RFC and MLP-C achieved an RA of 36%. Similarly, the
Korean dataset was tested using the same classifiers, and the
RFC, GBC, and MLP-C achieved an RA of 41%. The RA
values obtained in these experiments are presented in Table 3
as the baseline for comparison with the experimental results.

Table 4 shows the accuracy rate of the RFC in the second
preliminary experiment, which aimed to calculate the pho-
netic correlation between the English and Korean databases
by testing the Korean database with the model trained on the
English database. The results indicate a low accuracy rate of
only 13% for the RFC.

In order to investigate the cause of the low accuracy in
predicting emotions across different languages, Praat soft-
ware [36, 37], commonly used for phonetic research, was
used to measure the formant frequency. The formant
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FIGURE 11: Soft voting process of emotion detection in EV.
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frequency for each emotion was randomly measured to
observe any linguistic or social differences between the two
languages. The results in Table 5 and Figure 12 suggest that
there are significant differences in the F1 frequency for the
emotion of anger.

Table 5 and Figure 12 demonstrate that the F1 frequency
for the emotion of anger was twice as high for the English
speaker compared to the Korean speaker. This discrepancy
could point to the differences in vowel frequencies between
Korean and English for the same emotion as a possible expla-
nation for the low RA obtained by classifiers in cross-training
and testing with different corpora [38, 39].

5.2. Preclassifiers with HDFM. In the process of constructing
the HDFM feature set, 80% of each of the 8,000 data samples
in English and Korean were randomly selected and trained
by the preclassifiers of the ML algorithms. To balance the
number of training samples, the English testing dataset was
tested with only 90% of the randomly selected 2,039 data,
and the Korean testing dataset was also randomly tested with
only 90% of the 2,039 data samples. The results of the

experiment, as shown in Table 6, gave a better prediction
rate than the result shown in Table 4 with the crossed design
of different training and testing corpus. The prediction rate
of the classifiers decreased in the order of LRC, RFC, GBC,
and MLP-C, as shown in Table 6.

Table 7 shows the accuracy rates for each emotion using
the four different classifiers: LRC, RFC, GBC, and MLP-C.
The LRC has a high accuracy rate for sadness and happiness,
whereas the RFC has a high accuracy rate for happiness and
anger. The GBC has a high accuracy rate for fear, happiness,
and neutral, whereas the MLP-C has a high accuracy rate for
happiness, anger, and fear. Overall, the emotion recognition
for happiness and anger has a high accuracy rate across all
classifiers.

When tested on English datasets using the same training
model, as shown in Table 8, the LRC and GBC performed
better on the English datasets compared to the Korean tests,
whereas the RFC and MLP-C showed better results on the
Korean datasets.

Table 9 shows that the LRC has a high recall rate, above
60%, for the emotions of sadness and anger. The RFC has an

TABLE 3: RA of different classifiers on the same training/testing dataset.

Database (training and testing) LRC (%) RFC (%) GBC (%) MLP-C (%)

English (IEMOCAP) 32 36 37 36
Korean (KETI) 27 41 41 41

TABLE 4: RA of the training and testing on cross-Korean and -English datasets.

Training database Test database LRC (%) RFC (%) GBC (%) MLP-C (%)

Korean (KETI) IEMOCAP (English) 20 12 12 14
English (IEMOCAP) Korean (KETI) 14 13 16 16

TABLE 5: F1–F4 frequency differences in anger emotion between Korean and English.

Training database Emotion F1 (Hz) F2 (Hz) F3 (Hz) F4 (Hz)

IEMOCAP Anger 640 1,768 2,783 3,808
KETI Anger 370 1,864 2,832 4,311

IEMOCAP KETI

FIGURE 12: Formant frequency differences in anger emotion between Korean and English.

TABLE 6: RA results using HDFM as training dataset and Korean KETI as testing dataset.

Training database Testing database LRC (%) RFC (%) GBC (%) MLP-C (%)

HDFM of IEMOCAP and KETI KETI 26 23 20 25
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80% recall rate for the angry emotion. The GBC has a recall
rate of 44% and 100% for the disgust and fear emotions,
respectively. The MLP-C has a higher recall rate for the anger
and sadness emotions compared to other emotions. In

summary, the results suggest that the recognition of emo-
tional anger is consistent across the classifiers.

With HDFM, the Korean testing dataset showed an
improvement of at least 4% and up to 10% in the RA of
preclassifiers compared to the results of the crossdataset
shown in Table 4. Similarly, the English testing dataset
showed a positive effect with an increase of 3%–7% com-
pared to the results of the crossdataset.

5.3. Completion of EV Classifier with HDFM. The final step of
the HDFM framework involves the EV classifier, which takes
the output from the preclassifiers as input. Soft voting is used
to determine the highest results of preclassification. The RA
of the Korean testing dataset increased by 15% from the
average RA of Korean emotion recognition in the crossda-
taset in Table 4. Table 10 shows the improved result with the
EV. The final RA of the English testing dataset increased by
13% from the average RA of English emotion recognition in
the crossdataset. However, there is an exceptional RA of 32%
in the LRC of preclassification, as shown in Table 8. This
LRC shows a high prediction rate, particularly for the emo-
tions of anger, disgust, and neutral in Table 9. The precision
data overall show a high prediction rate.

Table 11 shows that the recall rate for the emotions of
anger and happiness are higher than other emotions, while
the F1 scores of the emotions of happiness and sadness are
higher than other emotions. The macroaverage of precision,
recall, and F1-score is lower than the RA, while the weighted
average of precision and recall is the same as the RA.

In Table 12, the weighted average of precision in English
testing is higher than the overall RA, indicating that the EV
shows better precision for some emotions in the English
testing dataset. Specifically, the emotions of disgust and sad-
ness have higher precision rates with EV than the other
emotions. However, the emotions of fear and surprise have
a 0% prediction rate, likely due to the smaller sample size
compared to other emotions.

5.4. Comparison with Other Studies. The research on SER
with the IEMOCAP dataset is ongoing. Table 13 represents
the state-of-the-art benchmarks for SER using IEMOCAP, as
curated by “paper with code.” Many of these multimodal
approaches achieve recognition rates in the early 80% range.

However, the experiment conducted by Liu et al. [44],
shown in Table 14, reveals somewhat unexpected outcomes.
Cross-experimenting between the same English emotion
data from IEMOCAP and the Ryerson Audio-Visual Data-
base of Emotional Speech and Song (RAVDESS) for four
emotions results in recognition rates below 40% despite the
data being in the same language. Table 15 compares our
study with Liu et al.’s [44] experiment, highlighting the supe-
riority of our approach targeting both Korean and English
emotions over English-only emotion data.

Zehra et al.’s [28] model obtained the results by using up
to seven emotions with positive and negative valence. In
order to compare our approach with Zehra et al.’s [28]
model, we also differentiated our model’s emotions into pos-
itive and negative valence, as presented in Table 16.

TABLE 7: Preclassifiers’ RA results for seven emotions using HDFM
as training dataset and Korean KETI dataset as testing dataset.

Precision Recall F1-score

LRC
Anger 0.14 0.08 0.11
Disgust 0.20 0.18 0.19
Fear 0.16 0.33 0.22
Happiness 0.38 0.50 0.43
Neutral 0.17 0.03 0.05
Sadness 0.27 0.38 0.32
Surprise 0.08 0.02 0.03

Accuracy 0.26

Macro Average 0.20 0.22 0.19
Weighted Average 0.23 0.26 0.23

RFC
Anger 0.15 0.63 0.24
Disgust 0.00 0.00 0.00
Fear 0.44 0.07 0.13
Happiness 0.33 0.51 0.40
Neutral 0.18 0.04 0.06
Sadness 0.70 0.05 0.10
Surprise 0.33 0.01 0.01

Accuracy 0.23

Macro Average 0.30 0.19 0.13
Weighted Average 0.30 0.23 0.17

GBC
Anger 0.12 0.11 0.12
Disgust 0.12 0.06 0.08
Fear 0.25 0.38 0.30
Happiness 0.33 0.33 0.33
Neutral 0.14 0.29 0.19
Sadness 0.23 0.15 0.18
Surprise 0.33 0.01 0.01

Accuracy 0.20

Macro Average 0.18 0.20 0.18
Weighted Average 0.20 0.20 0.19

MLP-C
Anger 0.18 0.41 0.25
Disgust 0.23 0.15 0.18
Fear 0.21 0.34 0.26
Happiness 0.36 0.37 0.36
Neutral 0.06 0.00 0.01
Sadness 0.35 0.15 0.21
Surprise 0.16 0.23 0.19

Accuracy 0.25

Macro Average 0.22 0.24 0.21
Weighted Average 0.25 0.25 0.23
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As presented in Table 17, the EF-KEN model outper-
formed Zehra et al.’s [28] model in recognizing emotions
in English. In addition, when comparing the emotion recog-
nition rates for Urdu and Korean separately, the EF-KEN
model also showed better performance.

Zehra et al.’s [28] study used EV with RF, decision tree
(J48), and SMO as preclassifiers, differing from our
approach. The dataset in Zehra et al.’s [28] study comprises
Urdu and English languages, focusing on positive and nega-
tive emotions. The results indicate a 43% recognition rate for
English and a 45% recognition rate for Urdu. Under the same
conditions, our model exhibited improved results of 60% for
English and 57% for Korean emotions.

While the languages used and the databases involved
differ, our ensemble framework, including HDFM and pre-
classifiers, can be considered superior to previous work in
terms of performance. The primary distinction in our
research model lies in the incorporation of diverse preclassi-
fiers and the mitigation of emotion class imbalance within
the IEMOCAP dataset. These represent the most significant
differentiating factors that set our model apart.

5.5. Further Studies. Studies have indicated that even within
the same language, variations in training and testing datasets
can impact the accuracy of SER. This phenomenon was evi-
dent in Liu et al.’s [44] study, where different datasets for
training and testing in English led to decreased emotion
prediction accuracy. In our research, we confronted similar
issues. Despite training on combined datasets of both Korean
and English, we found that the RA fell short when evaluating
each language individually.

The dataset’s diversity and balance are critical factors in
accurate emotion recognition. Without encompassing a
range of contexts and environments in the training data,
models might struggle to generalize effectively. Moreover,
an imbalanced distribution of emotion categories within
the dataset can result in reduced accuracy for specific emo-
tions. To address this challenge, we integrated Korean and
English data within the HDFM process to mitigate imbal-
anced issues in each emotion class. Attentive dataset collec-
tion and preprocessing are essential to tackle these challenges
successfully.

As a result, our study implemented a reduction in the
number of emotion categories to enhance the dataset’s
diversity and balance. This modification yielded
improved recognition performance. This methodology
can be applied to different languages and environments,
thereby serving as a valuable approach to further the field
of SER [48, 49].

TABLE 8: RA results using HDFM as training dataset and English IEMOCAP as testing dataset.

Training database Testing database LRC (%) RFC (%) GBC (%) MLP-C (%)

HDFM of IEMOCAP and KETI IEMOCAP 32 20 24 21

TABLE 9: Preclassifier RA results for seven emotions using HDFM as
training dataset and English IEMOCAP dataset as testing dataset.

Precision Recall F1-score

LRC
Anger 0.34 0.62 0.44
Disgust 0.39 0.41 0.40
Fear 0.00 0.00 0.00
Happiness 0.22 0.06 0.10
Neutral 0.44 0.02 0.04
Sadness 0.35 0.61 0.45
Surprise 0.04 0.14 0.06

Accuracy 0.32

Macro Average 0.18 0.19 0.13
Weighted Average 0.28 0.20 0.18

RFC
Anger 0.19 0.80 0.30
Disgust 0.33 0.12 0.17
Fear 0.00 0.00 0.00
Happiness 0.08 0.19 0.11
Neutral 0.27 0.10 0.15
Sadness 0.41 0.14 0.20
Surprise 0.00 0.00 0.00

Accuracy 0.20

Macro Average 0.18 0.19 0.13
Weighted Average 0.28 0.20 0.18

GBC
Anger 0.00 0.00 0.00
Disgust 0.36 0.44 0.39
Fear 0.25 1.00 0.40
Happiness 0.14 0.21 0.17
Neutral 0.25 0.16 0.19
Sadness 0.43 0.14 0.21
Surprise 0.00 0.00 0.00

Accuracy 0.24

Macro Average 0.20 0.28 0.20
Weighted Average 0.27 0.24 0.24

MLP-C
Anger 0.23 0.34 0.28
Disgust 0.31 0.21 0.25
Fear 0.00 0.00 0.00
Happiness 0.09 0.20 0.12
Neutral 0.39 0.05 0.08
Sadness 0.30 0.45 0.36
Surprise 0.00 0.00 0.00

Accuracy 0.21

Macro Average 0.19 0.18 0.16
Weighted Average 0.29 0.21 0.21
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TABLE 10: Comparison of RA: crosslingual dataset without HDFM, preclassifier with HDFM, and EV with HDFM.

Test language Average of crosslanguage (%) Average of preclassifier (%) EV classifier (%)

Korean 15 24 30
English 15 24 27

TABLE 11: EV RA results for seven emotions using HDFM as training dataset and Korean KETI dataset as testing dataset.

Precision Recall F1-score

Anger 0.19 0.34 0.24
Disgust 0.29 0.22 0.25
Fear 0.27 0.32 0.29
Happiness 0.37 0.49 0.42
Neutral 0.21 0.05 0.07
Sadness 0.37 0.30 0.33
Surprise 0.26 0.16 0.20

Accuracy 0.30

Macro average 0.28 0.27 0.26
Weighted average 0.30 0.30 0.28

TABLE 12: RA of English emotion for EV in the HDFM.

Precision Recall F1-score

Anger 0.25 0.38 0.30
Disgust 0.36 0.36 0.36
Fear 0.00 0.00 0.00
Happiness 0.13 0.22 0.16
Neutral 0.27 0.01 0.02
Sadness 0.35 0.53 0.42
Surprise 0.00 0.00 0.00

Accuracy 0.27

Macro average 0.19 0.21 0.18
Weighted average 0.29 0.27 0.24

TABLE 13: Papers with high rankings in state-of-the-art SER using IEMOCAP [40].

Authors WA (%) UA (%) Paper

Lian [41] 82.7 –

Context-dependent domain adversarial neural network
for multimodal emotion recognition

Gat [42] 81.0 – Speaker normalization for self-supervised SER

Jalal [43] 80.5 74.0
Empirical interpretation of speech emotion perception

with attention-based model for SER

TABLE 14: Crossdataset evaluation results for English language.

Training dataset
Testing dataset

IEMOCAP (%) RAVDESS [45] (%) MSP-IMPROV [46] (%)

IEMOCAP 77.8 40.8 36.5
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6. Conclusions

In this study, evidence was presented of distinctive formant
differences for specific emotions between English and Korean,
hypothesizing that these differences posed additional chal-
lenges in emotion prediction for both languages. To address
this, an ensemble framework was developed for English and
Korean emotion recognition, using high-dimensional feature
integration and two layers of ensemble classifiers. This frame-
work comprised the HDFM and EV connected through nor-
malized feature sets from Korean and English speech
databases. TheHDFM feature set was constructed for training
and evaluation on a mixed emotion database from Korean
and English databases, significantly alleviating the inherent
problem of emotion class imbalance observed in the
IEMOCAP emotion data. Moreover, the advantages of the
ensemble framework included intuitive design, low computa-
tional demands, and improved prediction speed when train-
ing in one language and testing in another.

The framework’s preliminary classifiers enhanced the RA
by approximately 9% for Korean and 10% for English across
seven emotions. The overall framework improved the final
prediction accuracy by about 15% for Korean and 13% for
English. The results demonstrated that the EV provided
superior predictive performance compared to ML algorithms
alone. The EF-KEN model was compared to emotion data
research in English, confirming that its feature set construc-
tion and model design contributed to enhanced predictive
performance. Particularly, diverse configurations of the pre-
liminary classifier yielded improved results compared to
other studies.

The proposed approach’s strengths lie in its ability to be
easily deployed in lightweight, stand-alone, or minimally
resource-intensive environments using ML algorithms.
However, one limitation is that the approach relies solely
on acoustic features and does not include aspects like context
modeling or the flow of context. As a result, it may have
limitations in practical applications where the context of
emotions, such as in psychological counseling, holds signifi-
cant importance.

In closing, this study has laid the foundation for cross-
lingual emotion recognition with promising results. Future
research will focus on enhancing the robustness, multimod-
ality, and real-world applicability of these systems, fostering
a deeper understanding of emotions across languages and
cultures [50, 51]. Additionally, the use of more advanced
deep learning architectures, including transformers and
attention mechanisms, could be investigated to capture com-
plex dependencies and temporal relationships in speech data.
These models have shown promise in various natural lan-
guage processing tasks and may enhance the performance of
emotion recognition systems.
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