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Mobile edge computing technology has emerged as a novel computing paradigm that makes use of resources close to the
devices of the smart rail system. Nevertheless, it is difcult to support data ofoading to the stations directly from diferent
trains due to the limited coverage of the stations equipped with MEC servers. Terefore, multi-hop ad hoc network is
considered and introduced in this case. In this paper, an improved architecture is proposed for the MEC-based smart rail
system by blockchain and multi-hop data communication. Te requesting trains can ofoad the tasks to MEC servers by multi-
hop transmission between trains, even when requesting trains are not covered by servers. Furthermore, we utilize the
blockchain technology for the authenticity and anti-falsifcation of information during multi-hop transmission. Ten, the
ofoading routing path and ofoading strategy are co-optimized to minimize both delay and cost of the system. Te proposed
majorization problem is formulated as a Markov decision process (MDP) and solved by deep reinforcement learning (DRL). In
comparison to other existing schemes, simulation results demonstrate that the proposed scheme can greatly improve
system performance.

1. Introduction

As the smart rail system continues to grow, it is urgent to
realize the dynamic aggregation, deep mining, and efective
utilization of various application data by building high-
performance ubiquitous computing power. Cloud com-
puting was employed to resolve the issue, which is because of
the constrained processing power of the trains [1]. However,
it is obvious that cloud computing architecture cannot meet
the real-time requirements for information processing in the
smart rail system, on account of the rapid mobility of trains
[2, 3]. Fortunately, mobile edge computing (MEC), as an
emerging technology, solves the issue mentioned above
efectively. Meanwhile, the MEC technology performs
computing tasks on edge servers close to the device rather
than on the cloud, which meets the sensitive delay

requirements. At the same time, it brings high-quality
services to users [4, 5].

However, the coverage of the stations equipped with
MEC servers is limited, so it is impractical to only consider
that the trains are within the range of the MEC servers.
Multi-hop ad hoc network has no fxed topology. Train
nodes can spontaneously create wireless network for com-
munication between trains to exchange information and
data. Each train is not only a transceiver but also a router [6].
Terefore, we consider integrating the multi-hop ad hoc
network and MEC technology. Te requesting trains can
ofoad the tasks to MEC servers by multi-hop transmission
between trains, which enables the servers to be utilized in a
wider range while meeting the low-latency requirement.

Although the combination of multi-hop ad hoc network
and MEC in the smart rail system can bring great
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advantages, since a large amount of information related to
trafc and driving is involved, how to efectively guarantee
the security and reliability during data multi-hop trans-
mission is worth considering. Fortunately, due to the dis-
tributed, immutable, and safety nature of blockchain,
blockchain is applicable to prevent the information related
to trafc and driving from being leaked or manipulated for
the MEC-enabled smart rail system with multi-hop con-
nection [7–11].

However, there are still signifcant obstacles to over-
come before multi-hop ad hoc and blockchain can be ef-
fectively applied in the MEC-enabled smart rail system. For
instance, how to properly select the routing path and the
ofoading decision with the high-speed movement of trains
is deemed as the crucial problem. In addition, how to
balance the delay and cost caused by the process of data
delivery, ofoading, and consensus in the MEC-enabled
smart rail system also needs to be considered.

In this paper, to deal with the mentioned issues, we
propose an improved optimization framework for the
MEC-enabled smart rail system by multi-hop data
communication and blockchain. Ten, the ofoading
routing path, ofoading strategy, and block size are co-
optimized to minimize both delay and cost of the system
during communication and computation process. Fur-
thermore, by specifying the state space, action space, and
reward function, a discrete Markov decision process
(MDP) is formulated to characterize the dynamic jointly
proposed problem. Additionally, we utilize dueling deep
Q-learning network (DQN) for obtaining the optimal
strategy.

Te rest of this paper is structured as follows. Section 2
mainly proposes the system model. Ten, we formulate the
collaborative majorization problem in Section 3. In Section
4, the formulated problem is solved by dueling DQN al-
gorithm.Te experiment results are presented and discussed
in Section 5. Te last part summarizes the conclusion of this
paper and the future directions.

2. System Model

In this section, we depict the systemmodel, which consists of
the network model, multi-hop routing path model, com-
munication model, computation model, and blockchain
model.

2.1. Network Model. In Figure 1, the architecture of a high-
speed railway and a train station equipped with MEC servers
which are managed by various suppliers is shown. Te
available computing resource and price of each MEC server
are diferent in a real-time environment. We denote the set
of these MEC servers as R � 1, . . . , r, . . . , R{ }. Tere are
several high-speed trains running on the tracks. We denote
V � 1, . . . , v, . . . , V{ } as the set of all trains. Multi-hop ad hoc
network is utilized to assist requesting trains in computation
task ofoading. Trains can act as relaying nodes to realize
information interaction with other trains by spontaneously
creating wireless network.

Tere may be malicious relaying nodes when ofoading
computation tasks by relaying. Terefore, the trust-based
blockchain system is utilized to ensure the authenticity and
anti-falsifcation of data information during the relaying and
ofoading process. Te last-hop relaying train sends the data
consensus requirement and transaction information to the
blockchain system for transaction verifcation after receiving
the relaying task. Trough the consensus mechanism, the
requesting train node and the other relaying train nodes in
the routing path check the information data. In the
blockchain system, all trains are regarded as blockchain
nodes. Tese nodes can play either a normal or a consensus
node role. Normal trains are in charge of transferring and
accepting ledger information, while consensus trains are in
charge of creating new blocks and carrying out the con-
sensus process. Each relaying train in the routing path is
regarded as a candidate for consensus nodes, and we con-
sider the trust value of each relaying train when voting for
consensus.

In this work, the requesting trains can maximize the
use of multi-hop ad hoc network to ofoad tasks to the
MEC servers, even if the trains are not in the commu-
nication range of servers. A consensus process is initiated
when the last relaying train receives the ofoading task,
and the security of information is guaranteed when all
consensus nodes reach a consensus successfully. For each
task, there are two important elements to be considered:
latency and cost. In terms of latency, considering the link
quality along the whole routing path and the processing
capability of servers, the total expectable latency of one
successful end-to-end transfer and calculation is evalu-
ated. In terms of cost, the total expected cost is assessed,
including the data relaying cost of each relaying train in
the whole path and computing cost of diferent MEC
servers. As a result, we can select the optimal routing path
and ofoading decision which has the minimal latency
and cost.

2.2.Multi-HopRoutingPathModel. Firstly, to determine the
performance of each pair of trains inmulti-hop routing path,
we depict a link model, which considers channel fading and
mobility of trains. Ten, based on the link quality obtained
above, the routing metric about link correlation is utilized to
select the optimal multi-hop routing path.

2.2.1. Link Quality. We utilize the Nakagami distribution
model to represent the fading of radio wave propagation
[12]. Tus, the successful delivery probability between
sender train vi and receiver train vj in spite of channel fading
can be obtained by

p
f
ij(t) � 1 − Fd rrt; m,φ( , (1)

where Fd(rrt; m,φ) is the cumulative distribution function
of the receiving signal power, rrt is the reception threshold of
a signal, and φ is the average signal strength. Te fading
parameter m is related to distance D(vi, vj, t) between train
vi and train vj at current time t as follows:
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m D Vi, Vj, t   �

1, D Vi, Vj, t ≥ 150m,

1.5, 50m≤D Vi, Vj, t < 150m,

3, D Vi, Vj, t < 50m.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2)

Under a real urban environment, the train does not
always run at a constant speed, and its speed changes with
acceleration or deceleration. In this case, the movement of
the trains can be abstracted by a Wiener process [13]. As-
suming that the trains only have two directions toward each

end, one direction is designated as positive. Terefore, the
velocity variation of train vi during interval [t0, t] can be
defned as follows:

Δvi
t− t0 � vi

t
− vi

t0 � μi t − t0(  + δi

�����
t − t0


, (3)

where v
t0
i and vt

i represent the velocity of train vi at time t0
and t. Te drift parameter μi denotes the acceleration or
deceleration of train vi, and the parameter δi follows the
Gaussian distribution. Terefore, the relative distance var-
iation of train vi and vj in period [t0, t] can be obtained as

ΔD Vi, Vj, t  � vi
t0 − vj

t0 + μi − μj + Δvi
t− t0 − Δvj

t− t0 ∗ t − t0( , (4)

and D(vi, vj, t) is the distance between two trains at current
time t under diferent circumstances, which are presented as
follows.

Circumstance 1: two trains are moving in one direction:

D Vi, Vj, t  �
ΔD Vi, Vj, t  + dij, if  vi > vj, train Vi  is  in  front of   train Vj,

ΔD Vi, Vj, t  − dij, if  vi > vj, train Vi  is behind  train Vj.

⎧⎪⎨

⎪⎩
(5)

Circumstance 2: two trains are running in the opposite
direction:

D Vi, Vj, t  �
ΔD Vi, Vj, t  − dij, two  trains are  dr iving  towards each other,

ΔD Vi, Vj, t  + dij, two  trains are  dr iving  away  from  each other,

⎧⎪⎨

⎪⎩
(6)

where dij denotes the distance between two trains at
time t0.Tus, we can predict link availability and obtain
the probability of link availability on link Lij as

Pij
a
(t) � P D Vi, Vj, t  < � R, (7)

where R is the communication range of trains.
Terefore, according to equations (1) and (7), we can
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Figure 1: Structure of the proposed network scenario.
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obtain the link quality of link Lij, which represents the
probability of successful transmission of the packets
and is calculated by

pij(t) � p
f

ij(t) × p
a
ij(t). (8)

2.2.2. Routing Path Quality. Once data packet loss occurs on
one link, this packet should be retransmitted from the source

to the destination, on account of the retransmission
mechanism in the transport layer. As a result, there are
various retransmission times and consumption of network
resources for packets in diferent multi-hop paths. Tis
phenomenon is referred to as a link correlation. Tus, the
expected retransmission probability FrN(t) of the N-hop
path can be calculated by

FrN(t) � 1 − ps1(t)(  + 2 · ps1(t) · 1 − p12(  + ... + N · ps1(t) · p12(t) · · · 1 − p(N−1)N(t) , (9)

where ps1(t) is the link quality between the source train and
the frst relaying train and p(N−1)N(t) represents link quality
between the relaying train N − 1 and relaying train N in the
routing path.

Terefore, we defne the expected times of data transfer
in an N-hop routing path as FcN(t) when one packet is
successfully transferred from source to destination and
present it as follows:

FcN(t) �
FrN(t) + N · ps1(t) · 

N
i�2 p(i−1)i(t)

ps1(t) · 
N
i�2 p(i−1)i(t)

, (10)

where ps1(t)∙
N
i�2 p(i−1)i(t) is the aggregation of the link

quality of all links in an N-hop routing path.

2.3. CommunicationModel. In this section, we describe the
communication process of the system, including the
representation of the communication latency and relaying
cost.

2.3.1. Communication Delay. Te communication delay is
mainly caused by three parts, including the requesting train
ofoading the task to the last-hop relaying train through the
multi-hop ad hoc network, the last-hop relaying train ini-
tiating a consensus after receiving the task, and the last-hop
relaying train ofoading the task to MEC server.

Firstly, the requesting train ofoads the task to the last-
hop relaying train through the multi-hop ad hoc network.
Te set of relaying trains in the routing path for the task
IMV(t) is denoted as N � 1, . . . , n, . . . , N{ } (except the
requesting train) and N ∈ V. Te data transmission rate per
hop communication between relaying train vi and vj is
obtained as follows:

rij(t) � W · log2 1 +
Pt

D Vi, Vj, t 
h

· Pn

⎛⎜⎝ ⎞⎟⎠, (11)

where W represents the channel bandwidth, Pt is the
transmit power, h indicates the path-loss exponent, and Pn is
the background noise power. Tus, the delivery delay of task
IMV(t) in V2V N-hop connections can be expressed as

Ttran ,V2V(t) � FcN(t) ×
BMV(t)

rs1(t)
+ 

N

n�2

BMV(t)

r(n−1)n(t)
⎡⎣ ⎤⎦, (12)

where BMV(t) denotes input data size required by task
IMV(t), rs1(t) is the transmission rate between the source
train (i.e., requesting train) and the frst relaying train, and
r(n−1)n(t) is the transmission rate between the relaying trains
vn−1 and vn.

Secondly, the last-hop relaying train sends the data to the
blockchain system for transaction verifcation after receiving
the relaying task, so as to guarantee that the data are true
without tampering. Te delay generated by consensus
process is defned as Tbc(t), which will be described in detail
in the blockchain model.

Finally, the last-hop relaying train ofoads the task to the
MEC server managed by diferent suppliers through wireless
communication. Te Shannon–Hartley theory is used to
estimate the uplink rate for data transmission from the last-
hop relaying trains to MEC server via LTE cellular network,
and it can be calculated as

Rr(r∈R)(t) � B · log2 1 +
pV2I(t) × g

c
i,r(i ∈ V)

Ψ2 + j≠i,j∈VpV2I(t) × g
c
j,r

⎛⎝ ⎞⎠,

(13)

where B represents the channel bandwidth, Ψ2 represents
the background noise power, pV2I(t) denotes the trans-
mission power of the train (all trains have the same
transmitting power), and gc

i,r(i ∈ V) is the channel gain be-
tween the train user vi and MEC server r.

Terefore, the transmission delay caused in this process
is calculated as

Ttran,V2I(t) �
BMV(t)

Rr(t)
. (14)

As mentioned above, we can obtain the total delay of
communication process through

Ttran(t) � Ttran ,V2V(t) + Tbc(t) + Ttran,V2I(t). (15)

2.3.2. Communication Cost. We assume that each train has
its own relaying price [14]. Corresponding to the relaying
trains in the routing path for the task IMV(t), the relaying
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price (per unit data volume) sequence is
Pr1(t),Pr2(t), . . . , Prn(t), . . . ,PrN(t) . Terefore, the total
train relaying cost can be obtained by

Prsum(t) � 
N

n�1
Prn(t) × BMV(t). (16)

2.4. Computation Model. Assume that each MEC server
operated by diferent suppliers has its corresponding pro-
cessing capacity and price for computing ofoading task.
Te computing capacity and price (per unit task complexity)

of MEC server are Fr(r∈)(t) and Pcr(r∈)(t), respectively.
Ten, the calculation delay and cost are presented as

Tcal(t) �
CMV(t)

Fr(t)
, r ∈R, (17)

and

Pcsum(t) � Pcr(t) × CMV(t), r ∈R, (18)

where CMV(t) denotes the required CPU cycles for task
IMV(t).

Tus, the total delay and cost, including ofoading
delivery process and calculation process, are represented by

Tsum(t) � Ttran(t) + Tcal(t) � Ttran ,V2V(t) + Tbc(t) + Ttran,V2I(t) + Tcal(t), (19)

and

Psum(t) � Prsum(t) + Pcsum(t). (20)

2.5.BlockchainModel. In this paper, the delegated Byzantine
fault tolerance (dBFT) consensus mechanism is adopted in
our blockchain system to increase the efciency of a con-
sensus process without tampering [15]. Moreover, each
relaying train in the routing path is regarded as a candidate
for consensus nodes, and we consider the trust value of
candidates to determine the nodes participating in the next
round of consensus, which improves the throughput of
blockchain, reduces the CPU cycles of transaction confr-
mation, and then efectively reduces the consensus latency
[16]. Te higher the trust value of the relaying node is, the
more likely it is to be selected as a consensus node.Te set of

the selected consensus nodes is denoted by
K � 1, 2, . . . , k, . . . , K{ } and K ∈ N. Te dBFT consensus
protocol can be adopted in the proposed system model to
dynamically adapt to the change of the number of train
nodes [13].

2.5.1. Calculation of Trust Value. Generally, the trust value is
determined by its direct trust value and indirect trust value
[17, 18]. Te trust value of the train node v(v ∈ V) is defned
as Dtrust

v and Dtrust
v ∈ [0, 1]. Similar to [19], the threshold of

trust value is set as 0.5. One node is trustworthy to be a
candidate for consensus only if its trust value is higher than
0.5.

We utilize subjective logic to compute direct trust value
of the blockchain nodes, which can be obtained as follows:

D
direct
i(i ∈ V,i≠ v)⟶ v �

0.5 + NHi⟶v − 0.5(  × NCi⟶v, if   NHi⟶v ≥ 0.5,

NHi⟶v × NCi⟶v, otherwise,
 (21)

where NHi⟶v(t) is the node honesty (NH) and represents
the uncertainty during ofoading due to unstable and noisy
communication channels between the relaying trains [18].
NCi⟶v(t) is the remaining node capacity (NC) of the trains
to complete task.

For the computation of indirect trust value, the number
of times one node has been voted for consensus in the past is
taken into account. Te blockchain system regularly updates
and records the selection of consensus nodes. Tus, the
indirect trust value of one blockchain node can be defned as

D
indirect
v �

VNv

VNall
, (22)

where VNall is the total number of consensus processes and
VNv is the number of times the relaying train v has been
voted for consensus.

Terefore, the trust value of one candidate for consensus
is represented by

D
trust
v � wdirect ·


v−1
i�1 D

direct
i⟶ v + 

V

i�v+1
D

direct
i⟶ v

V

+ windirect · D
indirect
v , (23)
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where wdirect and windirect represent the weight of direct and
indirect trust values, respectively. Meanwhile, wdirect and
windirect ∈ [0, 1] and wdirect + wdirect � 1.

2.5.2. Consensus Process. Te specifc dBFT consensus
process is depicted in Figure 2. We assume that generating/
validating one signature and message authentication code
(MAC) requires α and β CPU cycles, respectively.

At frst, the last-hop relaying train sends consensus
requirement and transaction information to blockchain
system upon receiving the ofoading task. Ten, the speaker
of the consensus process in this round is assigned by
blockchain. Te assigned speaker packages the hash of the
transactions as a prepare request message to launch a
proposal and broadcast it to initiate a new consensus. During
this phase, one signature and K − 1 MACs are generated by
the speaker. Tus, the computation cycles for the speaker
node in this process are represented as

c1(t) � α +(K − 1) · β. (24)

Secondly, each member collects all the transactions in-
formation of the prepare request message. If the transactions
are verifed successfully, themembers add the transactions to
the consensus module and broadcast the prepare response
messages to all consensus nodes. During this phase,
members need to validate the signatures and MACs of the
proposal and contained transactions and then generate one
signature and K − 1 MACs for forming prepare response
messages. Terefore, the computation cycles for the member
nodes are calculated by

c2(t) � α + β +
Sbc(t)

L
· (α + β) + α +(K − 1) · β, (25)

where Sbc(t) is the total transaction batch size at time slot t

and L represents the average size of transactions.

Ten, if at least K − f prepare response messages are
received before the timeout, each consensus node verifes
whether the messages are correct at frst. Once the verif-
cation is successful, the commit messages are broadcast to
other consensus nodes. During this phase, the consensus
nodes verify K − f signatures and MACs and then generate
one signature and K − 1 MACs for forming commit mes-
sages. Tus, for each consensus node, the consumed CPU
cycles can be represented as

c3(t) � (K − f) · (α + β) + α +(K − 1) · β. (26)

Finally, if the consensus nodes have collected more than
K − f commit messages and verifed successfully, the
consensus process is regarded as completed. At the same
time, one block is produced and broadcast to blockchain
system. During this phase, K − f signatures and MACs
should be verifed by one consensus node. Tus, the com-
putation cycles for each consensus node in this process are
represented as

c4(t) � (K − f) · (α + β). (27)

In terms of above analysis, the delay of consensus process
is represented by

Tbc(t) �
c1(t)

fsp(t)
√√√√

Prepare Request

+ max
k ∈ K(k≠ sp)

c2(t)

fk(t)
√√√√√√√√√√√√

Prepare Request

+max
k ∈ K

c3(t)

fk(t)
√√√√√√√√

Commit

+ max
k ∈ K

c4(t)

fk(t)
√√√√√√√√

CreatBlock&Broadc ast

+Ti(t) + 3Tb(t),
(28)

where fsp(t) denotes the computing capacity of the speaker,
fk(t) represents the computing capacity of the consensus
node k, Ti(t) is the block generation interval, and Tb(t) is
the broadcast delay between nodes.

3. Problem Formulation

In this section, it is necessary to jointly optimize routing path
selection, ofoading decision, and block size selection in a
real-time environment so as to decrease delay and cost of the
proposed network.Temajorization issue is characterized as

a MDP by identifying the state space, action space, and
reward function.

3.1. State Space. During each time slot t, we defne the state
space as a union of the link quality between each pair of all
trains PL(t) � Pij(t) i, j � 1, 2, . . . , V, relaying price of all
trains Pr(t) � Pr1(t),Pr2(t), . . . , PrV(t) , computing re-
source of MEC servers F(t) � F1(t), F2(t), . . . , FR(t) , and
computing price of MEC servers
Pc(t) � Pc1(t), Pc2(t), . . . , PcR(t) , which is represented as

Prepare 
Request

Prepare 
Response Commit Create Block

& Broadcast 
Speaker

Member1

Member 2

Member 3

Member K-1
...

Speaker

Member1

Member 2

Member 3
...

Member K-1

Figure 2: Consensus process of dBFT.
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S(t) � PL(t),Pr(t), F(t), Pc(t) . (29)

3.2.Action Space. Te action space involves the routing path
selection, the ofoading decision, and block size selection.
Formally, the action space A(t) is denoted as

A(t) � N(t), ao(t), Sbc(t) , (30)

where (t) is the set of relaying trains arranged in consecutive
routing order in the multi-hop routing path.
a0(t) � 0, 1, . . . , R − 1{ } indicates the ofoading decision,

and a0(t) � 0 represents that the task is executed on the
MEC server managed by the frst supplier, while a0(t) �

R − 1 indicates that the task is executed on the MEC server
managed by the R-th supplier. Sbc(t) ∈ 1, 2, . . . , Smax 

represents diferent level for block size and Smax is the
maximum block size.

3.3. Reward Function. We defne the reward function to
improve system performance and then devise immediate
reward as

r(t) �

w1 ·
1

Tsum(t)
+ w2 ·

1
Psum(t)

, if  C1 − C3  are  satisf ied,

w1 ·
1

Tsum(t)
+ w2 ·

1
Psum(t)

− ϑ, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

s.t. C1: Tsum(t)≤ τ,

C2: Tbc(t)≤ ε × Ti(t),

C3: Sbc(t)≤ Smax,

(31)

where w1 and w2 ∈ [0, 1] are the weights of the latency and
the cost, respectively, and w1 + w2 � 1. ϑ is the penalty value.

In this problem, C1 indicates the time limitation for
completely ofoading tasks, where τ is the maximum tol-
erable delay. C2 denotes the latency limitation of completing
a block, where ε> 1. Te maximum size of the all transac-
tions in a single consensus process is indicated by C3.

4. Problem Solution

In this paper, due to high dynamic characteristics of the
proposed system, we adopt the dueling DQN algorithm to
solve the proposed joint optimization issue. Dueling DQN is
widely considered as a signifcant improvement to con-
ventional DQN. Diferent from the natural DQN, dueling
DQN divides the Q-network into two parts, action advan-
tage function with independent of state A(st, at;ω, ξ) and
state-value function V(st;ω, θ), which are calculated

separately [20, 21]. It is easy to fnd which action has better
feedback by learning A(st, at;ω, ξ). Finally, we can obtain
the output of the dueling DQNnetwork bymerging two fully
connected layers, which is denoted as

Q
π

st, at;ω, θ, ξ(  � V
π

st;ω, θ(  + A
π

st, at;ω, ξ( , (32)

where ω is the convolution layer parameter, θ represents the
parameter of the specifc connected layer of the state-value
function, and ξ denotes the parameter of the specifc con-
nected layer of the action advantage function. However,
there is an unidentifable problem in equation (32), which
means that the respective roles of state-value function and
action advantage function in the fnal Q value cannot be
identifed. To address that problem, dueling DQN sets ex-
pected value of the action advantage function to be zero at
the selected action and implements the forward mapping of
the last module of the network, which is written as

Q
π

st, at;ω, θ, ξ(  � V
π

st;ω, θ(  + A
π

st, at;ω, ξ(  −
1

|A|
× 

a′

A
π

st, at
′;ω, ξ( . (33)

Te separation of environmental state value and action
advantage in dueling DQN solves the problem of repeated
calculation of the same state value, enhancing the capability of
estimating the environmental state with a clear optimization
objective [22]. Terefore, we adopt dueling DQN in our

proposed network to decrease computational complexity and
training time.

Finally, the training process is formally described in
Algorithm 1.
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5. Simulation Results and Discussion

In this part, we depict the efectiveness of the proposed
scheme through simulation experiments. Firstly, the sim-
ulation environment and parameters are presented. Ten,
we analyze and discuss the results and the performance of
the proposed framework.

5.1. Simulation Parameters. In the simulation experiments,
we consider the network scenario with fve trains running on
the track, as well as two MEC servers managed by diferent
suppliers. Furthermore, we summarize other signifcant
simulation parameters in Table 1.

In order to assess how well the proposed framework
performs, we consider fve comparison schemes as follows.
(1) Te routing path is picked at random in the proposed
method without path selection. (2) An approach without
ofoading selection: the MEC servers conduct the com-
puting tasks at random. (3) Block sizes for created blocks are
fxed in the proposed approach. (4) A technique based on
natural DQN solves the problem as it is formulated. (5)
PBFT-based scheme: all blockchain nodes participate in the
consensus process.

5.2. Performance Comparison of Convergence. Te conver-
gence of the proposed optimization framework under various
learning rates is shown in Figure 3. As can be seen in this fgure,
the learning rate (10−1) performs better than other schemes. It is
because the large learning rate (10) might fall into local

optimum and fail to obtain the globally optimal solution of the
proposed problem. Moreover, the small learning rate (10−7)
likely led to the slow convergence rate and took longer to fnd
the optimal value. Hence, in this paper, the learning rate is
selected carefully and set to be 10−1.

As shown in Figure 4, we examine the convergence
performance under the diferent algorithms. It can be ob-
served that dueling DQN reaches higher system reward and
performs more stably than the scheme with natural DQN.
Te reason is that the chosen routing path, the selected MEC
server, and the selected block size can hardly afect the
changes of state in our scenario. Tus, our proposed scheme
with dueling DQN has more advantage to the decision of the
agent in this case.

Figure 5 depicts the comparison of system reward with
training steps under our proposed dBFT-based scheme and
PBFT-based scheme. We can see that dBFT-based scheme
gets higher total reward. It is because all nodes need to
participate in the consensus process under the PBFT-based
scheme. On the contrary, there is only a part of the trusted
nodes participating for consensus under the dBFT-based
scheme. Te dBFT algorithm reduces the computation
cycles and improves the efciency of the consensus process.
Terefore, our proposed dBFT-based scheme is more
suitable for the smart rail system with high-speed mobility.

5.3. Performance Comparison of Diferent Aspects.
Figure 6 presents the relationship between total latency and
task data size under diferent schemes. One observation is

(1) Initialization:
Initialize the experience memory D and the mini-batch size B;
Initialize evaluated network with the weight and bias set ω;
Initialize target network with the weight and bias set ω−;
Initialize the greedy coefcient ϵ;

(2) for I � 1, . . . , Imax do
(3) Reset the state of trains and MEC servers with a random initial observation sini, and s(t) � sini;
(4) for H � 1, . . . , Hmax do
(5) Randomly choose a probability p;
(6) if p< ϵ then
(7) Randomly choose an action a(t)≠ a∗(t) based on ϵ-greedy policy;
(8) else
(9) a(t) � a∗(t) � argmaxa∈A Q(s′, a′;ω′, θ′, ξ);
(10) end if
(11) Execute action a(t) and obtain the reward r(t), and proceed to the next observation s(t + 1);
(12) Store the experience (s(t), a(t), r(t), s(t + 1)) into experience replay memory;
(13) Randomly sample a mini-batch of (s(i), a(i), r(i), s(i + 1)) from experience replay memory D;
(14) Obtain two parts of evaluated network, including V(s(t)) and A(a(t)), and merge them as Q(s(t), a(t);ω, θ, ξ) through

equation (33);
(15) Obtain target Q value in target network by Qtarget(s) � re(t) + cmaxa∈A Q(s′, a′;ω′, θ′, ξ);
(16) Train evaluated network to minimize loss function L(ω) by L(ω) � E[(Qtarget(s) − Q(s′, a′;ω′, θ′, ξ′))2];
(17) Every several training steps, modify target Q-network according to evaluated Q-network;
(18) s(t)⟶ s(t + 1);
(19) end for
(20) end for

ALGORITHM 1: Performance optimization framework for MEC-enabled smart rail system by multi-hop data transmission and blockchain
based on dueling DQN.
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Table 1: Experiment parameters.

Parameters Value
Te number of nodes V 5
CPU cycles required to generate and verify a signature α 2 Mcycles [23]
CPU cycles required to generate and verify a MAC β 1 Mcycles [23]
Average transaction size L 20 kB
Average computing resources of MEC servers FR(t) 4×1010–6×1010 CPU cycles/s [2]
Size of ofoading task BMV(t) 500 kB
Computation density of application 200 CPU cycles/bit [2]
Unit price for data relaying Pr(t) 500–1000
Unit price for data computation Pc(t) 2000–3000
Weights of latency w1 0.6
Weights of cost w2 0.4
Learning rate 10–1
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0 2000 4000 6000 8000 10000 12000
Episode

1700

1800

1900

2000

2100

2200

2300

Proposed scheme (dueling DQN)
Natural-DQN-based scheme

To
ta

l r
ew

ar
d

Figure 4: Total reward with diverse learning algorithms.

0

1600

To
ta

l r
ew

ar
d

1700

1800

1900

2000

2100

2200

2300

Episode
2000 4000 6000 8000 10000 12000

Proposed scheme (dBFT)
PBFT-based scheme

Figure 5: Total reward under diferent consensus mechanisms.

200 300 400 500
Task data size (KB)

600 700

0.25

0.30

0.35

0.40

0.45

0.50

To
ta

l l
at

en
cy

 (s
)

Proposed scheme without
routing path selection
Proposed scheme

Proposed scheme 
with fixed block size
Proposed scheme without
offloading selection

Figure 6: Total latency versus task data size under various schemes.
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that total latency under all schemes increases with the in-
crease of task data size. Te reason is that the increase in task
size takes longer for end-to-end delivery and ofoading
computation. Moreover, we can see from this fgure that the
total latency under our proposed scheme is consistently
lower than that of others. It is because our proposed scheme
simultaneously optimizes the routing path selection, of-
loading strategy, and block size selection. On the contrary,
previous baselines just optimize a portion of these items.

Figure 7 illustrates the comparison of total cost with the
size of the task data under various schemes. We can see that
as the task data size increases, so does total cost of all
schemes. Furthermore, our proposed scheme is superior to

the schemes without routing path selection and ofoading
selection. Nevertheless, the scheme without fxed block size
performs better than the proposed scheme. Te reason is
that the state of link quality fuctuates according to the high-
speed movement of trains.

As shown in Figures 8 and 9, we examine the system
weighted expense and the total latency under diferent block
intervals. It can be observed that all the schemes gain a
higher system weighted expense and total latency with the
increase of the block intervals. Te overall system latency
and cost make up the system weighted expense. It is because
the block generation interval rises, which makes the delay of
blockchain higher. Additionally, system weighted expense
and total latency of the previous baselines are visibly higher
than those of our proposed scheme. Terefore, with joint
consideration of the adaptive routing path selection, the
optimal ofoading decision, and the appropriate block size
selection, our proposed scheme acts the best compared with
other schemes.

6. Conclusions

In this paper, an improved optimization framework for the
MEC-enabled smart rail system is proposed. In order to
enable the MEC servers to be utilized in a wider range while
meeting the low-latency requirement, multi-hop ad hoc
network was applied to our proposed network model.
Moreover, the blockchain technology based on the dBFT
consensus mechanism was considered and introduced to
efectively guarantee the security and reliability during
multi-hop data transmission. Ten, in order to reduce
system latency and cost, the routing path selection, of-
loading strategy, and block size selection are co-optimized.
We described the proposed dynamic majorization problem
as a MDP and adopted dueling DQN to solve it. Simulation
results demonstrated that the performance of the proposed
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scheme is better than existing baseline schemes. Further-
more, in the future, other routing mechanisms and cloud-
edge collaborative architecture would be considered in our
multi-hop ad hoc network for the smart rail system.
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