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Ametal lathe is a high-performance tool used in the field of metalworking to remove excess material and shapemetal parts. However,
engaging in metal turning operations carries risks that can lead to serious accidents and physical harm. It is crucial to ensure that
these systems are functioning correctly, as any malfunction or flaw can lead to dangerous situations. To maintain safety in industrial
environments, it is important to assess the risks and reliability of the equipment. A study was conducted using a method called fuzzy
fault tree analysis (FFTA), combined with fuzzy logic, to determine the probability of basic events. Bayesian networks (BNs) were
utilized to update probabilities and overcome limitations of the fault tree (FT). A Dynamic Bayesian Network (DBN) was employed
to estimate the reliability of a metal lathe in a specific scenario. The FT identified 57 root events and estimated the probability of
workpiece FLY-OUTS as 0.03174329 using the FT method and 0.031505849 using the BN method. Based on the predictions of the
DBN, system reliability decreased by 19.89% after 24 months. The FT diagram comprehensively captured all the factors associated
with FLY-OUTS, highlighting that improper closing of the part on the tool was a significant contributing factor. The study concludes
by proposing safety measures for turning operations based on the identified critical events.

1. Introduction

A metal lathe is a high-performance tool used in the field of
metalworking to remove excess material and shape metal
parts. However, engaging in metal turning operations carries
risks that can result in serious accidents and physical harm.
One of the primary hazards when operating a metal lathe is
the potential for contact with sharp components and moving
machinery. Failing to take the necessary precautions can
expose workers to the risk of severe injuries to their hands
and fingers. Additionally, if flammable and explosive sub-
stances are present in the work area, there is a possibility
of fire and explosion hazards [1].

The data reveal that accidents involving metal lathe
machines occur frequently and can present significant risks

to the involved workers. Machinists make up a substantial
part of the industrial workforce in the United States. Nonve-
hicle machinery accounts for over 10% of total annual work-
related injuries. It is estimated that ∼3,400 metal lathe opera-
tors in the US suffer work-related injuries resulting in time off
each year. These incidents encompass a range of injuries,
including cuts, fractures, wounds, and bruises, with some
instances potentially leading to fatalities [2].

A study conducted on a small electrical equipment and
parts manufacturing plant revealed that lathe accidents
ranked fifth in terms of frequency, following accidents
involving woodworking machines, metal cutting saws, elec-
tric presses, and drilling machines [3].

With the emergence of new technologies and the increas-
ing complexity of modern manufacturing systems, it has
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become imperative to establish reliable and effective mainte-
nance programs. These programs play a crucial role in ensur-
ing high levels of productivity and availability, while also
minimizing costs and unexpected shutdowns [4, 5]. In order
to facilitate decision-making in maintenance activities within
process-oriented systems, researchers have concentrated on
risk-based and reliability-based approaches. These methods
have been widely utilized to identify areas of concern, address
problems, and continuously monitor systems. Both data-
based and knowledge-based techniques have been employed
in this context. Knowledge-basedmethods are highly valuable
when combined with data-based techniques, as they enhance
the evaluation of risk and reliability, facilitate fault diagnosis,
and support maintenance decision-making [6, 7]. These
approaches prove to be particularly useful when confronted
with incomplete or inaccurate data pertaining to equipment
failure, environmental factors, and human activities [8–10].
Numerous knowledge-based methods are available, primarily
focusing on risk and reliability analysis. Some examples
include failure mode and effect analysis (FMEA), hazard anal-
ysis critical control points (HACCP), hazard and operability
study (HAZOP), event tree analysis (ETA), fault tree analysis
(FTA), among others [8, 11–15]. FTA is regarded as a power-
ful diagnostic tool and has been one of the most significant
knowledge-based methods since the twentieth century. It is
recognized as a comparative technique used to identify com-
binations of system and human errors [6, 16].

FTA analyses are typically categorized into two levels:
qualitative and quantitative. Qualitative analysis involves
transforming tree networks into minimal cut sets (MCS),
which consist of the smallest combinations of basic events
(BE) necessary to establish the top event (TE). In quantitative
analysis, mathematical calculations are employed to deter-
mine the probability of occurrence for the top event (TE) and
other indicators that possess similar importance criteria [17,
18]. Once the FTA structure has been created, the results can
provide valuable insights into the reliability of the system. By
identifying the units of the system that are at immediate risk,
the analyst can swiftly implement corrective measures to
address any critical units in jeopardy.

Indeed, this analysis method illustrates how the failure of
individual units, human error, or environmental factors can
lead to a system-wide failure [19, 20]. The FTA technique has
found diverse applications in numerous industrial systems
and is extensively utilized. For instance, it is employed in
system safety assessments for nuclear reactors and gas distri-
bution systems [20, 21]. Risk and reliability analysis have
been employed in various sectors including automotive,
chemical, and petrochemical industries [22–24]. Electronic
components, pipelines, and aerospace systems are subjected
to failure diagnosis [25, 26]. Suryoputro et al. [27] employed
several techniques, including the Systematic Human Action
Reliability Procedure (SHARP), Hazard Identification and
Risk Assessment (HIRA), FTA, and FMEA, to investigate
human reliability and lathe safety. Oriola et al. [28] con-
ducted a study on lathe functionality using FTA, and their
findings indicated that the most probable type of accident
would involve occurrences of FLY-OUT.

While the classic FTA technique offers several advan-
tages and has been associated with successful outcomes, it
also possesses various drawbacks and limitations. These
include the necessity to simplify models due to system com-
plexity and gaps in knowledge regarding system behavior,
the potential for human error during fault tree (FT) con-
struction, and the presence of unforeseen failures. Such
uncertainties can not only affect the accuracy of expected
analysis results but also impact decision-making and the
implementation of corrective measures. Consequently, there
is a need to address these uncertainties in order to enhance
the validity of FTA findings [6, 16]. To address uncertainties
and complement classical FTA calculations, researchers
often propose utilizing computational knowledge and deci-
sion tree network techniques or theories. One technique fre-
quently referenced in this context is the fuzzy sets theory
(FST), which was introduced by Zadeh [29] in 1965 to
address uncertainty issues associated with FTA. The FST is
utilized to handle both data and ambiguous knowledge that
is difficult to express or analyze using precise numerical
values.

The system is designed to better align with how humans
process information and has the capability to mathematically
process qualitative language used by experts in a specific field
[30]. Due to the significant level of uncertainty commonly
found in data and information related to accident analysis
and risk assessment, FST has been extensively utilized in
these fields for various applications. Numerous investiga-
tions have been conducted across various fields utilizing
FST to tackle the uncertainties and data deficiencies inherent
in traditional FTA. Recently, Aghaei et al. [31] developed a
model called Fuzzy Fault Tree Analysis (FFTA) to assess
safety risks associated with the implementation of shopping
mall construction projects. The objective of this model is to
identify the sources of potential risks and recommend appro-
priate strategies for their management. In another study,
Yazdi et al. [32] developed the FFTA model by incorporating
expert input to determine event probability. Furthermore,
they employed an importance measurement technique to
reduce the probability of TEs occurring with respect to three
factors: safety consequences, cost, and profit. Based on the
findings, this method proves to be highly effective in deter-
mining the probability of reliability.

While the utilization of this theory can reduce ambiguity,
its composition remains unchanged and lacks the ability for
comparative reasoning. In recent years, several efforts have
been made to address these issues by incorporating novel and
dynamic approaches such as Bayesian networks (BNs), evi-
dence theory, Monte Carlo models, and Marco’s method
[33]. Among the mentioned techniques, the BN methodol-
ogy stands out for its distinct attributes in evaluating hazards
and analyzing incidents. This specific method was employed
by Barua et al. [34], Li et al. [35], Guo et al. [36], and
Mohammadi et al. [37]. The utilization of BNs is widespread
in various engineering fields, including reliability engineer-
ing and risk evaluation [38]. However, the limitation of BNs
lies in the absence of a causal feedback loop, which can
complicate receiving network feedback. Nevertheless, this
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challenge is overcome by utilizing dynamic Bayesian net-
works (DBNs) as an alternative for time series data. DBN
can replicate time lags in the data and construct loop net-
works, contrary to BN which relies on static data. Instead,
DBN employs time series data to establish causal relation-
ships between random variables [39]. Moreover, certain
studies have utilized DBN to examine the cascading effects
in chemical processing infrastructure [40].

Cai et al. [41] introduced a technique to assess compre-
hensive safety levels by employing DBN. In another study,
researchers modeled the outcomes of incidents occurring in
metal turning machining operations using a Bayesian Belief
Network (BBN) [42].

The main objective of this study was to develop a strategy
for evaluating and analyzing the risk and reliability of metal
lathe machining operations under uncertain conditions. To
achieve this, the researchers utilized the FT approach to
identify the root causes of machine failure. Additionally,
they employed fuzzy theory along with expert opinion to
estimate the probability of these events occurring. As stan-
dard BNs have limitations in capturing the dynamic nature
of FTs, this research utilized a DBN model to evaluate the
reliability of lathe machining operations over time. By adopt-
ing this approach, it becomes possible to identify critical
factors contributing to low reliability and formulate effective
strategies for preventing machine failure.

2. Materials and Methods

The research employed the FT method, along with fuzzy
theory and DBN, to assess risks, analyze data, and ascertain
the reliability of lathe machining operations. The cognitive
diagram used in the research is shown in Figure 1, and a
detailed explanation of each step can be found below.

2.1. FT Approach

2.1.1. Comprehending the Metal Lathe’s Design and
Functionality, as well as Selecting the Primary Event. At the
outset, a comprehensive gathering of detailed information
and specific details pertaining to all components of the sys-
tem, as well as the physical and functional relationships
between these parts associated with the metal lathe, was
conducted. All technical and functional documents related
to the metal lathe, including its operation during turning
processes, as well as other documents pertaining to its activ-
ity, were acquired and thoroughly examined. By reviewing
available resources and consulting with experts in the field, it
was possible to categorize the lathe into four subsystems:
structural, mechanical, electrical, and functional features,
along with safety measures. This approach facilitated a com-
prehensive understanding of errors, malfunctions, and
defects that occurred within the lathe.

2.1.2. FT Development. The FT technique is a widely recog-
nized and systematic approach used to identify the potential
causes behind an undesired event or a significant occurrence
that can lead to adverse safety and financial consequences
[43]. This method entails organizing the potential sources of
failure into a hierarchical structure or logic tree, with the

most general causes at the top and the specific causes at the
bottom. The resulting structure is subsequently analyzed to
assess the probability of the final outcome, either through
subjective assessment or numerical analysis [44]. The research
employed the FT technique to identify the basic events that
influence the primary hazard and determine its probability of
occurring.

2.1.3. FT Validation. Content validity demonstrates the extent
to which a tool adequately measures all dimensions of the
intended concept. There are various approaches to evaluate
validity, with content validity being the most prevalent. It is
determined by calculating the content validity ratio (CVR) and
the Content Validity Index (CVI). This research utilized both
of these criteria to evaluate the significance and essentiality of
basic events, intermediate events, and types of gates. For this
research, a team of five specialists was selected fromuniversities
and workshops. The team comprises two HSE experts, one
senior mechanical expert, and two university experts. The
role of the team was to address any uncertainties in the initial
FT structure, and a brainstorming approach was employed to
gather their insights. The validation process of the FT is shown
in Figure 2, based on the feedback provided by this specialized
team. The CVR is a technique used to assess the validity of an
instrument. This methodology was developed by Lawshe [45].
To calculate this ratio, expert opinions from the relevant field
are sought. The experts are informed about the objectives of the
assessment and provided with operational definitions pertain-
ing to the content of the questions. Each question is rated on a
scale of 1–3, with 1 indicating that it is not necessary and 3
indicating that it is essential. Equation (1) is then utilized to
compute the CVR value.

CVR ¼ nE −
N
2

N
2

: ð1Þ

The CVR equation incorporates two variables: “nE” repre-
senting the number of expertswho considered a specific question
necessary; and “N,” which denotes the total number of experts.

Referring to the Lawshe table, it was determined that for
a panel comprising 11 experts, the minimum acceptable
CVR value is 0.59. Any value below this threshold is deemed
unacceptable in terms of content validity. The validity of the
questionnaire can be evaluated using a tool known as the
CVI [46]. Experts are requested to assess each component
using a 4-point Likert scale, where 1 denotes it as not relevant
and 4 signifies it as highly relevant. The number of experts
who select option 3 or 4 is divided by the total number of
experts to compute the CVI score. If the resulting score is
below 0.7, the component is eliminated; if it falls within the
range of 0.7–0.79, it necessitates revision; and if the score
surpasses 0.79, it is deemed acceptable.

2.2. FST

2.2.1. The Use of FST to Determine the Probability of Basic
Event. Due to the unavailability of data for the identified
basic events in this study, the probability of the TE was
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estimated using FST and expert opinions. To evaluate the
probability of basic events, a combination of FST and expert
input was employed. Many research studies have utilized
FST to gather expert opinions and address potential uncer-
tainties in failure data. The primary focus of FST lies in
measuring the quality index [37, 47]. The following steps
outline the procedure for utilizing this theory to ascertain
the probability of basic events.

Step 1: to commence, a panel of experts was asked to
express their assessment of failure using linguis-
tic expressions. The five-term linguistic scale pro-
posed by Chen and Hwang [48] was utilized to
gauge the significance of expert opinions and
ascertain their influence on the probability of
basic event failures. Several studies, such as Zarei
et al. [49] and Omidvari et al. [50], have
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FIGURE 1: Research method.
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previously employed this approach. The scale
comprises five categories: very low (0, 0, 0.1,
0.2), low (0.1, 0.25, 0.25, 0.4), medium (0.3, 0.5,
0.5, 0.7), high (0.6, 0.75, 0.75, 0.9), and too high
(0.8, 0.9, 1, 1).

Step 2: in the subsequent phase, it becomes necessary to
calculate the level of consensus between each pair
of experts. This is achieved by computing the
dissimilarity between the perspectives of two
experts, Ru=A (a1, a2, a3), and Rv=B (b1, b2,
b3), using Equation (2).

d eA; eB� �
¼ 1
J ¼ 3 or 4

∑
3 or 4

i¼1
ai − bij j: ð2Þ

In Equation (2), ai corresponds to the matching compo-
nents of A, and bi represents the matching components of B.
The variable J is set to 3 for triangular fuzzy numbers and 4
for trapezoidal fuzzy numbers. The degree of agreement
between the two experts is subsequently determined by
applying Equation (3).

Suv eRu −
eRv

À Á¼ S eA; eB� �
¼ 1 − d eA; eB� �

: ð3Þ

Here, Suv R̃u −
À

R̃vÞ refers to the level of concurrence
between experts u and v.
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FIGURE 2: Fault tree validation process.
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Step 3: by utilizing the consensus levels determined for
each pair of experts, Equation (4) is employed to
calculate the average agreement (AA) score for
each expert.

AA Euð Þ ¼ 1
m − 1

∑
3

u≠1
eRu −

eRv

À Á
; ð4Þ

AA Euð Þ represents the average level of agreement for
expert u.

Step 4: Equation (5) is utilized to determine the relative
agreement (RA), which is calculated based on the
average agreement computed for all experts.

RA Euð Þ ¼ AA Euð Þ
∑m

u¼1AA Euð Þ ; ð5Þ

RA Euð Þ denotes the level of relative agreement on the
viewpoint provided by expert u, and ∑m

u¼1AA Euð Þ is equals 1.

Step 5: Equation (6) is used to determine the overall agree-
ment among all experts, considering the degrees of
agreement established for each pair of experts.

CC Euð Þ ¼ β ⋅ W Euð Þ þ 1 − βð Þ ⋅ RA Euð Þ; ð6Þ

CC Euð Þ is determined based on the expert opinion of “u,”
with “W” representing the weight assigned to expert “u,” and
“β” denoting a relaxation factor that indicates the signifi-
cance of “W” in relation to RA. The value of β can range
from zero to one. A greater value of β implies a heightened
emphasis on “W” as opposed to RA. When a homogeneous
group of experts provides their opinions, β equals zero. This
indicates that when all experts have an equal weight, β must
be regarded as zero.

Step 6: weighting experts with the Fuzzy Hierarchy
Analysis Process (FAHP) approach

Selecting experts is considered a technique for assessing
the probability of events. This approach is seen as a way to
deal with uncertainties and insufficient data, providing valu-
able insights for risk evaluation [51]. In this study, a diverse
group of experts was recruited, and the FAHP method was
employed to assign weights to these experts. While the Ana-
lytic Hierarchy Process (AHP) is often used to choose a
preferred option frommultiple alternatives, in this case, pair-
wise comparisons were made at each level to achieve the
desired result [52]. The traditional AHP technique has sev-
eral limitations. It is primarily suitable for simple decisions,
heavily relies on subjective judgments, and does not account

for the inherent uncertainties in individual evaluations. Here
is my attempt at paraphrasing the text: the rankings pro-
duced using this method may lack accuracy due to the sub-
jective nature of evaluations and decisions made by decision-
makers. The outcomes of AHP are heavily influenced by an
individual’s preferences, judgments, and subjective assess-
ments of quality indicators, which inherently contain ambi-
guity. The traditional AHP method may not fully meet the
specific criteria set by decision-makers. To address the ambi-
guity and vagueness in human preferences, FST can be incor-
porated with pairwise comparisons to enhance the AHP
approach. This integrated approach provides a more com-
prehensive understanding of the decision-making process
[51, 53]. The method used in this study to calculate the
weights of the experts was based on Buckley’s technique,
following the approach described by Yazdi et al. [54].

Step 7: the next step involved synthesizing the experts’
opinions using Equation (7) as described in the
study.

eRAG ¼ ∑
m

i¼1
CC Eið Þ: eRi ð7Þ

Step 8: in this specific stage, the RAG computed in the
previous step is transformed into a fuzzy set R̃AG.
To obtain a single value known as the Fuzzy Prob-
ability Score (FPS), which represents the probabil-
ity of BEs, a defuzzing method needs to be applied.
Defuzzing involves converting fuzzy sets into pre-
cise values [30]. Several techniques can be
employed for defuzzing, including maximum first,
fuzzy average, area bisector, center of gravity
(COA), center of area, extended center, and fuzzy
clustering. In this study, the COA method, devel-
oped by Onisawa [55] and described in Equation
(8), was utilized for the fuzzification process. The
result of this stage was adopted as the failure rate
associated with the root causes.

X∗ ¼

Z
ui xð ÞxdxZ
ui xð Þdx

: ð8Þ

In this context, X ∗ represents the explicit output, while
μ(x) refers to the combined membership function, with x
representing the output variable. Equation (9) is used to rep-
resent the formula for a triangular fuzzy numberA (a1, a2, a3).

X∗ ¼

Z
a2

a

x−a1
a2−a1

xdx þ
Z

a3

a2

a3−x
a3−a2

xdxZ
ui xð Þdx þ

Z
a3

a2

a3−x
a3−a2

dx
¼ 1
3

a1 þ a2 þ a3ð Þ:

ð9Þ
To denote the formula for a trapezoidal fuzzy number A

(a1, a2, a3), Equation (10) can be expressed.
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X∗ ¼

Z
a2

a

x−a1
a2−a1

xdx þ
Z

a3

a2

a3−x
a3−a2

xdxZ
ui xð Þdx þ

Z
a3

a2

a3−x
a3−a2

dx

¼ 1
3
×

a4 þ a3ð Þ2 − a4a3 − a1 þ a2ð Þ2 þ a1a2
a4 þ a3 − a1 − a2ð Þ :

ð10Þ

Step 9: TE and failure probability (FP): during the defuzz-
ing stage, a number represented as CFP is obtained
for each event. The derived number needs to be
transformed from possibility to probability, which
can be achieved using Equations (11) and (12).
These equations play a crucial role in computing
the FP associated with the events [56].

FP¼
1

10K
→ CFP ≠ 0

0→ CFP¼ 0

8<
: ; ð11Þ

K ¼ 1 − CFP
CFP

� �1
3

× 2:301: ð12Þ

The process involves several variables, including FP,
which represents the FP. Additionally, there is CFP, which
stands for conditional FP obtained during defuzzification,
and K, an intermediary variable that depends on CFP.

Step 10: to determine the probability of the occurrence of
MCS and TE, Equations (13)–(15) are employed
to estimate the probability of intermediate events
linked to the main event. The calculations per-
formed using these equations are generally influ-
enced by the type of gate utilized.

Por ¼ 1 − ∏
n

i¼1
1 − Pið Þ; ð13Þ

Pand ¼ ∏
n

i¼1
Pi; ð14Þ

P TEð Þ ¼ 1 − ∏
K

j¼1
1 − P MCSj

À ÁÀ Á
: ð15Þ

In this scenario, Pi represents the probability associated
with basic event i, while P MCSj

À Á
denotes the probability of

main cut set j. Similarly, P(TE) indicates the probability of
TE occurrence.

2.3. BN Modeling. The BN methodology is a graphical model
that illustrates the connections among various target

variables. The network comprises qualitative and quantita-
tive components. In the qualitative segment, the structural
model depicts the relationships between the variables and
incorporates a continuous probability distribution that
applies to all variables. The quantitative aspect of the BN
strategy provides a series of localized probability descriptions
that are vital for determining probabilities and numerically
evaluating variables or groups of variables. It is important to
note that BN is a directed graph without any cycles [57]. BNs
rely on the Bayesian theory for probability revision and pos-
sess a remarkably versatile and adaptable characteristic for
modeling various event scenarios in real time. These net-
works calculate the joint probability distribution by utilizing
a range of variables [58, 59].

During this investigation, the basic, intermediate, and TE
identified in the FT model are considered as the root, inter-
mediate, and TEs in BN [60]. Jensen and Nielsen [58] have
noted that the BN probability distribution includes a set of
variables due to conditional dependence and chain rules, as
depicted in Equation (16).

P Uð Þ ¼ ∏
n−1

i¼1
P Xi Xiþ1;…;Xnj jð Þ: ð16Þ

Here, U ¼ X1;f X2;…;XnÞ and Xiþ1;…;Xn are its
parents.

The ability to perform both inductive and deductive rea-
soning is regarded as one of the most significant features of
BNs. Inductive reasoning involves predicting and estimating
the probability of events and their outcomes. While the FT
model can also engage in this type of reasoning, it may
generate inaccurate estimations of incident scenario proba-
bilities and consequently, final consequence probabilities due
to the outlined limitations [61, 62]. The capacity for deduc-
tive reasoning is a noteworthy attribute of BNs, proving to be
highly advantageous in dynamic risk assessment. This char-
acteristic makes the network structure highly flexible and
allows for the updating of the probability of basic event
occurrence by considering data on precursor events. Con-
ducting a risk analysis enables the identification of the key
basic event that contributes substantially to the occurrence of
the main event through the updating of the probability of
basic event occurrence [63]. This study has applied this logic
to revise the probability of basic events.

2.3.1. Sensitivity Analysis in BNs. In BNs, the conventional
interpretations of significance criteria such as rate of varia-
tion (ROV) and Birnbaum importance measure (BIM) are
expanded through the use of probability regulations. Fur-
thermore, by employing newly established definitions within
the BN structure, FT boundaries can be assessed, and critical
events can be identified. Equation (17) was employed to
compare the prior and posterior probabilities of basic events
and determine the most critical one. The ROV measure was
utilized for this purpose [63].

Mathematical Problems in Engineering 7



ROV BEið Þ ¼ π BEið Þ − θ BEið Þ
θ BEið Þ ; ð17Þ

where π BEið Þ refers to the probability of the basic event after
being updated BEi. The θ BEið Þ denotes the probability of the
basic event before being updated BEi.

2.3.2. BIM Criterion. By employing this approach, the key
components of the system are identified by assessing the
degree to which the probability of failure or health for a
component aligns with the probability of failure or health
for the entire system. Put simply, we evaluate the importance
of a component’s probability in relation to the overall func-
tioning of the system. Equation (18) is employed to compute
this metric [57].

BIM BEið Þ ¼ P TE BEij ¼ Trueð Þ − P TE BEij ¼ Falseð Þ:
ð18Þ

In the text mentioned earlier, P TE BEijð ¼TrueÞ refers to
the probability of the TE happening when the base event BEi
is true in the base node of the BN. P TE BEij ¼ð FalseÞ state-
ment can be rephrased as the probability of the TE occurring
when the base event in the base node BN is false.

2.4. Fussell–Vesely Criteria to Determine the Importance and
Classification of Basic Events. After calculating the overall
occurrence rate, the Fussell–Vesely equation (Equation
(19)) is utilized to assess the significance of the MCS in
relation to the obtained value. Following that, these MCS
are categorized according to their level of importance [64].

FVI ið Þ ¼MCSi
TE

: ð19Þ

The value of TE is determined using Equation (15).

2.5. Reliability Estimation. In order to assess the reliability of
a turning operation, it can be assumed that if the operation is
functioning smoothly at the beginning (time zero), its
dependability would be the probability of it continuing to
operate without any failure within a specific timeframe and
under normal conditions. This study has utilized DBNs to
evaluate the dependability of lathe turning operations.

2.5.1. DBNs Modeling. DBNs are an extension of BNs that
serve two primary purposes. First, they can detect cyclic
interdependence over time, similar to the Markov model.
Second, they function as a continuous process that repeats
within a defined timeframe. The variables in a DBN are
interconnected, and there is no need to disregard causal
relationships with consistent time intervals. This allows
each relationship to form a cycle. A DBN model operates
as a Markov process that maintains stability over time, even
when influenced by various factors and changes. DBNs are
specifically designed to accommodate modifications in
incomplete structures, enhancing their analytical capabilities
by accounting for the uncertainty that governs the model.

DBNs serve as extensions of BNs, enabling effective modeling
of probability distributions for random variables. To define a
DBN, a format involving two variables B1;ð B→Þ is utilized.
The term “B1” is used to describe a BN that sets the initial
probability of Z1, and another variable B1;ð B→Þ involved.
Using a loop-free graph represented by Equation (18), a Two
Times Bayesian Network structure (2TBN) is employed to
determine the probability distribution P Zt Zt−1jð Þ [65].

P Zt Zt−1jð Þ ¼ ∏
N

i¼1
P Zi

t Paj Zi
tð Þð Þ; ð20Þ

where Zi
t is the ith node at time t; and Pa Zi

tð Þ is the parent of
Zi
t in the graph.

3. Results

3.1. FT Approach

3.1.1. Understanding the Structure and Operation of the
Metal Lathe and Determining the TE. Based on an analysis
of multiple reports, this study aims to examine occurrences
in which the workpiece is ejected during a turning operation
and optimize the said operation. These ejections may encom-
pass situations where the tool exits during the machining
process, instances where the workpiece is expelled, and cases
where the removal of swarf affects the turning or shaping
processes. Through their research, Oriola et al. [28] discov-
ered that the most probable accident to transpire within a
metal lathe machining system is the phenomenon known as
FLY-OUTS.

3.1.2. Drawing the FT and its Validation. An expert panel,
comprises relevant specialists and operational staff, con-
structed the FT pertaining to FLY-OUTS during a turning
operation (see Figure 3). Subsequently, a team of experts
evaluated the accuracy of the content concerning the basic
events in relation to their location and gate type using CVI
and CVR. Corrections were implemented based on their
assessments. For instance, the gate connecting the basic
events associated with the IE2 intermediate event was desig-
nated as “or”. The internal corrosion event of the grip chuck
was excluded from the FT due to low CVI and CVR values,
whereas the final base events exhibited high values. Detailed
descriptions of the 57 identified basic events and 28 final
events are shown in Tables 1 and 2, respectively.

3.2. FST

3.2.1. Determining Probability of Basic Event Using FST.
Before determining the probability of a root event failing,
it is crucial to establish its failure rate. A technique that
involves five scales, based on the indicators from the Ishi-
kawa et al. [66] study, was used to calculate the probability of
basic events occurring. Initially, a team comprising five
experts with different roles was chosen to evaluate the prob-
ability of these events. The team consisted of a chief mechan-
ical engineer, unit supervisor, mechanical expert, unit
technician, and lathe operator. To assess the significance of
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BE54 BE55
BE56 BE57

BE31

BE41

FIGURE 3: FT diagram of the FLY-OUTS.

TABLE 1: Description of intermediate events in metal lathes relevant failure.

Symbol Intermediate event Symbol Intermediate event

IE1 Deficiency of grip chuck IE15 Gathering of flouncy in grip chuck

IE2 Failure to hold the workpiece IE16
Loose connections and screws of the

upper jaw
IE3 Tool post defect IE17 Functional defect of the cutting tool
IE4 Defective cooling system IE18 Defective coolant outlet

IE5
Installation and assembly error of

machine components
IE19 Defective cooling pump motor

IE6 Inappropriate performance speed IE20 Speed control malfunction
IE7 Safety guard error IE21 Shaking
IE8 Improper feeding rate IE22 Lock lever not working properly
IE9 Tail stock IE23 Spindle heating
IE10 Workpiece vibration IE24 High noise of the spindle
IE11 Insufficient rotation and movement IE25 Spindle cutting stop
IE12 Not moving supports or Vernier’s IE26 Incorrect spindle orientation

IE13 Malfunction of the grip chuck key IE27
Corrosion and tearing of the grater or tool

post
IE14 Spindle defect IE28 Low coolant level

Mathematical Problems in Engineering 9



their evaluations, the fuzzy AHP method was employed. The
weighting profile of these five experts is shown in Table 3.

The next step involved determining the fuzzy numbers
that corresponded to the individual assessments provided by
each expert. These fuzzy numbers were then converted into
specific values, allowing us to determine the probability of
each basic event. The results of this analysis are shown in
Table 4. According to this table, BE31 had the highest impact

rate, followed by BE29 and BE28. On the other hand, among
the contributing factors, BE36 was found to have the least
influence.

After establishing the probability of the basic events, we
proceeded to calculate the probability of the TE using the FT
method. This included analyzing the type of gate between the
events. The resulting probability value from this analysis was
determined to be 0.03174329.

TABLE 2: Description of basic events.

Symbol Basic event Symbol Basic event

BE1
Changing the shape of the upper jaw and
not being in the center of the workpiece

BE30 Wear and tear of cutting tools

BE2
Deformation of the workpiece due to high

gripping force
BE31

The workpiece is not properly closed on
the cutting tool

BE3 Improper shaping of the upper jaw BE32 Head stock screw defect

BE4
The inadequacy of the three systems and

the fact that they are too far away
BE33 Poor coolant flow

BE5
Malfunction of the ratchet wrench or tool

holder
BE34

Damage or blockage of the coolant valve
hole

BE6
Shutting off the cooling system and

cutting off the liquid
BE35 Inlet or outlet hose blockage

BE7 Failure of the pump body BE36 Coolant nozzle blockage
BE8 Human error in installation BE37 Engine bearing failure
BE9 Lack of integrity of equipment BE38 Not receiving voltage

BE10
Unavailability of installation industrial

map
BE39 Electrical circuit fault

BE11 Variable operating speed BE40 Speed change lever error

BE12 The presence of chips and pleats BE41
The workpiece is not placed correctly in

the cutting tool

BE13
Not having enough strength against the

incoming force
BE42

Variable spindle speed and excessive
feeding

BE14
The cutting part is not aligned with the

fixed bird tool
BE43 Not setting the supports

BE15 Insufficient rotation and movement BE44 Improper maintenance
BE16 Not moving the supports BE45 Absence or lack of lubricating fluid

BE17 Excessive cutting force BE46
High cutting force exceeding the tolerance

of the spindle

BE18
The diameter of the supports is not
suitable with the diameter of the

workpiece
BE47 Bearing wear

BE19 Lack of grip strength BE48 Bearing and gear damage

BE20
The presence of chips and pleats inside

the cutting tool
BE49

Weakness of the dynamic balance of the
spindle assembly

BE21 Loose supports or jaws BE50 The gearbox belt is worn

BE22
The inappropriateness of the three

systems
BE51 The transmission belt is loose

BE23 Corrosion and wear of support tools BE52 Spindle taper position is not adjusted
BE24 Support gearbox not working BE53 Conical spindle looseness
BE25 Not having the output of three systems BE54 Feeding speed too low
BE26 Defect of toothed part or wrench operator BE55 Cutting speed too high

BE27
The size of the three-system wrench is not

suitable
BE56 Damage to the liquid level float sensor

BE28 Lack of periodic cleaning
BE57

Sensor error related to liquid level
indicatorBE29 Hard access to the feeding area
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TABLE 3: Weight profile of experts.

Experts Job filed Education level Work experience (year) Age (year) Weighted score of each experts

Expert 1 Department’s supervisor Bachelor 20–30 40–50 0.296
Expert 2 Lathe operator Associate degree <6 30–39 0.084
Expert 3 Department’s technician Diploma 10–19 40–50 0.152
Expert 4 Mechanical engineer Bachelor 10–19 30–39 0.166
Expert 5 Senior Engineer Master 20–30 40–50 0.302

TABLE 4: Expert opinions and fuzzy probability of basic events.

Basic events E1, E2, E3, E4, and E5 Fuzzy corresponding number d K Fuzzy probability

1 VL VL VL L L 0.047 0.117 0.17 0.293 0.302 3.042 0.00090782
2 M L L M H 0.342 0.515 0.515 0.687 0.236 3.404 0.00039446
3 M L L L L 0.158 0.322 0.322 0.486 0.217 3.529 0.0002958
4 VL L L L H 0.221 0.327 0.356 0.491 0.289 3.106 0.00078343
5 H H H H VH 0.658 0.792 0.823 0.927 0.336 2.888 0.0012942
6 VH L L H H 0.538 0.673 0.702 0.808 0.32 2.958 0.00110154
7 H L L H H 0.538 0.673 0.702 0.808 0.32 2.958 0.00110154
8 L L L L L 0.1 0.249 0.249 0.398 0.233 3.423 0.00037757
9 VL VL VL VL VL 0 0 0.1 0.199 0.364 2.771 0.00169434
10 VL VL VL VL VL 0 0 0.1 0.199 0.364 2.771 0.00169434
11 VH VL VL M H 0.465 0.572 0.625 0.727 0.324 2.94 0.00114815
12 M M M H H 0.439 0.615 0.615 0.791 0.248 3.33 0.00046774
13 L L L M H 0.284 0.442 0.442 0.599 0.248 3.33 0.00046774
14 H M M H H 0.527 0.688 0.688 0.849 0.283 3.137 0.00072946
15 M M M L M 0.266 0.457 0.457 0.647 0.195 3.691 0.0002037
16 H H H H H 0.598 0.747 0.747 0.896 0.309 3.009 0.00097949
17 M L L M L 0.191 0.364 0.364 0.536 0.209 3.586 0.00025942
18 VH H H H H 0.656 0.791 0.82 0.926 0.335 2.892 0.00128233
19 H M M H H 0.527 0.688 0.688 0.849 0.283 3.137 0.00072946
20 M M M M H 0.389 0.574 0.574 0.758 0.227 3.462 0.00034514
21 H H H H H 0.598 0.747 0.747 0.896 0.309 3.009 0.00097949
22 H H H H H 0.598 0.747 0.747 0.896 0.309 3.009 0.00097949
23 M H M H H 0.464 0.636 0.636 0.808 0.258 3.272 0.00053456
24 H H H H VH 0.658 0.792 0.823 0.927 0.336 2.888 0.0012942
25 L L L L VL 0.04 0.101 0.16 0.28 0.31 3.004 0.00099083
26 VL L L L L 0.07 0.176 0.205 0.34 0.271 3.2 0.00063096
27 L L L L M 0.16 0.325 0.325 0.489 0.217 3.529 0.0002958
28 VL VL VL VL VL 0 0 0.1 0.199 0.364 2.771 0.00169434
29 VL VL VL VL VL 0 0 0.1 0.199 0.364 2.771 0.00169434
30 M H H H VH 0.57 0.719 0.75 0.868 0.306 3.023 0.00094842
31 VH VH VH VH VH 0.797 0.896 0.996 0.996 0.389 2.675 0.00211349
32 M M M M H 0.389 0.574 0.574 0.758 0.227 3.462 0.00034514
33 M L L M H 0.342 0.515 0.515 0.687 0.236 3.404 0.00039446
34 M M M H H 0.439 0.615 0.615 0.791 0.248 3.33 0.00046774
35 M M M H H 0.439 0.615 0.615 0.791 0.248 3.33 0.00046774
36 M M M M M 0.299 0.498 0.498 0.697 0.189 3.739 0.00018239
37 L L L M M 0.193 0.366 0.366 0.539 0.209 3.586 0.00025942
38 H H H H H 0.598 0.747 0.747 0.896 0.309 3.009 0.00097949
39 M M M M H 0.389 0.574 0.574 0.758 0.227 3.462 0.00034514
40 M M M M H 0.389 0.574 0.574 0.758 0.227 3.462 0.00034514
41 VH H H H H 0.656 0.791 0.82 0.926 0.335 2.892 0.00128233
42 M M M M H 0.389 0.574 0.574 0.758 0.227 3.462 0.00034514

Mathematical Problems in Engineering 11



3.3. Bayesian Modeling and Analysis

3.3.1. Determination of Basic Event Using FBN. The results
obtained from the methodology presented in this study were
inputted into the GeNIe software (version 4.00) after deter-
mining the probability of basic events using FST. The prior
and posterior probabilities were then calculated using BN
update, and these values are shown in Table 5. A total of
57 basic events related to FLY-OUTS were identified during
lathe turning operations. The FT approach was utilized,
revealing that BE (36) and BE (33) had the lowest probability
of failure based on the obtained results. By estimating the
rate of main event failure using the FT model, a value of
0.031505849 was derived. However, according to the findings
of the BN analysis, the rate of TE is lower than this value.
Figure 4 shows the modeling of the FT in the BN.

3.3.2. Deductive and Inductive Reasoning. Both the FT and
BN methods employ inductive reasoning, as evident from
their respective results shown in columns 3 and 6 of Table 5.
The FT approach estimates the probability of the TE to be
0.03174329, while the BN approach, in the previous state,
yields a slightly lower probability of 0.031505849. The BN
method possesses a distinctive attribute of analogical reason-
ing, which allows it to update basic events by incorporating
information on events and quasi-events, thus rendering the
model dynamic.

The outcomes of deductive reasoning can be observed in the
fourth and eighth columns of Table 5, representing the revised
probabilities of basic events calculated using GeNIe software.
The updated probability values disclose that BE (31), BE (29),
and BE (28) exert the greatest influence on the occurrence of TE,
whereas BE (33), BE (57), and BE (38) have the least impact on
the primary event. This characteristic of BNs facilitates the iden-
tification of the most significant basic event.

3.3.3. Sensitivity Analysis. In this study, the BIM and ROV
methods were utilized in combination with the Fussell–Vesely

criteria to assess the sensitivity of BNs and determine themost
critical basic event. The results of the sensitivity analysis,
shown in Figure 5, unveiled that among the 38 basic events,
BE31 and BE29 held the highest significance.

3.4. Reliability Estimation

3.4.1. DBNModeling.Due to the fixed structure of traditional
BNs, the DBN method was employed in assessing the failure
rate of lathe machining procedures. Figure 6 depicts the DBN
model created for simulating the lathe machining process.
The simulation spanned 24 months using GeNie software,
with each time step representing 1 month.

Using the FBN method, the initial probability of the
lathe’s failure state was estimated to be 0.031505849
(year−1) [67]. The maintenance unit in the industry provided
a repair rate of 0.235 (hr−1). The transition probabilities were
determined utilizing the parameter learning method, and
Table 6 was utilized to establish the relationship between
adjacent nodes at time t.

The results of the reliability simulation for the 24-month
duration of the lathe machining process are shown in
Figure 7.

The impact of eliminating each critical basic event was
assessed, and the results, indicating the probability of the
primary occurrence under existing conditions and in the
absence of certain significant events, are shown in Figure 8.

4. Discussion

Nowadays, machineries are used for a wide range of applica-
tions in most industries. The metal lathe machinery is one
the most commonly used machines in industries. The use of
machinery has been associated with some serious accidents,
leading in the death of the operator or amputation. There-
fore, it is of pivotal importance to assess the safety of the
machine and related operations to find out ways by which
they can go out of control, resulting in undesired events.
Although there are several tools to assess the safety of such

TABLE 4: Continued.

Basic events E1, E2, E3, E4, and E5 Fuzzy corresponding number d K Fuzzy probability

43 H H H H H 0.598 0.747 0.747 0.896 0.309 3.009 0.00097949
44 L L L M M 0.193 0.366 0.366 0.539 0.209 3.586 0.00025942
45 H H H H H 0.598 0.747 0.747 0.896 0.309 3.009 0.00097949
46 M M M M L 0.238 0.423 0.423 0.607 0.198 3.668 0.00021478
47 H H H M H 0.548 0.706 0.706 0.863 0.291 3.096 0.00080168
48 H H H VH VH 0.691 0.817 0.864 0.943 0.35 2.828 0.00148594
49 H H H VH VH 0.691 0.817 0.864 0.943 0.35 2.828 0.00148594
50 M M M M H 0.389 0.574 0.574 0.758 0.227 3.462 0.00034514
51 M M M M H 0.389 0.574 0.574 0.758 0.227 3.462 0.00034514
52 H H H H H 0.598 0.747 0.747 0.896 0.309 3.009 0.00097949
53 H H H H H 0.598 0.747 0.747 0.896 0.309 3.009 0.00097949
54 M M M M M 0.299 0.498 0.498 0.697 0.189 3.739 0.00018239
55 M M M M M 0.299 0.498 0.498 0.697 0.189 3.739 0.00018239
56 M M M H H 0.439 0.615 0.615 0.791 0.248 3.33 0.00046774
57 M M M H H 0.439 0.615 0.615 0.791 0.248 3.33 0.00046774
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machineries, recent studies have shown that BN is a prefera-
ble approach in this regard. However, the use of this
approach is associated with some challenges.

In developing countries, the absence of a database for
basic event failure rates makes it impossible to compute their
probabilities. To manage this uncertainty, fuzzy logic can be
utilized [68]. There are two approaches to estimating event
probabilities. The first method involves classical techniques
that stem from deterministic mathematics. This methodol-
ogy necessitates precise and quantitative information, which
results in rigid mathematical models with reduced accuracy.
The second method involves referring to a database of events,
even though such data may be irrelevant or incongruent and
may not represent actual event data in the country under
consideration. The classical approach to probability estima-
tion assumes uncertainty about future events and determines
parameters deterministically. Conventional models are lim-
ited in their ability to accurately represent reality. On the
other hand, fuzzy logic can assess parameters within a specific

range of study and present a more accurate depiction of the
scenario [69]. The probability of basic events was estimated in
this research using a diverse team of experts and fuzzy logic.
This method has the potential to increase system dependabil-
ity, reduce expenses, and minimize uncertainties and ambi-
guities. The method utilized in this study aligns with the
approach used in the research conducted by Mohammadi et
al. [37] and Soltanali et al. [70]. Yazdi et al. [71] utilized
Buckley’s approach in their research method was used for
expert weighting, and the COA method developed by Oni-
sawa [55] was used for defuzzing. The disparity between this
research and Soltanali et al.’s [12, 70] study is the employment
of the COA technique in determining the probability of basic
events.

Ghasemi et al. [72] employed two methods, namely the
sum–product method and the COA method, to defuzz the
data in order to achieve consensus among experts, The meth-
ods described above align with the approach taken in the
current study. Yazdi and Zarei [9] carried out a study where
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TABLE 6: Transition probability between nodes.

t
tþΔt

Failure-free operation in the lathe Lathe failure

Failure-free operation in the lathe e−λΔt 1− e−λΔt

Lathe failure 1− e−μΔt e−μΔt
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they compared the Sum–product/COA approach with the
sum–product/max–min approach within the context of
fuzzy theory. The aim was to assess the probability of both
base events and main event. According to their results, the
sum–product/COA method appears to be a viable, reliable,
and clear-cut approach for assessing safety in intricate sys-
tems [47]. The sum–product/COA method was utilized in
this research to approximate the probability of both primary
events and the main event (FLY-OUTS).

To verify the accuracy of the FT, a group consisting of
experts in the relevant field was assembled [73]. To confirm
the initial segment of the FT structure, the CVI and CVR
indices were employed in this investigation. Using the afore-
mentioned criteria, a group of specialists from academic and

practical backgrounds evaluated the correlation, importance,
and positioning of primary events, along with the type of
gates linking them. Figure 3 demonstrates that the qualitative
FT diagram was successful in identifying a total of 85 causes
or faults (comprising 57 basic events and 28 intermediate
events) to be eliminated. By employing the fuzzy error tree,
a probability of 0.03174329 was calculated for FLY-OUTS
during the turning operation. Conversely, the BN method
produced a lower estimated value of 0.031505849 for the
same event. The difference in the results obtained from these
two methods can be explained by the inclusion of conditional
interdependence between the root and middle events, partic-
ularly with respect to shared causes. Since the FT approach
does not consider such interdependencies, it is unable to
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acknowledge the statistical correlation between certain
events. As per the BN model, some events are found to be
correlated with each other.

A crucial element in developing preventative measures is
identifying the primary events that have the most influence
on the main event. To determine the most critical event, the
BNmethod uses the technique of increased values of updated
probabilities. However, this approach may generate inaccu-
rate information for risk analysts. This could result in inade-
quate control and preventative measures being proposed to
manage the primary event, ultimately leading to inefficien-
cies in dynamic risk analysis studies.

Therefore, in this research, three distinct criteria—BIM,
ROV, and Fussell–Vesely—were employed to determine the
crucial events that hold the greatest significance in causing
the main event.

These criteria have been extensively utilized to prioritize
and rank basic events that are linked to the incidence of the
main event, as well as in conducting sensitivity analyses [74].
As per Figure 5, the events BE31 and BE29, followed by BE10
and BE9, exhibit the highest value. This result is valid
because the probability of system failure when these events
are not in a failure mode state is relatively low compared to
other events. As a result, when these variables are present,
there is a more significant decrease in system reliability. In
improving safety and reliability of the lathe machine, the
priority should be given to these basic events, as their
improvement would reduce the probability of accidents
significantly.

This investigation utilized DBN modeling to approxi-
mate the reliability of lathe turning operations for a period
of 2 years. As shown in Figure 7, the DBN model predicted a
decline in system reliability over time, with its value decreas-
ing by 19.89% at the end of 24 months. The observed
decrease in system reliability can be attributed to the pres-
ence of several significant basic events, including BE31,
BE29, and BE28. These events tend to exhibit high variability
over time and contribute significantly to reducing the prob-
ability of system failure. It is necessary to design and imple-
ment appropriate preventive maintenance programs to
prevent this declining trend of reliability. Moreover, training
employees regarding the hazards of lathe machine can be
useful in enhancing safety of the machine.

5. Conclusion

The research introduces a methodology for evaluating and
assessing risks, as well as forecasting the reliability of turning
operations, by employing DBN and fuzzy FTs. Initially, a
team of experts from both industry and academia was assem-
bled to validate the FT structure. Subsequently, fuzzy theory
was utilized to determine the probability of failure rates for
root events. Following this, most of the BNs were constructed
based on the fuzzy FT, and the system’s reliability was com-
puted over a 24-month period using DBN analysis.

The study employed DBN to perform a time-varying
assessment of system reliability. DBN is a versatile method
widely used for estimating system reliability. The findings

obtained using this method demonstrated a decrease in the
system’s reliability over time. Although this study specifically
focused on evaluating and analyzing the risk related to lathe
turning operations with respect to FLY-OUTS, the method-
ology can be applied to assess reliability in various other
potential scenarios. Ultimately, the DBN approach enables
conducting reliability analyses across multiple scenarios for
the entire system.
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