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Tis work presents two forms of coupled fractional-order memristor chaotic systems. Te existence and uniqueness of solutions
are studied. Moreover, the range of parameters and time span at which the proposed two models exhibit continuous dependence
on initial conditions are examined.Te unique equilibrium point for each system is found, and the corresponding stability analysis
is carried out. Te regions of stability in the space of parameters are obtained, whereas numerical simulations are employed to
confrm theoretical results.Te bifurcation diagrams, in addition to Lyapunov exponents, are utilized to examine the efects of key
parameters in two models. A chaos-based encryption scheme is presented as an application to utilize complicated chaotic
behaviors in coupled circuits.

1. Introduction

Several phenomena that are subject to spatio-temporal
development have been encountered in various felds of
application, such as physics, engineering, biology, economy,
and chemistry [1, 2]. To better study and interpret emerging
nonlinear phenomena, the theories of dynamical systems
and chaos are helpful tools that achieve these goals. Te
applications of dynamical systems and chaos have been
involved inmany disciplines such as electronic circuits [3, 4],
chaos and synchronization [5–8], mathematical biology [1],
image encryption [9], secure communications [10], cryp-
tography [11], and neuroscience research [12].

Nonlinear electronic circuits can be considered a very
useful practical tool for studying nonlinear phenomena and
chaos. Tis line of research has attracted considerable in-
terest, especially due to the works of L.O. Chua from the
mid-1960s. Chua proposed a resistor with two terminals
having a piecewise-continuous voltage-current character-
istic referred to as Chua’s diode, and Chua’s circuit is the
name of the resulting circuit [13]. Since then, several

developments have been introduced in the feld of nonlinear
circuits. For instance, Shinriki et al. inserted a nonlinear
circuit called the modifed Van der Pol oscillator (MVPO)
[14]. King and Gaito derived a nonlinear circuit based on the
MVPO circuit and called this circuit an autonomous Van
der Pol–Dufng (ADVP) oscillator [15]. A modifcation to
the ADVP circuit was conducted through adding a resistor
in parallel with the inductor in the baseline ADVP circuit
[16]. In the modifed ADVP, the dynamics of the original
ADVP oscillator are confned in a small range of the circuit’s
parameter.

Chua theoretically forecasted the memristor as a fun-
damental fourth circuit component in 1971. Te memristor
is a nonlinear two-terminal component, in which the in-
duced magnetic fux is the function of an electric charge that
passes through the device [17, 18]. Te memristor has taken
its place along with other conventional circuit components,
which include the resistor, capacitor, and inductor, when
Williams et al. [18] fabricated the frst solid-state imple-
mentation of memristor circuit components.Tere are many
important applications of memristors such as learning
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networks, ultradense nonvolatile memories, high-frequency
oscillators, and secure communications applications
employing nanoscale memristor-based circuits [18–21].

Te multistability analysis of a novel memristor-based
chaotic circuit has been introduced in [22] along with circuit
implementations and application in image encryption. Ex-
amples of chaotic dynamics in biological systems and chaos-
based image encryption schemes can be found in [23–25]
and references therein.

Recently, the applications of fractional calculus in
mathematical modeling of dynamical systems have attracted
increasing attention. Several theoretical and experimental
studies have indicated that fractional-order derivatives are
more adequate and can provide accurate mathematical
models of intricate systems with memory, in contrast to
classical integer-order models [26]. Fractional-order dif-
ferential equations have been verifed as the more appro-
priate modeling tool for several real problems in many felds
of science, engineering [26], biological systems [27, 28],
economic systems [29, 30], circuit theory [31, 32], and many
more. Te chaotic behavior has also been found in many
fractional-order systems [33], such as fractional Lu systems
[34] and fractional Lorenz systems [35]. From an application
point of view, chaotic systems are widely used to design
algorithms dedicated to image encryption [36–39]. Indeed,
fractional-order chaotic systems have good advantages in
terms of pseudorandomness and ergodicity and are ex-
tremely sensitive to initial conditions which are very ap-
propriate for image encryption [40]. Synchronization of
fractional chaotic systems and its applications in encryption
of images have been presented in [41]. In addition, the
improper fractional-order laser chaotic system and its ap-
plication for image encryption are considered in [42].

Fractional-order diferential equations are known to
better model natural, engineering, and physical systems
having memory characteristics. On the other hand, the
fourth basic circuit element, i.e., the memristor, relates the
values of the fux across its terminals with the past values
(history) of the current passed through it. In other words, the
memristor can memorize the history of its state. So it is more
adequate to employ fractional-order diferential equations
with memristor-based circuits. Te other point which
motivates this work is to examine the more general case
where coupled fractional-order chaotic memristor-based
circuits are established. Indeed, there are some interesting
questions which arise and need to be investigated, for ex-
ample, what are the infuences of the fractional order and
type of coupling on the dynamical characteristics and
equilibrium points and their stability in the coupled system.
Finally, it is also essential to explore which potential ap-
plications can be established based on the analytical/theo-
retical results obtained in the study. Te paper is an attempt
to explore the answers to these questions. Due to the distinct
characteristics of memristors, they are crucial elements in
chaotic circuits with very small sizes and low-power con-
sumption. Terefore, the present work establishes theoret-
ical/numerical frameworks for practical studies which
implement memristors in efcient image encryption

hardware. Te proposed image encryption method, on the
other hand, creates chaotic sequences which depend on tiny
changes in both secret keys and input plain images. Tis
implies that the proposed scheme can resist known-plaintext
attacks, known-ciphertext attacks, and diferential attacks,
while it can be realizable in small, very fast, and low-power-
consumed appliances.

With the rapid development of the Internet and wireless
communication systems, images and real-time videos are
considered among the most important carriers of in-
formation. So ensuring the security of transmission, storage
and access to digital images has become a very active topic
for researchers. From a mathematical point of view, the
fascinating features of chaotic dynamics attracted the at-
tention of mathematicians, engineers, and computer sci-
entists. More specifcally, chaos has the characteristics of
random-like behavior, unpredictability, ergodicity, sensitive
dependence on parameters and initial values, and the ability
to produce very complicated behaviors from relatively
simple-structure systems, which render chaotic systems an
ideal choice in the feld of image encryption. Chaotic systems
also have the advantages of being easily realizable on feld-
programmable gate arrays (FPGAs), digital signal processors
(DSPs), or microcontrollers. In addition, they can be in-
cluded in ultrafast secure communication systems which
utilize chaotic semiconductor lasers or ring fber lasers.
Some of the recent developments in the feld of chaos-based
cryptography can be seen in [43–49].

In this work, two forms of coupled fractional-order
memristor chaotic systems along with the study of the ex-
istence and uniqueness of the proposed model’s solution and
conditions of continuous dependence on initial conditions
are presented in Section 2. Te stability analysis of the
unique equilibrium point for each system is presented in
Section 3. Te regions of stability in the space of parameters
are obtained, and numerical simulations are employed to
verify the theoretical results. In Section 4, the bifurcation
diagrams and Lyapunov exponents are employed to inspect
the efects of key parameters in the two systems. Finally,
a chaos-based encryption scheme is presented in Section 5 as
an application to utilize complicated chaotic behaviors in the
coupled circuit.

2. The Proposed Coupled Fractional-Order
System

In this section, two forms of coupling are introduced for the
proposed coupled fractional-order memristor-based chaotic
system, namely, partial coupling and complete coupling
cases. First, some key defnitions and properties of fractional
calculus have been reviewed.

Defnition 1. Te fractional-order integral of the order
c ∈ R+ for a function h(t), t≥ σ is defned by ([50–52])

I
c
σh(t) � 􏽚

t

0

(t − s)
c− 1

Γ(c)
f(s)ds. (1)
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Defnition 2. Te Caputo fractional-order derivative with
the order ζ ∈ (n − 1, n) of k(t), t≥ σ is defned by

D
ζ
σk(t) � I

n−ζ
σ D

n
k(t), D �

d
dt

. (2)

For main properties of fundamental fractional-order
derivatives and integrals, the readers are referred to see
[50–60].

Memristors can be classifed as fux-controlled or
charge-controlled memristors. In fux-controlled mem-
ristors, the charge q is related to the fux ϕ of the memristor
by the relation

q(ϕ) � G(ϕ), (3)

where G is a fux-dependent function. By diferentiating the
above equation w.r.t. time, it yields

i(t) � W(ϕ)v(t), (4)

where i(t) denotes the current that passes through the
memristor, v(t) is the voltage across its terminals, and W(ϕ)

refers to the incremental memductance function which
describes the change rate of the charge with fux. In
particular,

W(ϕ) �
dq(ϕ)

dϕ
. (5)

Similarly, the second type of memristors is the charge-
controlled memristor which can be described by the fol-
lowing equations:

ϕ(q) � K(q),

v(t) �
dϕ(q)

dq
i(t).

(6)

In this work, the fux-controlled memristor is used.
For the proposed partial coupling case, the system is

described as

D
ξ
x1(t) � −cx1 + σy1 − x1w

2
1 + ϵ w2 − δx1( 􏼁,

D
ξ
y1(t) � αx1 − y1 − z1,

D
ξ
z1(t) � βy1,

D
ξ
w1(t) � x1,

D
ξ
x2(t) � −cx2 + σy2 − x2w

2
2 + ϵ δx2 − w1( 􏼁,

D
ξ
y2(t) � αx2 − y2 − z2,

D
ξ
z2(t) � βy2,

D
ξ
w2(t) � x2.

(7)

For the complete coupling case, the system is proposed
in the form

D
ξ
x1(t) � −cx1 + σy1 − x1w

2
1 + ϵ w2 − δx1( 􏼁,

D
ξ
y1(t) � αx1 − y1 − z1 + ϵ z2 − δy1( 􏼁,

D
ξ
z1(t) � βy1 + ϵ y2 − δz1( 􏼁,

D
ξ
w1(t) � x1 + z2,

D
ξ
x2(t) � −cx2 + σy2 − x2w

2
2 + ϵ δx2 − w1( 􏼁,

D
ξ
y2(t) � αx2 − y2 − z2 + ϵ z1 − δy2( 􏼁,

D
ξ
z2(t) � βy2 + ϵ y1 − δz2( 􏼁,

D
ξ
w2(t) � x2 + z1.

(8)

Systems (7) and (8) are coupled systems of two
fractional-order chaotic memristor circuits. Te circuit is
illustrated in Figure 1 and consists of two resistors, two
capacitors, one inductor, and the memristor element. Te
generalization to the fractional-order case is introduced, and
the diferent cases of couplings are examined from theo-
retical/numerical viewpoints along with image encryption
applications.

2.1. Existence and Uniqueness. Te proposed system (7) can
be expressed in the following form:

D
ξ
X(t) � Ψ(X(t)),

t ∈ (0, T],
(9)

for X(t) � x1 y1 z1 w1 x2 y2 z2 w2􏼂 􏼃
T with initial

conditions X(0) � X0.
Te solution of this initial value problem is therefore

obtained by

X(t) � X0 + 􏽚
t

0

(t − θ)
ξ− 1

Γ(ξ)
Ψ(X(θ))dθ. (10)

Te existence of this solution is examined in the region
Π × J where

Π � ωi􏼈 􏼉: max ωi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩<K􏽮 􏽯,

J � (0, T],
(11)

ω � x, y, z, w and i � 1, 2, 3, 4. Te equivalence between the
above integral (10) and original system (7) is utilized as
follows.

Te right hand side of (10) is referred to as Ω(X), and
hence, we obtain

Ω X1( 􏼁 −Ω X2( 􏼁 � 􏽚
t

0

(t − θ)
ξ− 1

Γ(ξ)
Ψ X1(θ)( 􏼁 − Ψ X2(θ)( 􏼁( 􏼁dθ,

Ω X1( 􏼁 −Ω X2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 􏽚
t

0

(t − θ)
ξ−1

Γ(ξ)
Ψ X1(θ)( 􏼁 − Ψ X2(θ)( 􏼁( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dθ.

(12)
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Te following inequality can be obtained after some
calculations:

Ω X1( 􏼁 −Ω X2( 􏼁
����

����≤Λ X1 − X2
����

����,

Λ �
T
ξ

Γ(ξ + 1)
max K

2
+|ϵδ| +|α| +|c| + 1, |β| +|σ| + 1, 2K

2
+|ϵ|􏽮 􏽯.

(13)

Here, the supremum norm is employed for the class C1

of diferentiable continuous functions on J.
Now, we get the following theorem which states the suf-

fcient condition for existence and uniqueness of system (7).

Theorem 1. Assume that Λ � Tξ/Γ(ξ + 1)max K2+􏼈 |ϵδ| +

|α| + |c| + 1, |β| + |σ| + 1, 2K2 + ϵ}< 1, then the solution of
system (3) exists, and it is unique on Π × J.

Proof. For Λ< 1, the mapping X � Ψ(X) is a contraction
mapping, and the theorem follows immediately from the
Banach fxed-point theorem.

On the other side, the second proposed system (8) is
expressed as

D
ξ
X(t) � Υ(X(t)),

t ∈ (0, T],
(14)

for X(t) � x1 y1 z1 w1 x2 y2 z2 w2􏼂 􏼃
T and the initial

conditions X(0) � X0.
Te solution of the initial value problem is written as

X(t) � X0 + 􏽚
t

0

(t − θ)
ξ− 1

Γ(ξ)
Υ(X(θ))dθ. (15)

Te existence of the solution is examined in the region
Π × J where

Π � ωi􏼈 􏼉: max ωi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩<K􏽮 􏽯,

J � (0, T],
(16)

ω � x, y, z, w and i � 1, 2, 3, 4. Te equivalence between the
above integral (15) and original system (8) is employed as
follows.

Te right hand side of (15) is referred to as Φ(X), and
hence, we obtain

Φ X1( 􏼁 −Φ X2( 􏼁 � 􏽚
t

0

(t − θ)
ξ− 1

Γ(ξ)
Υ X1(θ)( 􏼁 − Υ X2(θ)( 􏼁( 􏼁dθ,

Φ X1( 􏼁 −Φ X2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 􏽚
t

0

(t − θ)
ξ−1

Γ(ξ)
X1(θ)( 􏼁 − Υ X2(θ)( 􏼁( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dθ.

(17)

Te following inequality can be obtained after some
calculations:

Φ X1( 􏼁 −Φ X2( 􏼁
����

����≤Δ X1 − X2
����

����,

∆ �
T
ξ

Γ(ξ + 1)
max K

2
+|ϵδ| +|α| +|c| + 1, |ϵδ| +|ϵ| +|β| +|σ| + 1, 2K

2
+|ϵ|􏽮 􏽯.

(18)

C2C1

R2

R1L1

M

Figure 1: Schematic diagram of the chaos-based memristor circuit.
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Now, we get the following theorem which states the
sufcient condition for existence and uniqueness of (8). □

Theorem  . Assume that Δ � Tξ/Γ(ξ + 1)max K2+􏼈 |ϵδ| +

|α| + |c| + 1, |ϵδ| + |ϵ| + |β| + |σ| + 1, 2K2 + |ϵ|}< 1, then the
solution of system (8) exists, and it is unique on Π × J.

Proof. Te proof of Teorem 1 is extended to the case of the
complete coupling case in Teorem 2. □

2.2. Continuous Dependence of Initial Conditions for the So-
lutions of Coupled Systems (7) and (8)

Theorem 3. Assume that the conditions of Teorem 1
(Teorem 2) are satisfed, then the solution of system (7)
(system (8)) exhibits continuous dependence on initial con-
ditions; i.e., for every ϱ > 0, there exists κ> 0 such that for two
initial conditions satisfying |X01 − X02|< κ. Te solution
trajectories achieve |X01 − X02|< κ.

Proof. Consider any two solutions of system (7) (system (8))
which evolve from two close initial conditions X01 and X02
in the way that

0< X01 − X02
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< κ. (19)

Assume that the conditions of Teorem 1 (Teorem 2)
are satisfed, thus

X1(t) � X01 + 􏽚
t

0

(t − θ)
ξ− 1

Γ(ξ)
Ψ X1(θ)( 􏼁dθ,

X2(t) � X02 + 􏽚
t

0

(t − θ)
ξ− 1

Γ(ξ)
Ψ X2(θ)( 􏼁dθ.

(20)

In view of these two equations, it is obvious that

X1 − X2
����

����≤ X01 − X02
����

���� + Λ X1 − X2
����

����,

(1 − Λ) X1 − X2
����

����≤ X01 − X02
����

����,
(21)

where 0<Λ< 1 as stated above.
Let ϱ � κ/1 − Λ, then it holds that

0< X1 − X2
����

����< ϱ, (22)

whenever

0< X01 − X02
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< κ. (23)

Note that, for system (8), ϱ is defned by ϱ � κ/1 − ∆, and
the proof is completed. □

3. Stability of the Equilibrium Point

Te unique equilibrium point of the proposed two systems
(7) and (8) is X∗ � (0, 0, 0, 0, 0, 0, 0, 0). Te interesting point
here is that the original uncoupled 4D system has a line of
equilibria, i.e., an infnite number of nonisolated equilibrium
points. Partial and complete couplings are found to elimi-
nate these lines of equilibria in the way that only the origin
equilibrium point persists.

Te Jacobian matrix of the fractional-order model (7) at
X∗ is evaluated as follows:

J1 �

−c − δϵ σ 0 0 0 0 0 ϵ

α −1 −1 0 0 0 0 0

0 β 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 −ϵ δϵ − c σ 0 0

0 0 0 0 α −1 −1 0

0 0 0 0 0 β 0 0

0 0 0 0 1 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (24)

whereas the Jacobian matrix of the fractional-order model
(8) at X∗ is evaluated as follows:

J2 �

−c − δϵ σ 0 0 0 0 0 ϵ

α −δϵ − 1 −1 0 0 0 ϵ 0

0 β −δϵ 0 0 ϵ 0 0

1 0 0 0 0 1 0 0

0 0 0 −ϵ δϵ − c σ 0 0

0 0 ϵ 0 α −δϵ − 1 −1 0

0 ϵ 0 0 0 β −δϵ 0

0 1 0 0 1 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(25)

For system (7), the characteristic equation of J1 is ob-
tained as follows:

λ8 + a1λ
7

+ a2λ
6

+ a3λ
5

+ a4λ
4

+ a5λ
3

+ a6λ
2

+ a7λ + a8 � 0,

(26)

where

a1 � 2c + 2, a2 � −2ασ + 2β + c
2

+ 4c − δ2ϵ2 + 1,

a3 � −2αcσ − 2ασ + 4βc + 2β + 2c
2

+ 2c − 2δ2ϵ2,

a4 � α2σ2 − 2αβσ − 2αcσ + β2 + 2βc
2

+ 4βc − 2βδ2ϵ2 + c
2

− δ2ϵ2 + ϵ2,

a5 � −2αβcσ + 2β2c + 2βc
2

− 2βδ2ϵ2 + 2ϵ2,

a6 � β2c2
− β2δ2ϵ2 + 2βϵ2 + ϵ2, a7 � 2βϵ2, a8 � β2ϵ2.

(27)
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On the other side, for system (8), the characteristic
equation of J2 is obtained as follows:

λ8 + b1λ
7

+ b2λ
6

+ b3λ
5

+ b4λ
4

+ b5λ
3

+ b6λ
2

+ b7λ + b8 � 0,

(28)

where

b1 � 2c + 4δϵ + 2, b2 � −2ασ + 2β + c
2

+ 8cδϵ + 4c + 5δ2ϵ2 + 6δϵ − 2ϵ2 + 1,

b3 � −2αcσ − 6αδσϵ − 2ασ + 4βc + 4βδϵ + 2β + 4c
2δϵ + 2c

2
+ 12cδ2ϵ2 + 12cδϵ

− 4cϵ2 + 2c + 4δ2ϵ2 − 4δϵ3 + 2δϵ − 2ϵ2,

b4 � α2σ2 − 2αβσ − 6αcδσϵ − 2αcσ − 6αδ2σϵ2 + 2αδϵ2 − 4αδσϵ + 2ασϵ2 − β2ϵ2 + β2

+ 2βc
2

+ 8βcδϵ + 4βc + 2βδϵ + 6c
2δ2ϵ2 + 6c

2δϵ − 2c
2ϵ2 + c

2
+ 8cδ3ϵ3 + 12cδ2ϵ2 − 8cδϵ3 + 4cδϵ

− 4cϵ2 − 5δ4ϵ4 − 4δ3ϵ3 − 2δϵ3 + ϵ4,

b5 � 2α2δσ2ϵ − 2αβcσ − 2αβδσϵ − 6αcδ2σϵ2 − 4αcδσϵ + 2αcσϵ2 − 2αδ3σϵ3 + 6αδ2ϵ3

− 2αδ2σϵ2 + 2αδσϵ3 + 2αδϵ2 − 2β2cϵ2 + 2β2c + 4βc
2δϵ + 2βc

2
+ 4βcδ2ϵ2 + 4βcδϵ − 4βδ3ϵ3

− 2βδ2ϵ2 + 4c
2δ3ϵ3 + 6c

2δ2ϵ2 − 4c
2δϵ3 + 2c

2δϵ − 2c
2ϵ2 + 2cδ4ϵ4 + 4cδ3ϵ3 − 4cδ2ϵ4

+ 2cδ2ϵ2 − 4cδϵ3 + 2cϵ4 − 2cϵ2 − 4δ5ϵ5 − 6δ4ϵ4 + 4δ3ϵ5 − 2δ3ϵ3 + 2δ2ϵ4 + 4δϵ3 + 2ϵ2,

b6 � α2δ2σ2ϵ2 − α2ϵ2 − 2αβcδσϵ + 2αβδϵ2 − 2αcδ3σϵ3 − 2αcδ2σϵ2 + 2αcδσϵ3 + 6αδ3ϵ4

+ 4αδ2ϵ3 − 2αδϵ4 − β2c2ϵ2 + β2c2
+ β2δ2ϵ4 − β2δ2ϵ2 + 2βc

2δ2ϵ2 + 2βc
2δϵ − 2βδ4ϵ4 − 2βδ3ϵ3

+ 2βϵ2 + c
2δ4ϵ4 + 2c

2δ3ϵ3 − 2c
2δ2ϵ4 + c

2δ2ϵ2 − 2c
2δϵ3 + c

2ϵ4 − c
2ϵ2 − δ6ϵ6 − 2δ5ϵ5 + 2δ4ϵ6

− δ4ϵ4 + 2δ3ϵ5 − δ2ϵ6 + 7δ2ϵ4 + 6δϵ3 − 2ϵ4 + ϵ2,

b7 � −2α2δϵ3 + 2αβδ2ϵ3 + 2αβϵ3 + 2αδ4ϵ5 + 2αδ3ϵ4 − 2αδ2ϵ5 − 2αϵ3 + 4βδϵ3 + 2βϵ2 + 4δ3ϵ5

+ 6δ2ϵ4 − 4δϵ5 + 2δϵ3 − 2ϵ4,

b8 � −α2δ2ϵ4 + 2αβδϵ4 − 2αδϵ4 − β2ϵ4 + β2ϵ2 + 2βδ2ϵ4 + 2βδϵ3 + δ4ϵ6 + 2δ3ϵ5 − 2δ2ϵ6 + δ2ϵ4

− 2δϵ5 + ϵ6 − ϵ4.

(29)

Numerical investigation of stability regions in the space
of parameters is a necessary step due to the very complicated
exact forms of stability conditions of equilibrium points. It is
known that the arguments of eigenvalues of the Jacobian
matrix should satisfy

Arg λi >
ξπ
2

􏼠 􏼡, (30)

to ensure the local asymptotic stability of the
equilibrium point.

Stability regions for the equilibrium point of the pro-
posed system (7) are shown in Figure 2 for diferent planes of
ϵ − δ parameters when diferent values of the fractional
order ξ are employed such that (a) ξ � 0.45, (b) ξ � 0.4, and
(c) ξ � 0.3. Te other values of parameters in the system are
α � 0.4, β � 1.5, c � −0.4, and σ � 0.3. In Figure 3, stability
regions for the equilibrium point of the proposed system (7)
are shown in diferent planes of ϵ − ξ parameters for dif-
ferent values of δ such that (a) δ � 1, (b) δ � 0.7,
and (c) δ � 0.5. Te other values of parameters are taken as

α � 0.4, β � 1.5, c � −0.4, and σ � 0.3. Similarly, the stability
regions for the equilibrium point of system (7) are shown in
Figure 4 for diferent planes of ϵ − c parameters at diferent
values of the fractional order ξ such that (a) ξ � 0.9, (b) ξ �

0.7, and (c) ξ � 0.5. Te other values of parameters are
selected as α � 7.82, β � 7.8125, δ � 0.5, and σ � 5.

For the suggested system (8), stability regions for the
equilibrium point of the system are illustrated in Figure 5 for
diferent planes of α − c parameters for diferent values of
the fractional order ξ such that (a) ξ � 0.95, (b) ξ � 0.75, and
(c) ξ � 0.5. Te other values of parameters are chosen as ϵ �
0.3, β � 1.3, δ � 0.6, and σ � 0.03. In Figure 6, stability re-
gions for the equilibrium point of the proposed system (8)
are shown in diferent planes of ϵ − δ parameters for dif-
ferent values of the fractional order ξ such that (a) ξ � 0.6,
(b) ξ � 0.4, and (c) ξ � 0.3. Te other values of parameters
are α � 3.3, β � 1.3, c � −0.07, and σ � 0.03, whereas in
subfgure (c), β � 1.5 and c � −0.4. Finally, the stability re-
gions for the equilibrium point of the proposed system (8)
are shown in Figure 7 for diferent planes of ϵ − ξ parameters
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Figure 2: Stability regions for the equilibrium point of the proposed system (7) are shown in diferent planes of ϵ − δ parameters for diferent
values of the fractional order ξ such that (a) ξ � 0.45, (b) ξ � 0.4, and (c) ξ � 0.3.Te other values of parameters are α � 0.4, β � 1.5, c � −0.4,
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Figure 3: Continued.
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Figure 3: Stability regions for the equilibrium point of the proposed system (37 d phase portraits for system (7)) are shown in diferent
planes of ϵ − ξ parameters for diferent values of δ such that (a) δ � 1, (b) δ � 0.7, and (c) δ � 0.5. Te other values of parameters are
α � 0.4, β � 1.5, c � −0.4, and σ � 0.3.

-6

-4

-2γ

0

2

-0.5 0.0 0.5 1.0-1.0
є

(a)

-6

-4

γ -2

0

2

-0.5 0.0 0.5 1.0-1.0
є

(b)

-6

-4

-2γ

0

2

-0.5 0.0 0.5 1.0-1.0
є

(c)

Figure 4: Stability regions for the equilibrium point of the proposed system (3) are shown in diferent planes of ϵ − c parameters for diferent
values of the fractional order ξ such that (a) ξ � 0.9, (b) ξ � 0.7, and (c) ξ � 0.5. Te other values of parameters are α � 7.82, β � 7.8125, δ �

0.5, and σ � 5.
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for diferent values of δ. In particular, the following cases are
considered: (a) δ � 1 and (b) δ � 0.7, whereas the other
values of parameters are taken as α � 0.3, β � 1.5, c � −0.4,
and σ � 0.4 (for case (a)) and σ � 0.3 (for case (b)).

Numerical simulations are used to verify these obtained
regions. In Figure 8, the time series plots and phase portraits
for system (7) are shown at the following values of pa-
rameters ϵ � 0.05, ξ � 0.7, δ � 0.5, α � 7.82, β � 7.813, c � 2,
and σ � 5 and illustrate the asymptotic stability of the origin
equilibrium point. Also, in Figure 9, the time series plots and
phase portraits for system (48 point of the proposed system
(8)) are shown at the following values of parameters ϵ �
0.3, ξ � 0.9, δ � 0.6, α � 1, β � 1.3, c � 2.8, and σ � 0.03 and
depict the asymptotic stability of the origin
equilibrium point.

4. Bifurcation Diagrams and
Impact of Parameters

Tis section studies the impact of the following system
parameters:

D
ξ
x1(t) � −cx1 + σy1 − x1w

2
1 + ϵ w2 − δx1( 􏼁,

D
ξ
y1(t) � α1x1 − y1 − z1,

D
ξ
z1(t) � βy1,

D
ξ
w1(t) � x1,

D
ξ
x2(t) � −cx2 + σy2 − x2w

2
2 + ϵ −w1 + δx2( 􏼁,

D
ξ
y2(t) � α2x2 − y2 − z2,

D
ξ
z2(t) � βy2,

D
ξ
w2(t) � x2,

(31)

with two diferent values of the parameter α. Terefore, for
the parameter values, α1 � 1.5, α2 � 12, β � 6, ϵ � 2, δ �

0.2, σ � 3, and ξ � 0.98, and initial conditions are set as
(0.01, 0.01, 0.01, 0.2, 0.01, 0.01, 0.01, and 0.2). Te parameter
−c varies in the range [−6, 10], and the bifurcation diagram
and corresponding Lyapunov exponents are presented in
Figure 10(a). For −6≤ − c≤ 2.1, there is 2-period doubling,
and for 2.1≤ − c≤ 10, the system goes to chaos. When fxing
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Figure 5: Stability regions for the equilibrium point of the proposed system (4) are shown in diferent planes of α − c parameters for
diferent values of the fractional order ξ such that (a) ξ � 0.95, (b) ξ � 0.75, and (c) ξ � 0.5. Te other values of parameters are ϵ � 0.3, β �

1.3, δ � 0.6, and σ � 0.03.
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10 Mathematical Problems in Engineering



−c � 6 and changing the value of parameter α1 through the
range [0.1, 5.5], we obtain the results shown in Figure 10(b).
In the interval [0.1, 0.8], there is 6-period doubling, and the
system goes to chaos and then back to period doubling in the
range [3.5, 5.5].

We fx α1 � 1.4 and the varying parameter β in the range
[1, 10.5], as depicted in Figure 11(a). For 1≤ β≤ 3.7 there is
2-period doubling, and then, the chaotic behavior emerges.
We fx β � 5; then, we examine the efect of the parameter α2
through the range [0.1, 12.5], as shown in Figure 11(b). For
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Figure 8: Time series plots and phase portraits for system (3) are shown at the following values of parameters ϵ � 0.05, ξ � 0.7, δ � 0.5,
α � 7.82, β � 7.813, c � 2, and σ � 5 and illustrate the asymptotic stability of the origin equilibrium point.
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0.1≤ α2 ≤ 3.8, there is 3-period doubling, and for
3.8≤ α2 ≤ 12.5, the system exhibits chaotic behavior.

We fx α2 � 6.5; then, we change the value of ϵ ∈ [0, 3], as
displayed in Figure 12. It is clear that, in the range [0, 1.2],
there is quasi-periodic behavior, and then, the system goes to
chaos and back to 2-period doubling in [2.6, 3]. Te pa-
rameter ϵ is fxed with the value ϵ � 1.5; then, we change the
value of parameters δ ∈ [0, 0.99] and δ ∈ [0, 10], as depicted

in Figures 13(a) and 13(b), respectively. In the range of
0≤ δ ≤ 0.3, the system exhibits chaotic behavior, and then, 2-
period doubling behavior appears. For the parameter σ in
the range from σ � 0.5 to σ � 4, we fx δ � 0.6, and the
bifurcation diagram and the corresponding Lyapunov ex-
ponent plot are shown in Figures 14(a) and 14(b), re-
spectively. Te fgures show that, in the interval [0.5, 1.75],
the value of the maximal Lyapunov exponent is very close to
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Figure 9: Time series plots and phase portraits for system (4) are shown at the following values of parameters ϵ � 0.3, ξ � 0.9, δ � 0.6,
α � 1, β � 1.3, c � 2.8, and σ � 0.03 and illustrate the asymptotic stability of the origin equilibrium point.

12 Mathematical Problems in Engineering



-60

-40

-20

0

20

40

60

x

-4 -2 0 2 4 6 8 10-6
γ

-4 -2 0 2 4 6 8 10-6
γ

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

LE

(a)

-80

-60

-40

-20

0

20

40

60

80

x

-2

-1.5

-1

-0.5

0

0.5

LE

1 1.5 2 2.5 3 3.5 4 4.5 5 5.50.5
α1

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.50
α1

(b)

Figure 10: Te bifurcation diagram and corresponding Lyapunov exponents for (a) −c and (b) α1.

x 1

2 3 4 5 6 7 8 9 101
β

2 3 4 5 6 7 8 9 101
β

-40

-30

-20

-10

0

10

20

30

40

-2

-1.5

-1

-0.5

0

0.5

LE

(a)
Figure 11: Continued.

Mathematical Problems in Engineering 13



0, which indicates that periodic behavior occurs in this
range, followed by period doubling cascade in [1.75, 2.2].
Finally, the chaotic behavior is observed in [2.2, 4].

We fx � 3, and then, we change the value of the frac-
tional order ξ ∈ [0.75, 1], as displayed in Figure 15. For
0.75≤ ξ ≤ 0.865, there is 2-period doubling, and then, the
system goes to quasi-periodic and back to chaos. Te phase
portrait at two diferent values for the fractional order ξ is
depicted in Figures 16 and 17 to verify the bifurcation
diagram.

5. Image Encryption and the
Decryption Algorithm

We are motivated by coupled fractional-order memristor
chaotic systems and their sensitivity to initial conditions to
utilize the generated randomness time series from the coupled
system in an image encryption application. Te algorithm
fundamentally consists of two parts: original image pixel
scrambling with the pixel value remains unchanged and
image difusion based on the chaotic time series from the
coupled fractional-order memristor chaotic systems.

5.1. Encryption Steps. Te steps of the proposed algorithm
are illustrated as follows:

(1) Te original image is put as a matrix BM×N with
dimensions M × N.

(2) Te value of the constant Bc is set as a perturbation
value that relies only on the original image, and it is
defned as

Bc �
1

(M × N)
3 􏽘

M

i�1
􏽘

N

j�1
B(i, j), (32)

where B(i, j) is the positions of original image
pixels. We use the image constant Bc as a pertur-
bation value for one of the system parameters, for
example, σ or α1, to make the original image

contribute to evaluating the secret key and the
scrambling process.

(3) Te chaotic time series are obtained as
x1(i), y1(i), z1(i), w1(i), x2(i), y2(i), z2(i), w2(i), i �

1, 2, . . . , k, and k � M × N; after eliminating the
transient values, the required size k is obtained from
the solutions of the chaotic system.

(4) Te standard values for the secret key and new pixel
positions are obtained as follows:

secretKeyi � mod floor x1(i) × 1015􏼐 􏼑, 256􏼐 􏼑,

newRowi � mod floor x2(i) × 1015􏼐 􏼑, M􏼐 􏼑 + 1,

newColi � mod floor y2(i) × 1015􏼐 􏼑, N􏼐 􏼑 + 1.

(33)

For the secret key, we use the mod function between
x1(i) and 256, where the range [0, 256] indicates
image pixel values. Also, we use the mod function
between x2(i), y2(i) and M and N, respectively, to
get a new position for the pixel value image matrix B

for the scrambling process.
(5) Te repositioned image matrix Bsc is obtained after

using newRow and newCol as new rows and columns
for pixel positions without altering pixel values.

(6) Te secret key is transformed to the matrix using
sKey � reshape(secretKey, M, N). (34)

Step 7. To obtain the encrypted image Ben, the bitwise
XOR operation between sKey and Bsc is applied:

Ben(i, j) � Bsc(i, j)⊕ sKey(i, j). (35)

5.2. Decryption Steps. To decode the image, we reverse the
encryption steps as follows:

Step 1. To obtain the decrypted image Bde, the bitwise
XOR operation between Ben and sKey is applied:
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Figure 11: Te bifurcation diagram and corresponding Lyapunov exponents for (a) β and (b) α2.
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Bde(i, j) � Ben(i, j)⊕ sKey(i, j). (36)

Step 2. Te positions of the pixels in the image are
inverted to get the original image using newRow and
newCol sequences.

5.3. SecurityAnalysis. Te encryption algorithm of images is
applied based on the coupled fractional-order memristor
chaotic systems. Four test images, cameraman, Lena, bird,
and baboon, with a size of 256 × 256 are used in the ex-
periment. Te perturbation value Bc of the cameraman,

Lena, bird, and baboon images in the algorithm through
(32) is 2.7641 × 10− 8, 2.8891 × 10− 8, 1.6707 × 10− 8, and
1.5513 × 10− 8, respectively. Te proposed encryption al-
gorithm is implemented on the four test images, as illus-
trated in Figure 18 which depicts the original, scrambled,
encrypted, and decrypted images for the presented
algorithm.

To confrm the efectiveness of the proposed algorithm,
statistical and randomness tests have been carried out such
as key space, histogram analysis, information entropy,
correlation coefcients of adjacent pixels, key sensitivity, and
cropping attacks.
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Figure 13: Te bifurcation diagram and corresponding Lyapunov exponents for δ. (a) δ ∈ [0, 0.99] and (b) δ ∈ [0, 10].
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5.3.1. Key Space. Te key space refers to the key size
range, which can determine the security of the encryption
algorithm which is resistant to brute force attacks. In
this paper, the secret key is composed of the double
precision based on the chaotic coupled system parameters
α1, α2, β, ϵ, δ, σ, ξ, Bc and initial conditions (x1(0), y1(0),

z1(0), w1(0), x2(0), y2(0), z2(0), w2(0)). Te digit numbers
are to be at least 10− 15 in each parameter. Te
proposed algorithm has a key space value of 10240 which is
compared to the recommended key space that should be at
least 2100 [61]. Consequently, the large key space of the
proposed algorithm provides resistance to various types of
attacks.

5.3.2. Histogram Analysis. Te histogram is an indicator of
statistics in the image, which refects the total number of
pixels for each value in the image. To deny an adversary from
obtaining statistical information, the histogram of the
encrypted image should be uniformly distributed. For the
proposed algorithm, the histogram of the original and
encrypted images is shown in Figure 19, demonstrating that
the encrypted image has a uniform histogram regardless of
the original image; hence, it can resist statistical analysis
attacks.

Moreover, the histogram variance can be used to
quantify the histogram. Te smaller the variance of the
encrypted image, the more uniform the distribution. Te
histogram variances for the original and encrypted images
are shown in Table 1. In all the cases, the signifcant re-
duction of the variance can be observed compared with the
original image.Te reduction for the cameraman, Lena, bird

and baboon images is verifed with values of approximately
99%.

5.3.3. Information Entropy. Information entropy is a tool
used to measure the randomness of pixels in an image. Te
values of entropy are 7.9978, 7.9971, 7.9974, and 7.9973 for
cameraman, Lena, bird, and baboon images, respectively. It
is clear that the mentioned values approach the ideal value
≈8, which means that the encrypted image has high ran-
domness and is less feasible to show information for the
encryption scheme. In Table 2, the entropy of the proposed
algorithm is compared with the similar literature work.

5.3.4. Correlation Analysis. Te correlation analysis is used
to represent the degree of association between adjacent
pixels, and the correlation coefcient is close to 1 in the
original image. Te calculation method of the correlation
coefcient between adjacent pixels is as follows:

ruv �
cov(u, v)

����σuσv

√ , (37)

where cov(u, v) is the covariance function, E(u) �

1/N 􏽐
N
i�1 ui, and σu � 1/N 􏽐

N
i�1 (ui − E(u)2. Te correlation

analysis of the cameraman, Lena, bird, and baboon
original and encrypted images in three directions is
evaluated and shown in Table 3. In addition, the corre-
lations of the bird image before and after encryption in
each direction are depicted in Figure 20. It is clear that the
correlation coefcient of the encrypted image is close to
zero in all directions. Terefore, the encryption process
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Figure 17: Te system phase portrait at the fractional order ξ � 0.98.
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makes pixels of the encrypted image almost independent
of each other. Consequently, the encryption algorithm
breaks the original statistical features of the data of the
original image.

5.3.5. Key Sensitivity Analysis. Te encryption algorithm
should be very sensitive to its secret key. Terefore, a slight
change in the key will lead to a complete change in the
encryption result. Hence, if the secret key changes slightly,
the decrypted image will be diferent from the original
image. To measure the sensitivity of the encryption key,
NPCR (pixel change rate) and UACI (pixel average change
intensity) have been used. NPCR and UACI are evaluated by
the following equations [65]:

NPCR(%) � 􏽘
M

i�1
􏽘

N

j�1

sign P1(i, j) − P2(i, j)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

M × N
× 100,

UACI(%) �
1

M × N
􏽘

M

i�1
􏽘

N

j�1

P1(i, j) − P2(i, j)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

255
× 100.

(38)

We verifed the sensitivity of secret key values associated
with x1(0) and y1(0) by adding 10− 12 in the initial con-
ditions. Te values of NPCR and UACI between the
encrypted image and the original image are evaluated in
Table 4. It can be confrmed that the proposed algorithm has
a good sensitivity to the encryption key.

Figure 18: Te original, shufed, encrypted, and decrypted images in frst, second, third, and fourth columns, respectively, for cameraman,
Lena, bird, and baboon images with a size of 256 × 256.

18 Mathematical Problems in Engineering



5.3.6. Cropping Attack. To investigate the immunity of the
encryption algorithm to some information loss or tampered
information, the cropping attack is utilized. In the proposed

algorithm, we can still obtain an identifable image by de-
cryption when an internal block of the encrypted image with
a dimension of 256 × 75 is exchanged with a black block in
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Figure 19: Histograms for cameraman, Lena, bird, and baboon images in the frst, second, and third rows, respectively. First column:
original images; second column: encrypted images.

Table 1: Te histogram variances for original and encrypted images for cameraman, Lena, bird, and baboon images with their reduction.

Original Encrypted Reduction (%)
Cameraman 102940 203.3176 99.8025
Lena 39104 259.3961 99.3366
Bird 143930 238.3922 99.8344
Baboon 107900 247.098 99.771
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Table 2: Comparison of the entropy of the proposed algorithm with the literature.

Images Proposed Ref. [62] Ref. [63] Ref. [64]
Cameraman 7.9978 — — 7.9661
Lena 7.9971 7.9976 7.997 7.9661
Baboon 7.9973 7.9972 7.997 —

Table 3: Te correlation coefcients of the four images in diferent directions.

Image Horizontal Vertical Diagonal

Cameraman Original 0.9331 0.9583 0.9080
Encrypted −0.0067 −0.0044 −0.0024

Lena Original 0.9046 0.9443 0.8835
Encrypted 0.0019 −0.0015 −0.0039

Bird Original 0.9748 0.9634 0.9483
Encrypted −0.0020 0.0061 0.0007

Baboon Original 0.8623 0.8184 0.8090
Encrypted 0.0004 −0.0087 0.0031
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Figure 20: Te correlation of the bird original image in the frst column and the encrypted image in the second column for the three
directions.
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diferent positions like left, middle, and right, as displayed in
Figure 21. Tis illustrates that the proposed algorithm has
a good ability to resist cropping and tampering attacks.

6. Conclusion

In this study, two coupling schemes for fractional-order
memristor-based chaotic circuits are introduced. It is ob-
served that the line of nonisolated equilibrium points in
uncoupled circuits becomes a unique equilibrium point in
the two coupled cases. Te regions of stability in the space of
parameters are depicted for each coupled system.Te variety
of nonlinear dynamics exhibited by the coupled circuits is
examined via bifurcation diagrams, Lyapunov exponents,
and phase portraits. A suggested chaos-based encryption
scheme is presented. Security tests and analysis are carried
out to confrm reliability of the encryption scheme.

Tis work is limited to the case of two coupled fractional-
order chaotic circuits. Te work can be extended to the more
realistic and general cases of coupled memristor-based
circuits. In particular, diferent topologies for networks of
coupled circuits can be considered in future studies. For
example, it is interesting to explore the nonlinear dynamics
and chaos synchronization in ring, starhub, tree, or hier-
archical networks of fractional memristor-based chaotic
circuits. Moreover, new chaos-based encryption schemes
can be examined in diferent confgurations of fractional
circuit networks.
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