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This paper presents novel concepts in fuzzy topologies, namely q-rung orthopair picture fuzzy (q-ROPF) topology and q-rung
orthopair picture fuzzy point (q-ROPFP). These concepts extended the existing notions in fuzzy topologies. We introduced a more
relaxed form of continuity, called qε-ROPF continuity, which allows for a flexible analysis of functions between q-ROPF topological
spaces by incorporating an error bound ε. We define the q-neighborhood system for a q-ROPF point in a q-ROPF topological space
and investigate the convergence of sequences of such points. Our results shed light on the behavior of functions and sequences in
these spaces, as well as the conditions for uniqueness of limits within the realm of supports. This research has practical implications
in control systems, providing valuable insights into the stability and robustness of the control strategies in the presence of small
changes represented by the epsilon value.

1. Introduction

Topology is a branch of mathematics that studies the prop-
erties of objects that remain invariant under the continuous
transformations. It deals with the study of shapes, spaces,
and their properties. Topology has numerous applications
in various fields such as physics, engineering, computer sci-
ence, chemistry, and biology [1–5]. The category of topolog-
ical spaces is characterized by isomorphisms known as
homeomorphisms, which hold a vital role in the theory.
Continuity is the topological interpretation of a homeomor-
phism, as defined by Bourbaki [2], and it provides insight
into the concept of proximity within mathematical models.
In fact, continuity is considered one of the most essential
properties of a function between two topological spaces.

In a topological space, the convergence of a sequence is
defined in terms of neighborhoods and open sets, rather than
metrics. This generalization allows for a more abstract and
flexible approach to the study of continuity and limit, which
is a crucial aspect of topology. The ability to determinewhether
a sequence converges or not in a topological space enables the
analysis of the properties of functions and the structures of
spaces, leading to a deeper understanding of themathematical

concepts involved. Therefore, the importance of the convergence
of sequences in a topological space cannot be overstated, as it is a
fundamental tool for studying the continuity, limit, and the
properties of topological spaces.

Fuzzy set theory is a branch of mathematics that allows
for the representation of imprecise and uncertain informa-
tion. Zadeh [6] proposed the concept of fuzzy set, which is a
set in which elements can have degrees of membership
between 0 and 1, rather than being either a member or not.
This revolutionary idea led to the development of numerous
extensions and variations of the fuzzy set theory. One of these
extensions is the notion of intuitionistic fuzzy set [7], which
introduces a second degree of membership to represent non-
membership. Another extension is the notion of Pythagorean
fuzzy set [8]. The notion of q-rung orthopair fuzzy set [9], on
the other hand, is generalization of Pythagorean fuzzy sets.
Picture fuzzy sets [10], are another extension that uses a third
function to represent the neutral membership degree of ele-
ments. Spherical fuzzy sets [11, 12], proposed in 2019, use the
concept of spherical membership functions to represent the
degrees of membership of elements. Finally, q-rung orthopair
picture fuzzy sets (q-ROPFSs) [13] combine the ideas of q-
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rung orthopair fuzzy sets and picture fuzzy sets. These various
extensions and variations of fuzzy set theory have found
numerous applications in the fields such as decision-making,
image processing, and pattern recognition [14–22].

Chang [23] introduced the concept of the fuzzy topolog-
ical space, but Lowen’s [24] alternative definition changed a
fundamental property of topology. Çoker [25] and Turanlı
and Çoker [26] later expanded the concept by introducing
the idea of the intuitionistic fuzzy topological space and
exploring analog versions of classic topological concepts
such as continuity and compactness. Olgun et al. [27] pro-
posed the notion of Pythagorean fuzzy topology and defined
the Pythagorean fuzzy continuity of functions between
Pythagorean fuzzy topological spaces. Türkarslan et al. [28]
introduced the topology of q-rung orthopair fuzzy sets.
Razaq et al. [29] investigated the picture fuzzy topologies
and the continuity between these spaces. Furthermore,Öztürk
et al. [30] conducted an investigation on neutrosophic soft
compact spaces. These various studies replaced fixed bound-
aries with degree-theoretic structures of fuzziness within
topology.

Pao-Ming and Ying-Ming [31] introduced the concept of
fuzzy points and quasi-coincidence for fuzzy points, along
with the Q-neighborhood system of a fuzzy point in a fuzzy
topological space. This work also explored versions of some
classic notions of topology. Additionally, convergence of nets
in fuzzy topological spaces was studied by Pao-Ming and
Ying-Ming [31]. Çoker and Demirci [32] introduced the
notion of an intuitionistic fuzzy point. Lupiañez [33] explored
quasi-coincidence for intuitionistic fuzzy points in this study.
The convergence of nets of intuitionistic fuzzy points was
introduced and studied by Lupiañez [34]. Olgun et al. [17]
studied Pythagorean fuzzy points and their topological prop-
erties. Furthermore, Türkarslan et al. [35] explored the notion
of q-rung orthopair fuzzy point and their applications.

Fuzzy logic is a popular tool for modeling uncertainty in
the control systems as it provides a flexible and intuitive
framework for representing the imprecise or vague informa-
tion and capturing the relationships between various ele-
ments of the system. In control systems, fuzzy sets are used
to model the control objectives and constraints, the state
space, and the control space [36–38]. The use of fuzzy sets
allows for a more comprehensive and robust representation
of the system, making it possible to design control strategies
that are insensitive to small variations in the system. Addi-
tionally, fuzzy sets provide a means to model the interactions
between different parts of the system, making it possible to
develop control strategies that take into account the complex
relationships between the different component.

This paper presents the concepts of q-rung orthopair
picture fuzzy (q-ROPF) topology and q-rung orthopair pic-
ture fuzzy point (q-ROPFP). The continuity of functions
between these spaces is studied, with a focus on its applica-
tions in the control systems. We also define the Q-neighbor-
hood system of a q-ROPFP in a q-ROPF topological space.
Additionally, we investigate the convergence of sequences of
q-ROPFPs and the conditions for the uniqueness of the limit
in the realm of supports.

Main contributions and the motivation of the present
paper listed as follows:

(i) This paper introduces the concepts of q-ROPF
topology and q-ROPFP, which are novel and repre-
sent an extension of existing concepts in the fuzzy
set theory.

(ii) The continuity of functions in q-ROPF topological
spaces is studied with respect to a control parameter,
which provides insights into the behavior of func-
tions in these spaces and can be applied to the con-
trol systems.

(iii) The motivation behind this research stems from the
need for robust and reliable control strategies that
can adapt to dynamic environments and uncertain
conditions. By establishing the continuity and sta-
bility of mappings between the fuzzy topologies, we
can enhance the performance of control systems,
ensuring they maintain desired behaviors even in
the presence of disturbances and uncertainties.

(iv) This paper defines the Q-neighborhood system of a
q-ROPFP in a q-ROPF topological space, which is a
fundamental aspect of the topological properties of
these spaces.

(v) The convergence of sequences of q-ROPFPs is inves-
tigated, which provides insights into the behavior of
sequences in these spaces and the conditions for the
uniqueness of the limit in the realm of supports.

The remainder of the paper is structured as follows: in
Section 2, we outlined some basic concepts of fuzzy set theory
and several set-theoretic operations for q-ROPFSs. In Section 3,
we introduced the idea of a q-ROPF topology. We also define
the image and pre-image of a function between two q-ROPF
topological spaces and the concept of function continuity.We
demonstrated the utilization of functional continuity in the
control systems. In Section 5, we introduced the concept of
q-ROPFP and examine its properties. After defining the
Q-neighborhoods of a q-ROPFP, we examined the conver-
gence of a sequence of q-ROPFPs and investigate the condi-
tions for the unique limit within the realm of supports.
Finally, in Section 6, the paper is concluded.

2. Preliminaries

In this section, we recall some basic definitions of fuzzy set
theory and study some set-theoretic operations for q-ROPFSs.
Unless otherwise specified, across the entirety of this manu-
script, we adopt the assumption that X is a finite set repre-
sented as X¼ x1;…; xn.

Definition 1 [9]. Let q≥ 1. A q-rung orthopair fuzzy set A in
X is given by

A¼ xj; μA xj
À Á

; νA xj
À Á
 �

: j¼ 1;…; n
È É

; ð1Þ
where μA; νA :X → 0;½ 1� aremembership and non-membership
functions, respectively, satisfying

2 Mathematical Problems in Engineering



μqA xj
À Áþ νqA xj

À Á
≤ 1: ð2Þ

Definition 2 [10]. A picture fuzzy set A on X is given by

A¼ xj; μA xj
À Á

;φA xj
À Á

; νA xj
À Á
 �

: j¼ 1;…; n
È É

; ð3Þ

where μA;φA; νA :X → 0;½ 1� are positive, neutral and nega-
tive membership functions, respectively, satisfying

μA xj
À Áþ φA xj

À Áþ νA xj
À Á

≤ 1: ð4Þ

The concept of q-ROPFS was derived from the definitions
found in q-rung orthopair fuzzy sets and picture fuzzy sets.

Definition 3 [13]. Let q≥ 1. A q-ROPFS A in X is given by

A¼ xj; μA xj
À Á

;φA xj
À Á

; νA xj
À Á
 �

: j¼ 1;…; n
È É

; ð5Þ

where μA;φA; νA :X → 0;½ 1� are positive membership, neu-
tral membership and negative membership functions, respec-
tively, satisfying

μqA xj
À Áþ φq

A xj
À Áþ νqA xj

À Á
≤ 1: ð6Þ

To introduce the concept of q-ROPF topology, we need
some set-theoretic operations for q-ROPFSs. A similar defi-
nition was presented by Cường [10] for the special case of
q¼ 1, that is, for picture fuzzy sets.

Definition 4. Let A and B be two q-ROPFSs. Then

(i) the union of A and B is defined by

A ∪ B¼
xj;max μA xj

À Á
; μB xj
À ÁÀ Á

;min φA xj
À Á

;φB xj
À ÁÀ Á

;

min νA xj
À Á

; νB xj
À ÁÀ Á

* +
: j¼ 1;…; n

( )
; ð7Þ

(ii) the intersection of A and B is defined by

A ∩ B¼
xj;min μA xj

À Á
; μB xj
À ÁÀ Á

;min φA xj
À Á

;φB xj
À ÁÀ Á

;

max νA xj
À Á

; νB xj
À ÁÀ Á

* +
: j¼ 1;…; n

( )
; ð8Þ

(iii) the complement of A is defined by

Ac ¼ xj; νA xj
À Á

;φA xj
À Á

; μA xj
À Á
 �

: j¼ 1;…; n
È É

;

ð9Þ

(iv) A ⊂ B if and only if μA xj
À Á

≤ μB xj
À Á

and νA xj
À Á

≥
νB xj
À Á

.

Remark 1.

1. It is straightforward to see that A ∪ B, A ∩ B, and Ac

are all q-ROPFSs.
2. Unlike picture fuzzy sets, the definition of subset for q-

ROPFs does not include a condition for the neutral
membership function. This avoids potential issues
that may arise from including such a condition. In
fact, the neutral membership function is typically
used to model uncertainty or ambiguity in the mem-
bership status of an element, which may not be directly
related to its inclusion in a set.

3. Instead of using minimum and maximum, the infi-
mum and supremum operators are employed when

forming the union or intersection of infinitely many
q-ROPFSs.

4. It is evident that for any q-ROPFSs A and B, A and B
are subsets of A ∪ B and A ∩ B is a subset of A and B.

5. The sets 1X and 0X are defined as follows:

1X ¼ xj; 1; 0; 0

 �

: j¼ 1;…; n
È É

; ð10Þ

and

0X ¼ xj; 0; 0; 1

 �

: j¼ 1;…; n
È É

: ð11Þ

The complement of 0X is equal to 1X and vice versa.
On the other hand, any q-ROPFS is contained within
the set 1X and any q-ROPFS contains 0X.

De Morgan’s laws are fundamental laws of logic and set
theory that play a crucial role in mathematical reasoning and
analysis. It is crucial to note that the set operations defined in
Definition 4 satisfy De Morgan’s laws, which is proven in the
following.
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Proposition 1. Let A and B be two q-ROPFSs. Then we have

(i) A ∪ Bð Þc ¼Ac ∩ Bc,
(ii) A ∩ Bð Þc ¼Ac ∪ Bc.

Proof.

(i) From Definition 4 we have

A ∪ Bð Þc ¼
xj;min νA xj

À Á
; νB xj
À ÁÀ Á

;min φA xj
À Á

;φB xj
À ÁÀ Á

;

max μA xj
À Á

; μB xj
À ÁÀ Á

* +
: j¼ 1;…; n

( )

¼ Ac ∩ Bc:

ð12Þ

(ii) From Definition 4 we have

A ∩ Bð Þc ¼
xj;max νA xj

À Á
; νB xj
À ÁÀ Á

;min φA xj
À Á

;φB xj
À ÁÀ Á

;

min μA xj
À Á

; μB xj
À ÁÀ Á

* +
: j¼ 1;…; n

( )

¼ Ac ∪ Bc:

ð13Þ

□

3. q-Rung Orthopair Picture Fuzzy
Topological Spaces

In this section, equipped with the framework of set-theoretic
operations, we are ready to formulate the notion of the q-
ROPF topology and its associated ideas. This section holds
significant importance, as it establishes the groundwork for
the remaining content of the paper. By introducing essential
concepts like the image and pre-image of a function, as well
as the continuity of a function between two q-ROPF topo-
logical spaces, this section sets the stage for the subsequent
discussions.

Definition 5. The family τ of q-ROPFSs in X is referred to as a
q-ROPF topology on X if it satisfies the following conditions:

(T1) 1X and 0X are elements of τ;
(T2) The intersection of any two sets A1 and A2 in τ is

also in τ;
(T3) The union of any collection of sets Aif gi2I in τ is

also in τ.

In this case, the pair X;ð τÞ is referred to as a q-ROPF
topological space. Members of τ are referred to as open q-
ROPFSs, while the complement of an open set is a closed set.
The collection 1X ;f 0Xg is called the indiscreet q-ROPF topo-
logical space, and the topology that contains all q-ROPFSs
is called the discrete q-ROPF topological space. If τ1 ⊂ τ2,
then the q-ROPF topological space τ1 is said to be coarser
than the q-ROPF topological space τ2, or equivalently, τ2 is
finer than τ1.

Example 1. Let X¼ x1;f x2; x3g be a set of three elements.
Consider the following 3-ROPFSs in X:

A¼ x1; 0:7; 0:8; 0:2h i; x2; 0:6; 0:9; 0:1h i; x3; 0:5; 0:7; 0:3h if g;
ð14Þ

B¼ x1; 0:5; 0:4; 0:3h i; x2; 0:5; 0:5; 0:5h i; x3; 0; 1; 0h if g;
ð15Þ

C ¼ x1; 0:7; 0:4; 0:2h i; x2; 0:6; 0:5; 0:1h i; x3; 0:5; 0:1; 0h if g;
ð16Þ

and

D¼ x1; 0:5; 0:4; 0:3h i; x2; 0:5; 0:5; 0:5h i; x3; 0; 0:1; 0:3h if g:
ð17Þ

Let τ¼ 1X ;f 0X ;A; B;C;Dg. It can be easily verified that τ
satisfies conditions T1, T2, and T3, so τ is a 3-ROPF topology
on X.

Definition 6. Given two non-empty sets X and Y , and a
function f :X → Y , let A and B be q-ROPFSs in X and Y ,
respectively. The image of A under f , denoted as f A½ �, has its
positive membership function, neutral membership func-
tion, and negative membership function defined as follows:

μf A½ � yð Þ≔
sup

z2f −1 yð Þ
μA zð Þ; if f −1 yð Þ is non-empty

0; otherwise;

8<
: ð18Þ

φf A½ � yð Þ≔
inf

z2f −1 yð Þ
φA zð Þ; if f −1 yð Þ is non-empty

0; otherwise;

(
ð19Þ
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and

νf A½ � yð Þ : ¼
inf

z2f −1 yð Þ
νA zð Þ; if f −1 yð Þ is non-empty

1; otherwise;

(
ð20Þ

respectively. The positive membership function, the neutral
membership function and negative membership function of
pre-image of B with respect to f that is denoted by f −1 B½ � are
defined by

μf −1 B½ � xð Þ : ¼ μB f xð Þð Þ; ð21Þ

φf −1 B½ � xð Þ : ¼ φB f xð Þð Þ; ð22Þ

and

νf −1 B½ � xð Þ : ¼ νB f xð Þð Þ; ð23Þ

respectively.

Example 2. Let X¼ −f 2; − 1; 1g and Y ¼ 1;f 4g, and let f :
X → Y be the surjection f defined by f xð Þ¼ x2. Consider the
3-ROPFS A of X given by

A¼ −2; 0:7; 0:8; 0:1h i; −1; 0:6; 0:9; 0:1h i; 1; 0:4; 0:3; 0:7h if g:
ð24Þ

Then

μf A½ � 1ð Þ ¼ sup μA −1ð Þ; μA 1ð Þf g
¼max 0:6; 0:4f g
¼ 0:6:

ð25Þ

Similarly, we have μf A½ � 4ð Þ¼ 0:7, φf A½ � 1ð Þ¼ 0:3,
φf A½ � 4ð Þ¼ 0:8, νf A½ � 1ð Þ¼ 0:1 and νf A½ � 4ð Þ¼ 0:1. So, we have

f A½ � ¼ 1; 0:6; 0:3; 0:1h i; 4; 0:7; 0:8; 0:1h if g: ð26Þ

Now consider the 3-ROPFS B of Y given by

B¼ 1; 0:6; 0:4; 0:2h i; 4; 0:1; 0:5; 0:6h if g: ð27Þ

Then we get

μf −1 B½ � −2ð Þ ¼ μB f −2ð Þð Þ ¼ μB 4ð Þ ¼ 0:1: ð28Þ

Similarly, we obtain μf −1 B½ � −ð 1Þ¼ 0:6, μf −1 B½ � 1ð Þ¼ 0:6,
φf −1 B½ � −ð 2Þ¼ 0:5, φf −1 B½ � −ð 1Þ¼ 0:4, φf −1 B½ � 1ð Þ¼ 0:4,
νf −1 B½ � −ð 2Þ¼ 0:6, νf −1 B½ � −ð 1Þ¼ 0:2, and νf −1 B½ � 1ð Þ¼ 0:2.
Hence, we have

f −1 B½ � ¼ −2; 0:1; 0:5; 0:6h i; −1; 0:6; 0:4; 0:2h i; 1; 0:6; 0:4; 0:2h if g:
ð29Þ

The following proposition highlights the preservation of
q-ROPFS structure under the function mapping.

Proposition 2. Let X and Y be two non-empty sets, let f :
X → Y be a function and let A and B be q-ROPFSs in X and
Y ; respectively. Then f A½ � is a q-ROPFS in Y and f −1 B½ � is a
q-ROPFS in X.

Proof. If f −1 yð Þ¼∅, then from Definition 6 we have

μqf A½ � yð Þ þ φq
f A½ � yð Þ þ νqf A½ � yð Þ ¼ 0þ 0þ 1 ≤ 1: ð30Þ

Otherwise we have

μqf A½ � yð Þ þ φq
f A½ � yð Þ þ νqf A½ � yð Þ ¼ sup

z2f −1 yð Þ
μA zð Þ

 !
q

þ inf
z2f −1 yð Þ

φA zð Þ
� �

q

þ inf
z2f −1 yð Þ

νA zð Þ
� �

q

¼ sup
z2f −1 yð Þ

μqA zð Þ þ inf
z2f −1 yð Þ

φq
A zð Þ

þ inf
z2f −1 yð Þ

νqA zð Þ
≤ sup

z2f −1 yð Þ
1 − φq

A zð Þ − νqA zð ÞÀ Á
þ inf

z2f −1 yð Þ
φq
A zð Þ þ νqA zð ÞÀ Á

¼ 1:

ð31Þ

Hence f A½ � is a q-ROPFS. On the other hand since B is a
q-ROPFS we obtain

μqf −1 B½ � xð Þ þ φq
f −1 B½ � xð Þ þ νqf −1 B½ � xð Þ ¼ μqB f xð Þð Þ

þ φq
B f xð Þð Þ þ νqB f xð Þð Þ ≤ 1:

ð32Þ
□

4. Continuity and Applications in
Control Systems

In this section, we explore the application of q-ROPF topol-
ogies in the context of control systems. First, we examine the
concept of qε-ROPF continuity, which is a measure of how
smoothly a function maps elements from one q-ROPF topol-
ogy to another. This is important in the design of control
strategies, as it ensures that small changes in the state space
result in small changes in the control space. In the second
subsection, we will apply the notion of qε-ROPF continuity
to a specific example of a control system, demonstrating how
q-ROPF topologies can be used to model the state space and
the control space, and to design a stable and robust control
strategy.

Mathematical Problems in Engineering 5



4.1. qε-ROPF Continuity. In this subsection we define the qε-
ROPF continuity of a function that is defined between two q-
ROPF topological spaces.

Definition 7. Let X;ð τ1Þ and Y ;ð τ2Þ be two q-ROPF topolog-
ical spaces and let f :X → Y be a function. If for any open q-
ROPFS B of Y we have f −1 B½ � is an open q-ROPFS of X, then
f is said to be q-ROPF continuous.

The condition that for any q-ROPFS in the domain
space, the preimage of any open set in the codomain space
must also be an open set in the domain space can be restric-
tive in certain real-life applications, such as control systems,
where small deviations in the input may cause larger changes
in the output, and these changes may not be accurately cap-
tured by the classical definition of q-ROPF continuity. To
overcome this limitation, we define the concept of qε-ROPF
continuity. This definition allows for small deviations in the
preimage, measured by the positive parameter ε, and pro-
vides a more flexible and practical approach to modeling
control systems and other real-life applications.

Definition 8. Let X;ð τ1Þ and Y ;ð τ2Þ be two q-ROPF topolog-
ical spaces and let f :X → Y be a function. Let d be a metric
on R3 and let 0<ε≤

ffiffiffi
2

p
=2. If, for any open q-ROPFS B in Y ,

there exists an open q-ROPFS A in X such that, for any x2X,
the point μB f xð Þð Þ;ð φB f xð Þð Þ; νB f xð Þð ÞÞ is within or on the
sphere of center μA xð Þ;ð φA xð Þ; νA xð ÞÞ and radius ε, then f is
said to be qε-ROPF continuous with respect to d. If d is the
Euclidean metric, then the function is referred to as Euclid-
ean qε-ROPF continuous.

4.2. Application of q-ROPF Continuity in Control Systems. In
our research work, we propose a novel application method
that utilizes the concept of qε-ROPF continuity in the context
of fuzzy control systems. It is important to note that our
contribution lies in applying this method specifically to the
current environment of fuzzy control systems. By using the
q-ROPF fuzzy topologies, we can model the state space and
the control space of the system, and analyze the continuity of
the mapping between them. This information then be used to
design a control strategy that ensures the stability of the
system.

(i) Consider a set X¼ x1;f x2; x3g and define the
3-ROPFSs

A1 ¼ x1; 0:58; 0:40; 0:10h i; x2; 0:40; 0:43; 0:05h i; x3; 0; 0:01; 1h if g;
A2 ¼ x1; 0:25; 0:60; 0h i; x2; 0:05; 0; 0:90h i; x3; 0:56; 0:30; 0:05h if g;
A3 ¼ x1; 0:25; 0:40; 0:10h i; x2; 0:05; 0; 0:90h i; x3; 0; 0:01; 1h if g;
A4 ¼ x1; 0:58; 0:40; 0h i; x2; 0:40; 0; 0:05h i; x3; 0:56; 0:01; 0:05h if g:

ð33Þ

The family Aif g4i¼1 forms a 3-ROPF topology on X.
We call this topology τ1.

(ii) Consider a set Y ¼ y1;f y2; y3g and define the 3-
ROPFSs

B1 ¼ y1; 0:66; 0:33; 0h i; y2; 0:33; 0:33; 0h i; y3; 0; 0; 1h if g;
B2 ¼ y1; 0:33; 0:66; 0h i; y2; 0; 0; 1h i; y3; 0:66; 0:33; 0h if g;
B3 ¼ y1; 0:33; 0:33; 0h i; y2; 0; 0; 1h i; y3; 0; 0; 1h if g;
B4 ¼ y1; 0:66; 0:33; 0h i; y2; 0:33; 0; 0h i; y3; 0:66; 0; 0h if g:

ð34Þ

The family Bif g4i¼1 defines a 3-ROPF topology on Y .
We call this topology τ2.

(iii) Representing control systems using 3-ROPF topol-
ogies allow us to model the relationship between the
state space and the control space in a more abstract
and mathematical way. By defining a 3-ROPF topol-
ogy on the state space and the control space, we can
capture important information about the behavior of
the system, such as the continuity and stability of the
mapping from the state space to the control space.
This information is critical for designing effective
control strategies that ensure that small changes in
the state space result in small changes in the control
space.

(iv) Consider a scenario where we want to control a
dynamic system, a robotic arm. The current state
of the arm, including its position, velocity, and
acceleration, can be represented by a set of three
elements, modeled using the 3-ROPF topology τ1.
Based on the desired position, velocity, and acceler-
ation values that the arm should track, another 3-
ROPF topology, τ2, is established to represent the
desired behavior of the system. The elements of
the sets correspond to different points in the work-
space of the arm, and the open sets correspond to
the regions in which the arm can move. By mapping
the positions of the arm in τ1 to those in τ2 using a
continuous function, we can model the behavior of
the robotic arm as it moves and adjusts its position
in response to different inputs or conditions. This
can help us better understand and control the
behavior of the arm in real-world situations.

(v) The function f :X → Y maps the current state of the
robotic arm to the desired state by assigning each
state element to a corresponding control value, as
given by f x1ð Þ¼ y1; f x2ð Þ¼ y2; f x3ð Þ¼ y3. This func-
tion serves as a link between the state space and the
control space of the system. Its design is based on
the specific control objectives and constraints of the
robotic arm and aims to track a desired trajectory.

(vi) f is Euclidean 30:15-ROPF continuous with respect
to the 3-ROPF topologies τ1 and τ2. It is easy to see
that for any open 3-ROPFS B in Y , there exists an
open q-ROPFS A such that, for any x2X, the point
μB f xð Þð Þ;ð φB f xð Þð Þ; νB f xð Þð ÞÞ is within or on the
sphere of center μA xð Þ;ð φA xð Þ; νA xð ÞÞ and radius
0:15. For example, we have
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μB1
f x1ð Þð Þ;φB1 f x1ð Þð Þ; νB1 f x1ð Þð ÞÀ Á ¼ μB1

y1ð Þ;φB1
y1ð Þ; νB1

y1ð ÞÀ Á
¼ 0:66; 0:33; 0ð Þ; ð35Þ

μB1
f x2ð Þð Þ;φB1 f x2ð Þð Þ; νB1 f x2ð Þð ÞÀ Á ¼ μB1

y2ð Þ;φB1
y2ð Þ; νB1

y2ð ÞÀ Á
¼ 0:33; 0:33; 0ð Þ; ð36Þ

and

μB1
f x3ð Þð Þ;φB1 f x3ð Þð Þ; νB1 f x3ð Þð ÞÀ Á ¼ μB1

y3ð Þ;φB1
y3ð Þ; νB1

y3ð ÞÀ Á
¼ 0; 0; 1ð Þ: ð37Þ

On the other hand it is clear that

μA1
x1ð Þ;φA1

x1ð Þ; νA1
x1ð ÞÀ Á ¼ 0:58; 0:40; 0:10ð Þ;

μA1
x2ð Þ;φA1

x2ð Þ; νA1
x2ð ÞÀ Á ¼ 0:40; 0:43; 0:05ð Þ;

μA1
x3ð Þ;φA1

x3ð Þ; νA1
x3ð ÞÀ Á ¼ 0; 0:01; 1ð Þ:

ð38Þ

Hence, the point μB1
f xið Þð Þ;À

φB1
f xið Þð Þ; νB1 f xið Þð ÞÞ

is within the sphere of center μA1
xið Þ;À

φA1
xið Þ;

νA1
xið ÞÞ and radius 0:15 for each i¼ 1; 2; 3: It means

that for any small change in the state space repre-
sented by τ1, there is a corresponding change in the
control space represented by τ2 controlled by ε¼
0:15. This implies that the mapping from the state
space to the control space is smooth and well-
behaved, satisfying the continuity requirements of
the system. To provide a clearer understanding of
the stability and continuity of the mapping, consider
the following: if the robotic armmoves slightly in the
state space, the corresponding behavior in the con-
trol space should reflect this change consistently. For
example, if the arm’s position in the state space shifts
from x1 to x01, the mapping function f should ensure a
corresponding shift in the control space from y1 to y01.
Similarly, if the arm’s position moves from x2 to x02 or
x3 to x03, the mapping function should consistently
reflect those changes in the control space.

(vii) It is concluded that the control system is stable and
robust. The function f maps the state space represented
by τ1 to the control space represented by τ2 in a con-
tinuousmanner, satisfying the continuity requirements
of the system. This implies that the mapping between
the state space and the control space is smooth and
well-behaved. The continuity property of the function
f ensures that small changes in the state space result
in corresponding changes in the control space, mak-
ing the control strategy stable and reliable.

5. q-ROPFPs and Convergence

In this section, we introduce the novel concept of a q-ROPFP,
which extends the classical concept of a fuzzy point. We

explore the properties of q-ROPFPs, defining a new type of
convergence in q-ROPF topological spaces. Specifically, we
define the Q-neighborhood system of a q-ROPFP and exam-
ine the convergence of sequences of q-ROPFPs, aiming to
identify the conditions for the uniqueness of the limit in the
realm of supports.

Definition 9. Let X be a set, let s2X and let α2 0;½ 1Þ, γ 2 0;½
1Þ and β2 0;ð 1� be real numbers such that αq þ γq þ βq ≤ 1.
Then the q-ROPFS

s½ �α;γ;β ¼ xj; cα xj
À Á

; cγ xj
À Á

; 1 − c1−β
À Á

xj
À Á
 �

: j¼ 1;…; n
È É

;

ð39Þ

is called a q-ROPFP in X where

ct xð Þ : ¼
t; x ¼ t

0; x ≠ t

8><
>: : ð40Þ

It is clear that

1 − c1−tð Þ xð Þ ¼
t; x ¼ t

1; x ≠ t:

8><
>: ð41Þ

We simply use the notation

s½ � ¼ cα; cγ; 1 − c1−β
À Á

; ð42Þ

when there is no confusion. The ordinary point s is called the
support of s½ �. We say that a q-ROPFP s½ � is included in a
q-ROPFS A if s½ � ⊂ A and we write s½ � 2A.
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The following theorem provides a key insight into the
structure of q-ROPFSs, showing that they are composed of
the union of all the q-ROPFPs that are contained by them.

Theorem 1. A q-ROPFS A is the union of all the q-ROPFPs
that are contained by A, i.e., A¼⋃ s½ �2A s½ �.

Proof. Let us say B¼⋃ s½ �2A s½ �. If s½ � 2A, then we have for any
x2X that μ s½ � xð Þ≤ μA xð Þ which yields that

μB xð Þ ¼ sup
s½ �2A

μ s½ � xð Þ ≤ μA xð Þ: ð43Þ

Similarly, we have for any x2X that φB xð Þ≤φA xð Þ and
νB xð Þ≥ νA xð Þ. So, B ⊂ A. On the other hand, for any x2X
we get x½ �μA xð Þ;φA xð Þ; νA xð Þ 2A. Therefore we have

μB xð Þ ¼ sup
s½ �2A
s2X

μ s½ � xð Þ

¼ sup
x½ �2A

μ x½ � xð Þ

≥μA xð Þ:

ð44Þ

Similarly, we have for any x2X that φB xð Þ≥φA xð Þ and
νB xð Þ≤ νA xð Þ. So, A ⊂ B. □

The following theroem asserts that the q-ROPFP struc-
ture is maintained when functions are applied.

Theorem 2. Let f :X → Y be a function and let s½ �α; γ; β be a q-
ROPFP in X. Then the image of s½ �α; γ; β is the q-ROPFP

f u½ � : ¼ f u½ �α;γ;β
h i

¼ f uð Þ½ �α;γ;β; ð45Þ

in Y with the support f uð Þ.

Proof. From Definition 6 we obtain

μf u½ �α;γ;β½ � yð Þ ¼
sup

z2f −1 yð Þ
μ u½ �α;γ;β zð Þ; if f −1 yð Þ is non-empty

0; otherwise

8><
>:

¼
α; if u 2 f −1 yð Þ

0; otherwise

8><
>:

¼
α; if f uð Þ ¼ y

0; otherwise;

8><
>:

ð46Þ

φf u½ �α;γ;β½ � yð Þ ¼
inf

z2f −1 yð Þ
φ u½ �α;γ;β zð Þ; if f −1 yð Þ is non-empty

0; otherwise

8><
>:

¼
γ; if u 2 f −1 yð Þ

0; otherwise

8><
>:

¼
γ; if f uð Þ ¼ y

0; otherwise

8><
>:

ð47Þ

and

υf u½ �α;γ;β½ � yð Þ ¼
inf

z2f −1 yð Þ
ν u½ �α;γ;β zð Þ; if f −1 yð Þ is non-empty

1; otherwise;

8><
>:

¼
β; if u 2 f −1 yð Þ

1; otherwise

8><
>:

¼
β; if f uð Þ ¼ y

1; otherwise:

8><
>:

ð48Þ
□

The following definitions introduces the concept of
quasi-coincidence between a q-ROPFP and a q-ROPFS.

Definition 10. A q-ROPFP s½ �α; γ; β is said to be quasi-
coincident with a q-ROPFS A if αq þ μqA uð Þ>1, γq þ
φq
A uð Þ>1 and βq þ νqA uð Þ<1. In this case, we write
s½ �α; γ; β ∗ A or in brief s½ � ∗ A.

In topology, a fundamental concept is the notion of a
neighborhood of a point, which is a set containing the point
and some points around it. In a q-ROPF topological space,
we can define a similar concept of a Q-neighborhood of a q-
ROPFP, where the neighborhood is a fuzzy set that is quasi-
coincident with the given q-ROPFP. This leads to the defini-
tion of the Q-neighborhood system of a q-ROPFP, which is a
family of Q-neighborhoods that captures the local behavior
of the q-ROPFP in the q-ROPF topological space.

Definition 11. A fuzzy set A in a q-ROPF topological space
X;ð τÞ is called a Q-neighbourhood of a q-ROPFP s½ � if there
exists an open q-ROPFS B ⊂ A such that s½ � ∗ B. The family
of Q-neighbourhoods of s½ � is called the Q-neighbourhood
system of s½ � and denoted by N∗ s½ �.

A key property of topological spaces is their separation
axioms, which provide information on how distinct points
can be separated from each other by open sets. One such

8 Mathematical Problems in Engineering



separation axiom is the Hausdorff property, which has an
analog in q-ROPF topological spaces. The following defini-
tion introduces the q-ROPF Hausdorff property.

Definition 12. A q-ROPF topological space X;ð τÞ is said to be
Hausdorff if any q-ROPFPs s1½ � and s2½ � satisfying s1 ≠ s2
there exist Q-neighbourhoods V1 and V2 of s1½ � and s2½ �,
respectively, such that V1 ∩ V2 ¼ 0X .

In the context of q-ROPF topological spaces, conver-
gence of a sequence of q-ROPFPs to a particular q-ROPFP
can be defined using Q-neighbourhoods. This notion is
important because it provides a framework for studying
the convergence of sequences in q-ROPF topological spaces,
which has important implications in many areas of mathe-
matics. Furthermore, the definition of convergence involving
Q-neighbourhoods allows us to capture the local behavior of
sequences.

Definition 13. A sequence sn½ �f g of q-ROPFPs of X;ð τÞ is said
to be convergent to a q-ROPFP s½ � if for any Q-neighbour-
hood V of s½ � there exists a positive integer n0 such that
sn½ � ∗ V whenever n≥ n0. In this case, we write

lim
n sn½ � ¼ s½ �: ð49Þ

When working with q-ROPF topological spaces, it is
important to understand how sequences of q-ROPFPs behave
in terms of convergence. The following theorem provides a
useful result in this regard.

Theorem 3. In a q-ROPF topological space X;ð τÞ if a
sequence s½ �nð Þ of q-ROPFPs is convergent to s½ �α1; γ1; β1 ,
then it is convergent to s½ �α2; γ2; β2 whenever α1>α2, γ1>γ2
and β1<β2.

Proof. Let limn s½ �n ¼ s½ �α1; γ1; β1 . Then for any Q-neighbour-
hood V of s½ �α1; γ1; β1 there exists a positive integer n0 such that
sn½ �∗V whenever n≥ n0. Assume that U be a Q-neighbour-
hood of s½ �α2; γ2; β2 . Since α1>α2, γ1>γ2 and β1<β2 we have U
is also a Q-neighbourhood of s½ �α1; γ1; β1 . Hence sn½ � ∗U when-
ever n≥ n0. limn s½ �n¼ s½ �α2; γ2; β2 . □

Theorem 3 demonstrates that a sequence of q-ROPFPs
can converge to distinct q-ROPFSs that share the same sup-
port. In contrast, the following theorem asserts that a
sequence of q-ROPFPs cannot converge to q-ROPFSs with
different supports in a Hausdorff q-ROPF topological space.

Theorem 4. Let X;ð τÞ be a q-rung orthopair picture topo-
logical space. If X;ð τÞ is a Hausdorff space, then any
sequence of q-ROPFPs of X does not converge to two q-
ROPFPs s1½ � and s2½ � such that s1 ≠ s2.

Proof. Let x½ �nð Þ be a sequence of q-ROPFPs such that
limn xn½ � ¼ s1½ � and limn xn½ � ¼ s2½ � where s1 ≠ s2. Then for
arbitrary Q-neighbourhoods V1 and V2 of s1½ � and s2½ �,

respectively, there exists a positive integer n1 such that xn½ �
∗ V1 and xn½ � ∗ V2 whenever n≥ n0. Therefore we have

μV1
xnð Þ>0; μV2

xnð Þ>0; ð50Þ

φV1
xnð Þ>0;φV2

xnð Þ>0; ð51Þ

and

νV1
xnð Þ<1; νV2

xnð Þ<1 ð52Þ

whenever n≥ n0. So we have V1 ∩ V2 ≠ OX which contra-
dicts with the fact that X;ð τÞ is Hausdorff. □

6. Conclusion

In this paper, we have introduced the concept of q-ROPF
topological space and studied some of their basic properties.
We have defined various notions such as Q-neighbourhoods,
quasi-coincidence, convergence, and Hausdorffness. We have
also introduced the concept of qε-ROPF continuity, which is a
weaker form of continuity in which the continuity condition
holds only up to a certain error bound. We have applied the
concept of this continuity to a control system problem, in
which we have shown how to design a controller that ensures
that the output of a system remains within a certain error
bound of the desired trajectory. Finally, we have also investi-
gated the convergence of sequences of q-ROPFPs in Haus-
dorff q-rung orthopair picture topological spaces, and have
proven that such sequences cannot converge to two distinct q-
ROPFPs with different supports. This study paves the way for
various future research possibilities. One intriguing avenue
would involve examining the properties of continuous fuzzy
mappings and their interplay with different types of continu-
ity. Furthermore, exploring the relationships between conti-
nuity and other mathematical domains, such as fuzzy
topology and fuzzy analysis, would be of great interest. Last,
applying our findings to the other control system challenges
and assessing the efficacy of continuous fuzzy controllers in
real-world scenarios would provide valuable insights. As a
part of our future work, we will investigate the relationship
between qε-ROPF continuity and Q-neighborhoods in the
realm of q-ROPFPs.
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