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In this paper, we consider the stabilization of the coupled heat and wave equations under the static feedback or the dynamic
feedback. Moreover, we make the coupled systems discretized by using the finite-volume approach, and then we consider the
stabilized properties of the discrete systems. First, for the coupled system under the static feedback, it is shown that the system is
exponentially stable by using the Lyapunov method, and then the corresponding discrete system can be shown to be exponentially
stable by constucting the discretized Lyapunov function. Second, for the coupled system under the dynamic feedback, we also show
that both of the system and its discrete scheme are exponentially stable. Third, numerical simulations are given to show the
effectiveness of the stable controllers.

1. Introduction

Over the past decades, a few research have been focused on
the stabilization and convergence properties of the distrib-
uted parameter systems [1]. However, a little progress has
been made in the related research. Until recent years, Tebou
and Zuazua [2] show that, by adding the vanishing numerical
viscosity term, the discretization system of the locally damped
wave equation can be shown to be exponentially stable by
using the discrete multiplier techniques. Moreover, Tebou
and Zuazua [3] solve the problem of stabilization for the dis-
crete wave equation with the boundary dissipation, also by the
discrete multiplier method. Recently, Liu and Guo [4] con-
struct the semi-discretized scheme for the Euler–Bernoulli
beam equation by using the finite-volume approach, and prove
that the discrete system is uniformly exponentially stable by
the discrete form of Lyapunov function. Furthermore, for the
wave equation, Liu and Guo [5] and Liu andWu [6] show that
the difference scheme also is uniformly exponentially stable by
using the reduced-order difference schemes. The discretization
and stability results of the Schrödinger equation can be found
in [7]. In the paper [8], the authors consider the observability

inequality of the reduced-order difference schemes for the
Schrödinger equation. By the finite difference approach of
order reduction, the exponential stability of the wave equation
with dynamical boundary condition has been researched in
[9]. Until now, the stability of the discretization scheme for
the coupled-partial differential equations has rarely been
involved in the existing literature. In [10], the authors consider
the coupled heat and wave equations under the static and
dynamic feedbacks, where the exponential stability of the cou-
pled system has been proved. Our paper will focus on the
stabilization of the coupled system with other kinds of bound-
ary conditions which follows the proof of the results [10].
Moreover, wewill analyze the difference scheme of the coupled
system and the uniformly exponential stability of the discrete
system. And numerical simulations show the effectiveness of
the stable static or dynamic feedbacks.

This paper is organized in five sections. In Section 1,
introduction is elaborated. In Section 2, for the coupled sys-
tem of the heat and wave equation under the static feedback,
we construct the discrete scheme of the coupled system by
the finite-volume method. The exponential stability of the
discrete scheme for the coupled system has been shown
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subsequently. In Section 33, for the coupled system of the
heat and wave equation under the dynamic feedback, we
construct the discrete scheme of the coupled system by the
finite-volume method, and show that the discrete scheme for
the coupled system is exponentially stable. In Section 4, numer-
ical simulation is explained. In the last section (Section 5), we
simulate the states for both of the coupled systems considered
above, and the simulation results show the effectiveness for
both of the stable static and dynamic feedbacks.

2. The Stability Analysis and Discretization of
the Coupled Heat and Wave Equation
under the Static Feedback

In this section, we consider the system of the coupled heat
and wave equations with the static feedback, considered pre-
viously in [10] with the different boundary conditions, which
can be described as follows:

vt x; tð Þ ¼ vxx x; tð Þ;  0<x<1; t ≥ 0;

wtt x; tð Þ ¼ wxx x; tð Þ;  0<x<1; t ≥ 0;

v 0; tð Þ ¼ −wt 0; tð Þ;  t ≥ 0;

vx 0; tð Þ ¼ wx 0; tð Þ;  t ≥ 0;

v 1; tð Þ ¼ 0;  t ≥ 0;

wx 1; tð Þ ¼ −kwt 1; tð Þ;  t ≥ 0;

8>>>>>>>>><
>>>>>>>>>:

ð1Þ

where vðx; tÞ and wðx; tÞ are the states of the heat and wave
equations, respectively.

The energy space is

X ¼ L2 0; 1ð Þ × H1 0; 1ð Þ × L2 0; 1ð Þ; ð2Þ

with the inner product

h1; f1;g1ð Þ; h2; f2;g2ð Þh iX
¼
Z

1

0
h1 xð Þh2 xð Þ þ f 01 xð Þf 02 xð Þ þ g1 xð Þg2 xð Þ
� �

dx;

ð3Þ

which directly results that

h; f ;gð Þk k2X ¼
Z

1

0
h xð Þj j2 þ f 0 xð Þj j2 þ g xð Þj j2ð Þdx:

ð4Þ

The energy of the system (1) is defined as follows:

E tð Þ ¼ 1
2

Z
1

0
v x; tð Þ2 þ wx x; tð Þ2 þ wt x; tð Þ2ð Þdx: ð5Þ

According to the Lyapunov function method supplied in
the paper [10], the exponential stability of the system (1) can
be obtained as the following theorem:

Theorem 1. The system (1) is exponentially stable, that is,

E tð Þ ≤ e−
4ε

5 1−2εð ÞtE 0ð Þ; ð6Þ

for the positive constant ε satisfying 0<ε<min f 2k
k2þ1 ;

1
2g and

k>0.

Proof. For the energy Equation (5), simple computation shows
that

Ė tð Þ ¼ −kwt 1; tð Þ2 −
Z

1

0
vx x; tð Þ2dx: ð7Þ

Define the function as follows:

ϕ tð Þ¼
Z

1

0

1
10

v x; tð Þ2 þ xwt x; tð Þwx x; tð Þ

þ 1
10

1 − xð Þ wt x; tð Þ2 þ wx x; tð Þ2½ �dx:
ð8Þ

It can be obtained that

ϕ tð Þj j ≤ 2E tð Þ ; ð9Þ

and

ϕ̇ tð Þ ≤ −
4
5
E tð Þ þ k2 þ 1

2
wt 1; tð Þ2: ð10Þ

Now we define the Lyapunov function below, for the
positive constant ε,

L tð Þ ¼ E tð Þ þ εϕ tð Þ ; ð11Þ

which together with Equation (9) simply give that

1 − 2εð ÞE tð Þ ≤ L tð Þ ≤ 1þ 2εð ÞE tð Þ; ð12Þ

for the positive constant ε satisfying that 0<ε< 1
2.

From Equations (7), (10), and (11), we have

L̇ tð Þ ≤ −
4ε
5
E tð Þ − k −

k2 þ 1
2

ε

� �
wt 1; tð Þ2 ; ð13Þ

for the positive constant ε satisfying that 0<ε< 2k
k2þ1.

Moreover, by using the inequality (12), it is naturally to
get that

Ė tð Þ ≤ −
4ε

5 1 − 2εð ÞE tð Þ ; ð14Þ

for the positive constant 0<ε< 1
2.

Thus, we naturally obtain the exponential stability of the
system (1), that is,
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E tð Þ ≤ e−
4ε

5 1−2εð ÞtE 0ð Þ ; ð15Þ

for the positive constant ε satisfying that 0<ε<min f 2k
k2þ1 ;

1
2g

and k>0. □

Next, we consider the discretization and stabilization of
the system (1). First, we use the finite-volume approach to
obtain the following difference schemes for the system (1).

v0jþ1
2
þ v0j−1

2

2
¼ δ2xvj;    j¼ 1;⋯;N;

w00
jþ1

2
þ w00

j−1
2

2
¼ δ2xwj;    j¼ 1;⋯;N;

v0 ¼ −w0
0;    δxv12 ¼ δxw1

2
þ h

2
v01
2
− w00

1
2

� �
;    vNþ1 ¼ 0;

δxwNþ1
2
¼ −kw0

Nþ1 þ
h
2
w00

Nþ1
2
;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð16Þ

where in [5]

u0i ¼ ut xi; tð Þ;  i¼ 0; 1;⋯;N þ 1;

u00i ¼ utt xi; tð Þ;  i¼ 0; 1;⋯;N þ 1;

uiþ1
2
¼ ui þ uiþ1

2
;  i¼ 0; 1;⋯;N;

δxuiþ1
2
¼ uiþ1 − ui

h
;  i¼ 0; 1;⋯;N;

δ2xui ¼
δxuiþ1

2
− δxui−1

2

h
¼ uiþ1 − 2ui þ ui−1

h2
;  i¼ 1;⋯;N:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð17Þ

From the studies by Liu and Guo [4, 5, 7, 10], it is shown
that there exists an error between the original system and its

disretization system which is different from such other dis-
cretization methods as the finite-difference method.

Second, for the system (1), we define its discrete energy as
follows:

Eh tð Þ ¼ h
2
∑
N

j¼0
vjþ1

2

2 þ δxwjþ1
2

2 þ w0
jþ1

2

2
� �

; ð18Þ

which results that

Ėh tð Þ ¼ −kw0
Nþ1

2
− h∑

N

j¼0
δxvjþ1

2

2; ð19Þ

from the boundary conditions of the system (16).
Finally, we give the following lemma which can be

proved easily by using the boundary conditions of the system
(16). Moreover, the exponential stability of the system (1)
has been shown in the subsequent theorem.

Lemma 1.

h∑
N

j¼0
vjþ1

2

2 ≤
h
2
∑
N

j¼0
δxvjþ1

2

2: ð20Þ

Theorem 2. The system (16) is exponentially stable, that is to
say,

Eh tð Þ ≤ e−
4ε

5 1−2εð ÞtEh 0ð Þ; ð21Þ

for the positive constant ε satisfying 0<ε<min f 8k
5ðk2þ1Þ ;

1
2g

and k>0.

Proof. First, we define the discrete function as follows:

ϕh tð Þ ¼ h
10

∑
N

j¼0
vjþ1

2

2 þ h∑
N

j¼1
jh
w0

jþ1
2
þ w0

j−1
2

2

δxwjþ1
2
þ δxwj−1

2

2
þ h

2
w0

Nþ1
2
δxwNþ1

2

þ h
10

∑
N

j¼1
δxwjþ1

2

2 þ w0
jþ1

2

2
� �

− jh
δxwjþ1

2
þ δxwj−1

2

2

� �2

þ
w0

jþ1
2
þ w0

j−1
2

2

 !
2

" #( )
:

ð22Þ

By simple computation we can get the inequality

ϕh tð Þj j ≤ 2Eh tð Þ; ð23Þ
where EhðtÞ is defined in Equation (18).

Some other computation procedures can tell us the deriv-
ative of the function ϕhðtÞ as follows:

ϕ̇h tð Þ ¼ −
h
5
∑
N

j¼0
δxvjþ1

2

2
−
k
5
w0

Nþ1
2
−
1
5
w0

Nþ1
2
δxwNþ1

2
þ h

5
∑
N

j¼0
w0

jþ1
2
δxwjþ1

2

−
h
2
∑
N

j¼0
δxwjþ1

2

2 þ w0
jþ1

2

2
� �

−
1
2

δxwNþ1
2

2 þ w0
Nþ1

2

2
� �

− kw0
Nþ1δxwNþ1

2
þ w0

Nþ1
2
w0

Nþ1;
  ð24Þ
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by using the equations and boundary conditions of the
system (16).

Moreover, according to Lemma 1, it is easy to get that

ϕ̇h tð Þ ≤ −
2h
5

∑
N

j¼0
vjþ1

2

2
−
k
5
w0

Nþ1
2
−
1
5
w0

Nþ1
2
δxwNþ1

2
þ h

5
∑
N

j¼0
w0

jþ1
2
δxwjþ1

2

−
h
2
∑
N

j¼0
δxwjþ1

2

2 þ w0
jþ1

2

2
� �

−
1
2

δxwNþ1
2

2 þ w0
Nþ1

2

2
� �

− kw0
Nþ1δxwNþ1

2
þ w0

Nþ1
2
w0

Nþ1:
ð25Þ

Then by the Cauchy inequality, we conclude that

ϕ̇h tð Þ ≤ −
4
5
Eh tð Þ þ 5 k2 þ 1ð Þ

8
w0

Nþ1
2: ð26Þ

Second, for the positive constant ε, we define the func-
tion as follows:

Lh tð Þ ¼ Eh tð Þ þ εϕh tð Þ  ; ð27Þ

which together with the inequality (23) simply give that

1 − 2εð ÞEh tð Þ ≤ Lh tð Þ ≤ 1þ 2εð ÞEh tð Þ; ð28Þ

for the positive constant ε satisfying that 0<ε< 1
2.

According to Equations (19), (26), and (27), it is easy to
deduce that

L̇h tð Þ ≤ −
4ε
5
Eh tð Þ − k −

5 k2 þ 1ð Þε
8

� �
w0

Nþ1
2
 ; ð29Þ

which means that

L̇h tð Þ ≤ −
4ε
5
Eh tð Þ  ; ð30Þ

for the positive constant ε satisfying 0<ε< 8k
5ðk2þ1Þ and k>0.

Therefore, from Equation (28), it is shown that

Ėh tð Þ ≤ −
4ε

5 1 − 2εð Þ Eh tð Þ  ; ð31Þ

for the positive constant ε satisfying 0<ε<min f 8k
5ðk2þ1Þ ;

1
2g

and k>0.
In conclusion, it is naturally to obtain

Eh tð Þ ≤ e−
4ε

5 1−2εð ÞtEh 0ð Þ; ð32Þ

for 0<ε<min f 8k
5ðk2þ1Þ ;

1
2g and k>0. □

3. The Stability Analysis and Discretization of
the Coupled Heat and Wave Equation
under the Dynamic Feedback

In this section, we consider the stability and discretization for
the following system of the coupled heat and wave equations
under the dynamic feedback.

vt x; tð Þ ¼ vxx x; tð Þ;  0<x<1; t ≥ 0;

wtt x; tð Þ ¼ wxx x; tð Þ;  0<x<1; t ≥ 0;

v 0; tð Þ ¼ −wt 0; tð Þ;  vx 0; tð Þ ¼ wx 0; tð Þ;  v 1; tð Þ ¼ 0;  t ≥ 0;

wx 1; tð Þ ¼ −cTz tð Þ − kwt 1; tð Þ;  t ≥ 0;  k>0;  c 2 Rn×1;

ż tð Þ ¼ Az tð Þ þ bwt 1; tð Þ;   A 2 Rn×n;  b 2 Rn×1;

8>>>>>><
>>>>>>:

ð33Þ

where vðx; tÞ and wðx; tÞ are the states of the heat and
wave equations, respectively, and zðtÞ 2Rn×1 is related to the
dynamic feedback.

The energy of the system (33) is defined as follows:

E tð Þ ¼ 1
2

Z
1

0
v x; tð Þ2 þ wx x; tð Þ2 þ wt x; tð Þ2ð Þdx þ 1

2
zTPz:

ð34Þ

After simple computation we can get

Ė tð Þ ¼ −

Z
1

0
vx x; tð Þ2dx − γwt 1; tð Þ

−
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 k − γð Þ

p
wt 1; tð Þ − zTq

h i
2
−
Δ

2
zTQz;

ð35Þ

by assuming

ATP þ PA¼ −qqT − ΔQ;   

Pb − c¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 k − γð Þp

q;

(
; ð36Þ

where the signs A; b; c; k are defined in the system (33),
and P;Q; q;Δ; γ are defined the same as that in [10]. Then
we can acquire the subsequently exponential stability of the
system (33).
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Theorem 3. The system (33) is exponentially stable expressed
as follows:

E tð Þ ≤ e−
4ε

5 1−2εð ÞtE 0ð Þ; ð37Þ

for the positive constant ε satisfying 0<ε< 1
2 and the subse-

quent inequalities

γ − ε k2 þ 1
2

� �
>0;

Δ

2
zTQz − ε

2
5
zTPz þ cTc z tð Þj j2

� �
>0:

8>>><
>>>:

ð38Þ

Proof. First, we define the Lyapunov function as follows:

ϕ tð Þ¼
Z

1

0

1
10

v x; tð Þ2 þ xwt x; tð Þwx x; tð Þ

þ 1
10

1 − xð Þ wt x; tð Þ2 þ wx x; tð Þ2½ �dx:
ð39Þ

After some computation we can obtain the following
inequality

ϕ̇ tð Þ ≤ −
4
5
E tð Þ þ 2

5
zTPz þ cTc z tð Þj j2 þ k2 þ 1

2

� �
wt 1; tð Þ2;

ð40Þ

by using the boundary conditions of the system (33) and the
definitions (34) and (39).

Second, for the positive constant ε, we define the follow-
ing function

L tð Þ ¼ E tð Þ þ εϕ tð Þ; ð41Þ

on the basis of the definitions (34) and (39).
From the definitions (34) and (41), it is naturally to get

the following inequalities:

1 − 2εð ÞE tð Þ ≤ L tð Þ ≤ 1þ 2εð ÞE tð Þ; ð42Þ

for the positive constant ε satisfying 0<ε< 1
2.

Third, we can obtain the inequality as follows:

L̇ tð Þ≤ −
4
5
εE tð Þ − γ − ε k2 þ 1

2

� �� �
wt 1; tð Þ2

−
Δ

2
zTQz − ε

2
5
zTPz þ cTc z tð Þj j2

� �� �
;

ð43Þ

by using the boundary conditions of the system (33) and the
definitions (34) and (41),

Since the matrices P and Q are positive definite, the
positive constant ε can be chosen as that the following
inequalities are satisfied:

γ − ε k2 þ 1
2

� �
>0;

Δ

2
zTQz − ε

2
5
zTPz þ cTc z tð Þj j2

� �
>0;

8>>><
>>>:

ð44Þ

which together with Equation (43) give that

L̇ tð Þ ≤ −
4
5
εE tð Þ: ð45Þ

Finally, from Equation (42) it can be shown that

Ė tð Þ ≤ −
4ε

5 1 − 2εð ÞE tð Þ; ð46Þ

for the positive constant ε satisfying 0<ε< 1
2 and Equation (44).

Therefore, we obtain the exponential stability of the sys-
tem (33) stated as follows:

Eh tð Þ ≤ e−
4ε

5 1−2εð ÞtEh 0ð Þ; ð47Þ

for the constant ε satisfying that 0<ε< 1
2 and Equation (44).□

Next we consider the discretization and stability of the
system (33). By using the finite-volume approach, we discre-
tize the system (33) as the following discrete system:

v0jþ1
2
þ v0j−1

2

2
¼ δ2xvj;    j¼ 1;⋯;N;

w00
jþ1

2
þ w00

j−1
2

2
¼ δ2xwj;    j¼ 1;⋯;N;

v0 ¼ −w0
0;    δxv12 ¼ δxw1

2
þ h

2
v01
2
− w00

1
2

� �
;    vNþ1 ¼ 0;

δxwNþ1
2
¼ −cTz tð Þ − kw0

Nþ1 þ
h
2
w00

Nþ1
2
;

ż tð Þ ¼ Az tð Þ þ bw0
Nþ1;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð48Þ

where the discretization donates have been the same as that
in Equation (17).

For the system (48), we define the discrete energy as
follows:

Eh tð Þ ¼ h
2
∑
N

j¼0
vjþ1

2

2 þ δxwjþ1
2

2 þ w0
jþ1

2

2
� �

þ 1
2
zTPz; ð49Þ

Mathematical Problems in Engineering 5



by which we can compute that

Ėh tð Þ¼ − γw0
Nþ1

2
− h∑

N

j¼0
δxvjþ1

2

2

−
1
2

zTq −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 k − γð Þ

p
w0

Nþ1

h i
2
−
Δ

2
zTQz;

ð50Þ

according to the boundary conditions of the system (48).
Then, we can obtain the subsequently exponential stability
of the system (48).

Theorem 4. The system (48) is exponentially stable, that is,

Eh tð Þ ≤ e−
4ε

5 1−2εð ÞtEh 0ð Þ; ð51Þ

for the positive constant ε satisfying that 0<ε< 1
2 and the

following inequalities

γ − ε 2k2 þ 1ð Þ>0;

Δ

2
zTQz − ε

2
5
zTPz þ 2cTc z tð Þj j2

� �
>0:

8<
: ð52Þ

Proof. First, we define the function of the discrete form as
follows:

ϕh tð Þ ¼ h
10

∑
N

j¼0
vjþ1

2

2 þ h∑
N

j¼1
jh
w0

jþ1
2
þ w0

j−1
2

2

δxwjþ1
2
þ δxwj−1

2

2
þ h

2
w0

Nþ1
2
δxwNþ1

2

þ h
10

∑
N

j¼1
δxwjþ1

2

2 þ w0
jþ1

2

2
� �

− jh
δxwjþ1

2
þ δxwj−1

2

2

� �2

þ
w0

jþ1
2
þ w0

j−1
2

2

 !
2

" #( )
:

ð53Þ

It is not difficult to infer the following inequality

ϕh tð Þj j ≤ 2Eh tð Þ; ð54Þ

by using the definitions (49) and (53).
Then after some computation, for the function (53), we

can obtain that

ϕ̇h tð Þ ≤ −
4
5
Eh tð Þ þ 2

5
zTPz þ 2k2 þ 1ð Þw0

Nþ1
2 þ 2cTc z tð Þj j2;

ð55Þ

by using the boundary conditions of the system (48).
Second, we define the following function

Lh tð Þ ¼ Eh tð Þ þ εϕh tð Þ; ð56Þ

on the basis of the definitions (49) and (53), for the positive
constant ε.

Then from Equation (54) it can be shown that

1 − 2εð ÞEh tð Þ ≤ Lh tð Þ ≤ 1þ 2εð ÞEh tð Þ; ð57Þ

for the positive constant ε satisfying 0<ε< 1
2.

Altogether with the definition (56) and the results of
Equations (50) and (55), we have

L̇h tð Þ≤ −
4
5
εEh tð Þ − γ − ε 2k2 þ 1ð Þ½ �w0

Nþ1
2

−
Δ

2
zTQz − ε

2
5
zTPz þ 2cTc z tð Þj j2

� �� �
:

ð58Þ

Since the matrices P and Q are positive definite, we
can choose the positive constant ε such that the following
inequalities are satisfied.

γ − ε 2k2 þ 1ð Þ>0;

Δ

2
zTQz − ε

2
5
zTPz þ 2cTc z tð Þj j2

� �
>0;

8<
: ð59Þ

which together with Equation (58) show that

L̇h tð Þ ≤ −
4
5
εEh tð Þ: ð60Þ

Then from Equation (57), it is shown that

Ėh tð Þ ≤ −
4ε

5 1 − 2εð Þ Eh tð Þ; ð61Þ

for the positive constant ε satisfying 0<ε< 1
2 and Equation (59).

Therefore, we have the exponential stability of the system
(48), that is,

Eh tð Þ ≤ e−
4ε

5 1−2εð ÞtEh 0ð Þ; ð62Þ

for the positive constant ε satisfying that 0<ε< 1
2 and

Equation (59). □
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4. Numerical Simulation

In this section, we show some numerical simulation results of
the coupled heat and wave equations. And we can find that,
the states of the coupled system have been converged to zero
in certain time interval. The space step is chosen to be 0.02,
and the time step is 0.001. Initial values and parameters have
been given as follows:

w0 xð Þ ¼ x2;     w1 xð Þ ¼ −x;     v0 xð Þ ¼ x2 − x3;     z0 ¼ 1;

k¼ 1;   c¼ 1;   A¼ −1;   b¼ 1:

(

ð63Þ

For the coupled systems under the static or dynamic
feedback, we have the states of the coupled systems which
show that, both of the systems with the static or dynamic
feedback are stable illustrated by Figures 1 and 2, respectively.

5. Conclusion

In the paper we consider the stabilization and discretization
of the coupled heat and wave equations. For the coupled
system under the static feedback, we construct the numerical
scheme by the finite-volume approach, and then it is shown
that the discrete system is exponentially stable proven by the
Lyapunov function method. For the coupled system under
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FIGURE 1: The states of the coupled system (1) under the static feedback.
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the dynamic feedback, the discrete scheme is constructed and
then is shown to be exponentially stable. Numerical simula-
tions are given to show the effectiveness of the stable con-
trollers. The future direction may be related to the different
discrete form of the coupled distributed parameter systems
and the stabilized properties.
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