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In this paper, we present an idea of a new iterative procedure (NIP) to examine the approximate solution of the nonlinear fractional
Drinfeld–Sokolov–Wilson (DSW) equation. We first use Mohand transform (MT) to the problem and obtain a recurrence relation
without any assumption or restrictive variable. This relation is now very easy to handle and suitable for the study of the homotopy
perturbation method (HPM). We observe that HPM produces the iterations in the form of convergence series that becomes very
close to the precise solution. The fractional derivative is considered in the Caputo sense. We also demonstrate the graphical
solution to show that NIP is a very simple, straightforward, and efficient tool for nonlinear problems of fractional derivatives.

1. Introduction

Many phenomena in science and engineering are studied
through fractional calculus. These phenomena arise in vari-
ous fields such as physics, mathematical biology, signal pro-
cessing, finance, social science, and many more. Therefore,
this research is more interesting but difficult in the presence
of fractional order derivatives [1–3]. In physics and mathe-
matics, the process for the evaluation of the exact or approx-
imate results of nonlinear partial differential equations (PDE)
is still important. Most of the equations have some difficulties
to solve, whereas the difficulty of the solution increases if
the nonlinear systems have a fractional order. Drinfeld and
Sokolov [4] and Wilson [5] presented the Drinfeld–Soko-
lov–Wilson (DSW) system for dispersive water waves that
perform a significant part in fluid dynamics. In this paper,
we assume the coupled DSW system as follows [6]:

Ψς þ aΦΦφ ¼ 0;
Φς þ bΦςςς þ cΨΦφ þ dΨφΦ ¼ 0;

ð1Þ

where Ψ φ;ð ςÞ and Φ φ;ð ςÞ are the functions of time ς with
space φ and they designate the amplitude of the wave modes,

and a; b; c, and d are nonzero elements. Specially, for a ¼ 3;
b ¼ 2; c ¼ 2; d ¼ 1. The above system plays a key part in the
different branches of hydrodynamic fields. Jawad [7] dem-
onstrated a theory of traveling wave and the new solitary
wave solutions of the DSW problem. Singh et al. [6] presented
a different approach to evaluate the approximate results of the
fractional DSW problem that occurs in dispersive water waves.
Gao et al. [8] implemented q-homotopy analysis transform
scheme to find the solution for fractional DWS equation. This
approach has designed such that Laplace transform technique
is coupled with q-homotopy analysis method, whereas frac-
tional derivative defined with Atangana–Baleanu operator.
Sahoo and Ray [9] studied the double-periodic solutions of
fractional DSW equation in shallow water waves via Jacobi
elliptical function method. Srivastava and Saad [10] studied
Adomian decomposition method to find the approximate
solution of time-fractional DSW system. Jaradat et al. [11] used
residual power series method to find the analytical results of
nonlinear fractional DSW problem.

The homotopy perturbation method (HPM) [12] has
been introduced to solve the ordinary and PDE. Various
approaches have been studied to solve the differential pro-
blems such as differential transform scheme [13], Adomian
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decomposition scheme [14], finite difference methods [15],
homotopy analysis approach [16], Sumudu transformation
method [17, 18], Elzaki transform [19, 20], Aboodh trans-
formation method [21], ZZ transform [22], Chebyshev col-
lection method [23] and Haar wavelet approach [24], Mohand
homotopy perturbation transform [25], and so on [26, 27].
Later, Elzaki transform is combined with HPM to obtain
the solution of nonlinear PDE and showed that HPM is
very effective and simple approach. Ganji and Sadighi [28]
implemented variational iteration method with HPM to
achieve the approximate results of nonlinear transfer and
porous media problems.

Mahgoub [29] introduced a new scheme known as
Mohand transform that provides the results without restric-
tion variable. Mohand transform is very easy to implement
to the differential problems than variational iteration method
(VIM), Laplace transform, and homotopy analysis method
(HAM). Since VIM involves the integration and produces
constant of integration, Laplace transform involves the con-
volution theorem and HAM considered some assumptions.
Due to these restrictions of variables, it is not easy to handle
the solution of the problems, whereas Mohand transform has
been applied in a direct way, we do not need any integration,
convolution theorem, and any other assumption. This signif-
icance makes Mohand transform unique and different. In
this paper, we combine Mohand transform with HPM to
develop a new iterative procedure (NIP) for evaluating the
approximate results of nonlinear fractional DSW equation.
The rest of paper is designed as: in Section 2, we define the
basic idea of Mohand transform with basic propositions. In
Section 3, we construct the idea of NIP starting with a non-
linear differential problem. We implement this strategy to a
numerical problem in Section 4 and discuss some results in
Section 5 and then the conclusion is presented in Section 6.

2. Basic Definitions of Fractional Calculus and
Mohand Transform

This segment describes few basic properties of fractional
calculus and Mohand transform that are very helpful in
the formulation of this scheme.

Definition 1. If α is the fractional order of a function Ψ ςð Þ,
then [30]:

∂αΨ
∂ςα

¼ 1
Γ 1 − αð Þ

d
dς

Z
ς

0
ς − wð Þ−αΨ wð Þdw;  0< α< 1:

ð2Þ

Definition 2. Consider Ψ ςð Þ ¼ ςα, then:

M Dnα
φ Ψ φ; ςð ÞÂ Ã ¼ snαF sð Þ − ∑

n−1

k¼0
snα−k−1Ψ kð Þ

φ 0; ςð Þ;  n − 1< α ≤ n:

ð3Þ

Definition 3. The Caputo fractional derivative of the function
Ψ with respect to ς of the order α, where α > 0, is defined as [2]:

Dα
τΨ φ; ςð Þ ¼ 1

Γ n − αð Þ
Z

ς

0
ς − φð Þn−α−1Ψ n φð Þ∂φ; n − 1< α< n:

ð4Þ

Definition 4. Mahgoub [29] developed a scheme for solving
the differential problems. The Mohand transform is defined as:

M Ψ ςð Þf g ¼ R wð Þ ¼ w2

Z
ς

0
Ψ ςð Þe−vςdς; k1 ≤ w ≤ k2:

ð5Þ

Similarly, If R wð Þ is the Mohand transform of Ψ ςð Þ, then
Ψ ςð Þ is called the inverse of R wð Þ, i.e.,

M−1 R wð Þf g ¼ Ψ sð Þ; ð6Þ

where M−1 is called inverse Mohand transform.

Definition 5. Mohand transform with fractional derivative is
defined as [29]:

M Ψα ςð Þf g ¼ wαR wð Þ − ∑
n−1

k¼0

Ψ k 0ð Þ
wk

− αþ 1ð Þ ;  0< α ≤ n:

ð7Þ

Definition 6. Mohand transform in case of a differential
function Ψ ςð Þ is defined as:

(a) M Ψ 0 ςð Þf g ¼ wR wð Þ− w2Ψ 0ð Þ
(b) M Ψ 00 ςð Þf gf ¼ w2R wð Þ − w3Ψ 0ð Þ− w2Ψ 0 0ð Þ
(c) M Ψ n ςð Þf g ¼ wnR wð Þ − wnþ1Ψ 0ð Þ − wnΨ 0 0ð Þ − ⋯

− wnΨ n−1 0ð Þ:

3. Development of NIP

This section presents the formulation of the NIP to obtain
the approximate solution of fourth-order PDE with frac-
tional derivative. Therefore, we start this idea with consider-
ation of a fractional differential equation such as:

Dα
ςΨ φ; ςð Þ þ RΨ φ; ςð Þ þ NΨ φ; ςð Þ ¼ g φ; ςð Þ; ð8Þ

Ψ φ; 0ð Þ ¼ h φð Þ; ð9Þ

where Dα
ς ¼ ∂α=∂ςα represents the operator function of frac-

tional order α. The function Ψ is considered in the direction
of φ and ς known as spatial and time, respectively, R is called
linear and N be the nonlinear differential operators and
g φ;ð ςÞ is the known function. Applying MT in Equation (8):
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M Dα
ςΨ φ; ςð Þ þ RΨ φ; ςð Þ þ NΨ φ; ςð ÞÂ Ã ¼ M g φ; ςð Þ½ � :

ð10Þ

Applying the definition of MT, we obtain:

wα R wð Þ − wΨ 0ð Þ½ � ¼ −M RΨ φ; ςð Þ þ NΨ φ; ςð Þ½ � þM g φ; ςð Þ½ �;
ð11Þ

that can come

R wð Þ ¼ wu 0ð Þ − 1
wα M RΨ φ; ςð Þ þ NΨ φ; ςð Þ þ g φ; ςð Þ½ �:

ð12Þ

With the help of Equation (9), we get:

R wð Þ ¼ wh φð Þ − 1
wα M RΨ φ; ςð Þ þ NΨ φ; ςð Þ þ g φ; ςð Þ½ �:

ð13Þ

Using the inverse MT, we get:

Ψ φ; ςð Þ ¼ G φ; ςð Þ −M−1 1
wα M RΨ φ; ςð Þ þ NΨ φ; ςð Þ½ �
� �

:

ð14Þ

Thus, Equation (14) is known as the recurrence relation
of Ψ φ;ð ςÞ, here:

G φ; ςð Þ ¼ M−1 wh φð Þ þM g φ; ςð Þf g½ �: ð15Þ

Let us consider the approximate solution of Equation (9)
that can be stated as:

Ψ φ; ςð Þ ¼ ∑
1

n¼0
pnΨn φ; ςð Þ; ð16Þ

and

NΨ φ; ςð Þ ¼ ∑
1

n¼0
pnHnΨ φ; ςð Þ; ð17Þ

where p 2 0;½ 1� is homotopy component and assumed as a
slightly parameter, whereas Ψ 0 φ;ð ςÞ is an initial guess of
Equation (8). To obtain the He’s polynomials, we may imple-
ment the following formula:

Hn Ψ 0 þ Ψ 1 þ⋯þ Ψ nð Þ
¼ 1

n!
∂n

∂pn
N ∑

1

i¼0
piΨ i

� �� �
p¼0
: n ¼ 0; 1; 2;⋯ : ð18Þ

Combining Equations (16) and (17), Equation (14) can
be written as:

∑
1

n¼0
pnΨn φ; ςð Þ ¼ G φ; ςð Þ − pM−1 1

wα M R ∑
1

n¼0
pnΨn φ; ςð Þ

� �
þ ∑

1

n¼0
pnHnΨ n φ; ςð Þ

� �� �
: ð19Þ

Equating the similar components of p, we get:

p0 :Ψ 0 φ; ςð Þ ¼ G φ; ςð Þ;
p1 :Ψ 1 φ; ςð Þ ¼ −M−1 1

wα M RΨ 0 φ; ςð Þ þ H0f g
� �

;

p2 :Ψ 2 φ; ςð Þ ¼ −M−1 1
wα M RΨ 1 φ; ςð Þ þ H1f g
� �

;

p3 :Ψ 3 φ; ςð Þ ¼ −M−1 1
wα M RΨ 2 φ; ςð Þ þ H2f g
� �

:

⋮

ð20Þ

Using the similar process, we can derive the following
results such as:

Ψ φ; ςð Þ ¼ Ψ 0 φ; ςð Þ þ p1Ψ 1 φ; ςð Þ þ p2Ψ 2 φ; ςð Þ þ þp3Ψ 3 φ; ςð Þ þ⋯:

ð21Þ

The analytical solution of Equation (8) for p ¼ 1 is given
as follows:

Ψ φ; ςð Þ ¼ lim
N→1

∑
N

n¼0
Ψn φ; ςð Þ: ð22Þ

Theorem 1. Assume that φ and χ be two Banach spaces such
that I :φ→ χ is a nonlinear operator. Therefore, Ψ ;Ψ ∗2;φ,
∥I Ψð Þ− I Ψ ∗ð Þ ∥ ≤ K ∥ Ψ− Ψ ∗ ∥; 0<K < 1. The Banach con-
traction states that I denoted as a unique fixed point Ψ , i.e.,
IΨ ¼ Ψ . So, rewrite the Equation (22) that is given as follows:

Ψ φ; ςð Þ ¼ lim
N→1

∑
N

n¼0
Ψn φ; ςð Þ; ð23Þ

and assume that φ0 ¼ Ψ 0 2 Sp Ψð Þ, where Sp Ψð Þ ¼ Ψ ∗2f
φ : ∥Ψ − Ψ ∗∥ < pg then, we have:

B1ð Þφn 2 Sp Ψð Þ;
B2ð Þ lim

n→1 φn ¼ Ψ : ð24Þ
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Proof. (B1) In the light of mathematical induction at n ¼ 1,
we have:

φ1 − Ψ 1k k ¼ T φ0 − T Ψð Þð Þk k ≤ K Ψ 0 − Ψk k: ð25Þ

Let the result is accurate for n ¼ 1, thus:

φn−1 − Ψk k ≤ Kn−1 Ψ 0 − Ψk k: ð26Þ

Therefore,

φn − Ψk k ¼ T φn−1 − T Ψð Þð Þk k ≤ K φn−1 − Ψk k ≤ Kn Ψ 0 − Ψk k:
ð27Þ

Hence, using B1ð Þ, we have:

φn − Ψk k ≤ Kn Ψ 0 − Ψk k ≤ Knp < p; ð28Þ

which shows φn 2 Sp Ψð Þ.
B2: Since ∥φn− Ψ∥ ≤ Kn ∥ Ψ 0− Ψ∥ and as a limn→1 Kn ¼ 0.

Therefore, we have limn→1 ∥Ψn− Ψ∥ ¼ 0⇒ limn→1Ψ n ¼ Ψ . □

4. Applications of NIP

In this segment, we implement the formulation of new strat-
egy and show that this approach is very relatable, straight-
forward, and simple. We also demonstrate the physical
understanding of these approximate solutions obtained by
this scheme together with the exact solutions. Graphical
results show that only few iteration is enough to obtain the
approximate solution that converges to the exact solution
at α ¼ 1.

4.1. Example. Consider the nonlinear fractional DSW equa-
tion [31]:

∂αΨ
∂ςα

þ 3Φ
∂Φ
∂φ

¼ 0;

∂αΦ
∂ςα

þ 2
∂3Φ
∂φ3 þ 2Ψ

∂Φ
∂φ

þ Φ
∂Ψ
∂φ

¼ 0;
ð29Þ

with the initial conditions:

Ψ φ; 0ð Þ ¼ 3 sech2 φð Þ;
Φ φ; 0ð Þ ¼ 2 sech φð Þ: ð30Þ

Applying MT on the system of Equation (29), we get:

M
∂αΨ
∂ςα

� �
¼ M −3Φ

∂Φ
∂φ

� �
;

M
∂αΦ
∂ςα

� �
¼ M −2

∂3Φ
∂φ3 − 2Ψ

∂Φ
∂φ

− Φ
∂Ψ
∂φ

� �
:

ð31Þ

Now, using the MT properties, we obtain:

wα R wð Þ − wΨ 0ð Þ½ � ¼ M −3Φ
∂Φ
∂φ

� �
;

wα R wð Þ − wΦ 0ð Þ½ � ¼ M −2
∂3Φ
∂φ3 − 2Ψ

∂Φ
∂φ

− Φ
∂Ψ
∂φ

� �
:

ð32Þ

Solving above system, we get:

R wð Þ ¼ wΨ 0ð Þ − 1
wα M 3Φ

∂Φ
∂φ

� �
;

R wð Þ ¼ wΦ 0ð Þ − 1
wα M −2

∂3Φ
∂φ3 − 2Ψ

∂Φ
∂φ

− Φ
∂Ψ
∂φ

� �
:

ð33Þ

Taking inverse MT, we get:

Ψ φ; 0ð Þ ¼ Ψ 0ð Þ −M−
1
wα M 3Φ

∂Φ
∂φ

� �� �
;

Φ φ; 0ð Þ ¼ Φ 0ð Þ −M−
1
wα M −2

∂3Φ
∂φ3 − 2Ψ

∂Φ
∂φ

− Φ
∂Ψ
∂φ

� �� �
:

ð34Þ

Now, apply HPM to obtain He’s polynomials that are
given as follows:

∑
1

i¼0
piΨ i ¼ Ψ 0ð Þ −M−

1
wα M 3∑

1

i¼0
piΦi

∂
∂φ

∑
1

i¼0
piΦi

� �� �
;

∑
1

i¼0
piΦi ¼ Φ 0ð Þ −M−

1
wα M −2

∂3

∂φ3 ∑
1

i¼0
piΦi − 2∑

1

i¼0
piΨ

∂
∂φ

∑
1

i¼0
piΦi − ∑

1

i¼0
piΦ

∂
∂φ

∑
1

i¼0
piΨ i

� �� �
:

ð35Þ
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On comparing the similar results of p, we get:
For p0:

Ψ 0 φ; ςð Þ ¼ Ψ φ; 0ð Þ ¼ 3 sech2 φð Þ;
Φ0 φ; ςð Þ ¼ Φ φ; 0ð Þ ¼ 2 sech φð Þ: ð36Þ

For p1:

Ψ 1 φ; ςð Þ ¼ −M−
1
wα M 3Φ0

∂Φ0

∂φ

� �� �
;

Φ1 φ; ςð Þ ¼ −M−
1
wα M

0
−2

∂3Φ0

∂φ3 − 2Ψ 0
∂Φ0

∂φ
− Φ0

∂Ψ 0

∂φ

� �� �
:

ð37Þ
For p2:

Ψ 1 φ; ςð Þ ¼ −M−
1
wα M 3Φ0

∂Φ1

∂φ
þ 3Φ1

∂Φ0

∂φ

� �� �
;

Φ1 φ; ςð Þ ¼ −M−
1
wα M −2

∂3Φ1

∂φ3 − 2Ψ 0
∂Φ1

∂φ
− 2Ψ 1

∂Φ0

∂φ
− Φ0

∂Ψ 1

∂φ
− Φ1

∂Ψ 0

∂φ

� �� �
;

ð38Þ

Ψ 0 φ; ςð Þ ¼ 3 sech2 φð Þ;
Φ0 φ; ςð Þ ¼ 2 sech0 φð Þ; ð39Þ

and

Ψ 1 φ; ςð Þ ¼ 12 sech2 φð Þ tanh φð Þ ςα

Γ 1þ αð Þ ;

Φ1 φ; ςð Þ ¼ 4 sech φð Þ tanh φð Þ ςβ

Γ 1þ βð Þ ;
ð40Þ

and

Ψ 2 φ; ςð Þ ¼ 24 sech4 φð Þ cosh 2φð Þ − 2ð Þ ςαþβ

Γ 1þ αþ βð Þ ;

Φ2 φ; ςð Þ ¼ sech5 φð Þ 67 − 52 cosh 2φð Þ þ cosh 4φð Þð Þ ς2β

Γ 1þ 2βð Þ
þ 24 sech5 φð Þ 2 cosh 2φð Þ − 3ð Þ ςαþβ

Γ 1þ αþ βð Þ :

ð41Þ

In the similar way, we can consider the approximate series
such as:

Ψ φ; ςð Þ ¼ Ψ 0 φ; ςð Þ þ Ψ 1 φ; ςð Þ þ Ψ 2 φ; ςð Þ þ Ψ 3 φ; ςð Þ þ Ψ 4 φ; ςð Þ þ⋯;
Φ φ; ςð Þ ¼ Φ0 φ; ςð Þ þ Φ1 φ; ςð Þ þ Φ2 φ; ςð Þ þ Φ3 φ; ςð Þ þ Φ4 φ; ςð Þ þ⋯;

ð42Þ

Ψ φ; ςð Þ ¼ 3 sech2 φð Þ þ 12 sech2 φð Þ tanh φð Þ ςα

Γ 1þ αð Þ þ 24 sech4 φð Þ cosh 2φð Þ − 2ð Þ ςαþβ

Γ 1þ αþ βð Þ ;

Φ φ; ςð Þ ¼ 2 sech φð Þ þ 4 sech φð Þ tanh φð Þ ςβ

Γ 1þ βð Þ þ sech5 φð Þ 67 − 52 cosh 2φð Þ þ cosh 4φð Þð Þ ς2β

Γ 1þ 2βð Þ
þ 24 sech5 φð Þ 2 cosh 2φð Þ − 3ð Þ ςαþβ

Γ 1þ αþ βð Þ þ⋯:

ð43Þ

The above series converges to the exact solution at α ¼ 1
that is given as follows:

Ψ φ; ςð Þ ¼ 3h
2
sech2

ffiffiffi
h
2

r
φ − hςð Þ

 !
;

Φ φ; ςð Þ ¼ sech

ffiffiffi
h
2

r
φ − hςð Þ

 !
:

ð44Þ

5. Results and Discussion

This section contains the results and discussion with the help
of tables and some graphical representations obtained by
NIP. We demonstrate the graphical solution of Equations
(43) and (44) in Ψ and Φ forms, respectively. Figures 1 and
2 represent the approximate solution to the 4th iteration of
the fractional differential problem using NIP with different
values of α ¼ 0:25; 0:50; 0:75, and 1. We consider 0 ≤ φ ≤ 10
and θ ¼ 0:5 with ς ¼ 0:5 for these surface plots.

Mathematical Problems in Engineering 5



Furthermore, Figure 1(c) demonstrates the graphical repre-
sentations of the approximate solution, whereas Figure 1(d)
represents the graphical representations of the exact solution
of Equation (29) in Ψ form. Similarly, Figure 2(c) demonstrates
the graphical representations of the approximate solution,
whereas Figure 2(d) represents the graphical representations
of the exact solution of Equation (29) in Φ form. Figures 3
and 4 show the graphical error between the approximate and
the exact solutions of Equations (43) and (44) in Ψ and Φ
forms; the green line represents the approximate solution,
and the black dot shows the exact solution that coincides
with each others at α ¼ 1. It shows that this approach is very
simple and reliable in finding the solution of fourth-order PDE
with fractional derivative. The numerical results, as shown in
Tables 1 and 2, reveal that the approximate values are very close

to the exact values when the fractional order α for various values
of ς is increased. The absolute error in these tables reduces to a
small value and becomes zero with high iterations.

6. Conclusion and Future Interact

In this paper, we have successfully developed a strategy of
NIP for obtaining the approximate solution of fractional
DSW equation with fractional derivative. The procedure of
MT is very simple to implement in dealing the recurrence
relation and hence it makes very easy to get the iterative
results. HPM is very capable to handle the nonlinear terms
and presents the series with successive iteration. Using initial
condition, these iterations are very simple to obtain the
approximate solution that is very close to the exact solution.
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FIGURE 1: The surfaces solution of Ψ φ;ð ςÞ for different norms of α: (a) surface plot of Ψ φ;ð ςÞ at α= 0.25; (b) surface plot of Ψ φ;ð ςÞ at
α= 0.50; (c) surface plot of Ψ φ;ð ςÞ at α= 0.75; (d) surface plot of Ψ φ;ð ςÞ at α= 1.
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FIGURE 2: The surfaces solution of Φ φ;ð ςÞ for different norms of α: (a) surface plot of Φ φ;ð ςÞ at α= 0.25; (b) surface plot of Φ φ;ð ςÞ at
α= 0.50; (c) surface plot of Φ φ;ð ςÞ at α= 0.75; (d) surface plot of Φ φ;ð ςÞ at α= 1.
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FIGURE 3: 2D Plot distribution for Ψ φ;ð ςÞ with various fractional order α.
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The present approach has the advantage of requiring smaller
computation and yields a better efficiency. It is worth men-
tioned that NIP results are very efficient and relatable than
other approaches. In future work, we extend this approach to
get more different formulas for various nonlinear evolution
equations to check its ability and power in science and engi-
neering phenomena.
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FIGURE 4: 2D Plot distribution for Φ φ;ð ςÞ with various fractional order α.

TABLE 1: The comparison of approximate solutions of Equation (43) and exact solutions of Equation (44) for different fractional order.

ς φ α ¼ β ¼ 0:5 α ¼ β ¼ 0:75 Approximate solution at α ¼ β ¼ 1 Exact solution α ¼ β ¼ 1

0.01

−4 0.00285071 0.00351788 0.00386526 0.00286522
−3 0.0209706 0.0258956 0.0284434 0.0284431
−2 0.150047 0.186111 0.203931 0.203929
−1 0.901424 1.13347 1.22191 1.22192
0 2.76 2.98195 2.9988 2.9988

0.02

−4 0.00274148 0.003229 0.00371409 0.00371375
−3 0.0201301 0.237737 0.0273353 0.0273329
−2 0.142165 0.171108 0.196213 0.196199
−1 0.796625 1.05369 1.18465 1.18467
0 2.52 2.94894 2.9952 2.99521

TABLE 2: The comparison of approximate solutions of Equation (43) and exact solutions of Equation (44) for different fractional order.

ς φ α ¼ β ¼ 0:5 α ¼ β ¼ 0:75 Approximate solution at α ¼ β ¼ 1 Exact solution α ¼ β ¼ 1

0.01

−4 0.0596427 0.0684213 0.0717888 0.0717887
−3 0.161835 0.185639 0.194741 0.194741
−2 0.434209 0.497711 0.521446 0.521446
−1 1.08164 1.2288 1.27641 1.27641
0 1.92 1.99398 1.9996 1.9996

0.02

−4 0.0557228 0.0653893 0.0703689 0.0703681
−3 0.151146 1.77436 0.190905 0.190903
−2 0.404563 0.476178 0.511467 0.511467
−1 0.997665 1.18363 1.25681 1.25681
0 1.84 1.98298 1.9984 1.9984
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