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Tis paper aims at proposing a novel multiattribute group decision-making (MAGDM) method in complex decision-making
environments. To this end, we frst introduce a tool, called q-rung interval-valued probabilistic dual hesitant fuzzy sets (q-
RIVPDHFSs), for decision makers to express their evaluation information over a set of fnite alternatives in MAGDM procedures.
Te q-RIVPDHFS consists of some possible membership and nonmembership degrees, along with their interval-valued
probabilistic information. Due to this structure, q-RIVPDHFSs are more powerful and fexible than the traditional q-rung
probabilistic q-rung dual hesitant fuzzy sets, in which probabilistic information of membership and nonmembership degree is
denoted by crisp numbers. Second, some other related concepts of q-RIVPDHFSs, such as operational laws, comparison method,
distance measure, and aggregation operators, are introduced. Tird, based on these novel concepts, two MAGDM methods
(Algorithms 1 and 2) are put forward. Last but not least, a practical decision-making example is provided to show the efectiveness
of our proposed MAGDM method. We also compare our Algorithms 1 and 2 with some existing decision-making methods to
explain why our methods are more powerful and useful.

1. Introduction

Decision-making is one of the commonest activities in
economics, management, social communication, and even
daily. As a matter of fact, large numbers of decision-making
issues in actual life can be regarded as multiattribute group
decision-making (MAGDM), wherein multiexperts evaluate
all possible alternatives under multiple attributes, and the
fnal ranking order of alternatives is derived by decision
makers’ preference information [1–7]. A MAGDM proce-
dure can be roughly divided into four parties, i.e., decision-
making problem defnition, decision makers’ opinions ex-
pression, ranking order of alternatives determination, and
decision-making advice implementation. Te main tasks of
the four parties are presented as follows: (1) decision-making
problem defnition: decision makers identify all potential
alternatives and criteria, which is essential for selecting an
optimal alternative; (2) decision makers’ opinions

expression: decision makers express their opinions on the
performance of each alternative under every criterion in
diferent information representation forms; (3) ranking
order of alternatives determination: decision makers de-
termine the ranking order of alternatives based on a certain
methodology and decision makers’ evaluation matrices; (4)
decision-making advice implementation: based on the
ranking order of alternatives, decision makers select the best
or suboptimal alternatives.

It is widely acknowledged that, among the above-
mentioned four parties of MAGDM procedures, the second
and third parties, i.e., decision makers’ opinions expression
and ranking order of alternatives determination, are the
most important. In fact, it is not an easy job to depict de-
cision makers’ evaluation information, owing to not only the
increasing complexity of MAGDM issues but also the
fuzziness, hesitation, and uncertainty of human beings’
cognitive processes. In addition, the fact that decision
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makers usually have diferent expertise and come from
diferent backgrounds also makes it almost impossible to
denote experts’ complex preferences by using crisp numbers.
Te fuzzy sets theory, originated by Prof. Zadeh [8], has
facilitated the method to appropriately express decision
makers’ evaluation information over alternatives. Afterward,
quite a few extensions of fuzzy sets, such as intuitionistic
fuzzy sets (IFSs) [9], hesitant fuzzy sets [10], interval-valued
hesitant fuzzy sets [11], hesitant fuzzy linguistic terms sets
[12], dual hesitant fuzzy sets [13], Pythagorean fuzzy sets
(PFSs) [14], and generalized orthopair fuzzy sets [15], have
been proposed, which exhibit high efciency in representing
decision makers’ preference opinions. For example, PFSs
satisfy the constraint that the square sum of membership
degree (MD) and nonmembership degree (NMD) need to be
smaller than or equal to 1. Compared to IFSs, PFSs can
describe larger information space and are more suitable to
depict decision makers’ evaluations in the complex decision-
making environment. In [16], Tsao and Chen proposed a
parametric likelihood measure based on the beta distribu-
tion and developed a likelihood-oriented methodology
under PFSs. Wan et al. [17] introduced a novel ranking
method for Pythagorean fuzzy numbers and applied it in
MAGDM. Albahri et al. [18] proposed a Pythagorean fuzzy
dynamic MAGDM method for COVID-19 vaccine dose
recipients. In [19], Wan et al. introduced a Pythagorean
fuzzy mathematical programming method to solve
MAGDM problems. Garg et al. [20] introduced a series of
complex Pythagorean fuzzy Archimedean Bonferroni mean
operators and applied them in MAGDM. Wan et al. [21]
proposed a three-phase MAGDM method under PFSs and
applied it in haze management. Te state-of-the-art intui-
tionistic fuzzy sets, hesitant fuzzy sets, hesitant fuzzy term
sets, Pythagorean fuzzy sets, and generalized orthopair fuzzy
sets-based MAGDM methods can be found in [22–26],
respectively, where researchers and readers in this feld can
have an overlook of how these information representation
tools have been applied in solving MAGDM problems.

Recently, the q-rung probabilistic dual hesitant fuzzy sets
(q-RPDHFSs) [27] have been proposed to address decision
makers’ complicated evaluation values. Te q-RPDHFS is an
extension of Xu et al.’s [28] q-rung dual hesitant fuzzy set (q-
RDHFS). Te q-RDHFS has been proven to be powerful and
efective in describing decision makers’ evaluation infor-
mation in the process of MAGDM and it has been widely
applied in solving realistic decision-making problems. In
[29], Kou et al. introduced a series of power Hamy mean
under q-RDHFSs, and by integrating entropy weights, a
novel MAGDM was proposed and applied in hospital
medical quality evaluation. Li et al. [30] proposed Archi-
medean operational rules and extended power average
operators for q-RDHFSs and proposed a new MAGDM
method.

Afterward, Feng et al. [31] used interval values rather
than crisp numbers to denote the membership and non-
membership degrees, introduced interval-valued
q-RDHFSs, studied their desirable properties, investigated
their applications in decision-making, and put forward a
novel MAGDM approach. By integrating linguistic term sets

with q-RDHFSs, Wang et al. [32] proposed the concept of
q-rung dual hesitant uncertain linguistic sets and based on
which a novel MAGDMmethod was developed and applied
in enterprise informatization-level evaluation. Although
q-RDHFS is efective to depict decision makers’ evaluation
values in MAGDM, its drawback is also obvious, i.e., it only
considers multiple MDs and NMDs, but ignores their im-
portance degrees. Motived by probabilistic hesitant fuzzy
sets [33] and probabilistic dual hesitant fuzzy sets [34], the
q-RPDHFSs have been proposed. Compared to q-RDHFSs,
q-RPDHFSs consider not only multiple MDs and NMDs but
also their corresponding importance degrees. Hence,
q-RPDHFSs are more powerful and useful to address
practical MAGDM problems. In reference [27], authors
studied aggregation operators for q-rung probabilistic dual
hesitant fuzzy information and applied them to an invest-
ment project selection problem. Q-RPDHFSs require de-
cision makers to implement crisp numbers to denote the
probabilistic information of their provided membership and
no-membership degrees, which, however, is sometimes
inadequate and insufcient for dealing with practical
MAGDM problems. In realistic decision-making contexts,
decisionmakers prefer using interval values rather than crisp
numbers to express probabilistic values of membership and
nonmembership degrees. Some researchers and scholars
have noticed this phenomenon and similar studies have been
conducted [35–37]. For instance, authors in [35] generalized
the probabilistic linguistic sets [38] to interval-valued
probabilistic linguistic sets by taking the interval-valued
probabilistic value of each possible linguistic terms into
account. In [36], Song et al. considered interval-valued
probabilistic information in probabilistic hesitant fuzzy sets
and gave the defnition of interval-valued probabilistic
hesitant fuzzy sets (IVPHFSs). In [37], Liu and Cheng used
interval-valued rather than crisp numbers to denote prob-
abilistic information of each member in dual hesitant fuzzy
sets, and proposed the so-called interval-valued probabilistic
dual hesitant fuzzy sets (IVPDHFSs).

Above-mentioned studies motivated us to consider in-
terval-valued probabilities in q-RPDHFSs and propose the
concept of q-rung interval-valued probabilistic dual hesitant
fuzzy sets (q-RIVPDHFSs). Te advantages of
q-RIVPDHFSs over some existing fuzzy sets theories are
obvious. Compared with q-RPDHFSs, our q-RIVPDHFSs
take interval-valued probabilistic information into consid-
eration, and hence, they are more powerful to handle de-
cision makers’ evaluation preferences. Compared with
interval-valued dual hesitant fuzzy sets, the restraint of our
q-RIVPDHFSs is laxer and, hence, they can deal with more
complicated realistic MAGDM problems. Compared with
interval-valued hesitant fuzzy sets, our q-RIVPDHFSs
consider both membership and nonmembership degrees,
which indicates that q-RIVPDHFSs can comprehensively
express decision makers’ evaluation information by simul-
taneously refecting decision makers’ positive and negative
opinions. Afterward, other related concepts, such as oper-
ational laws, comparison methods, distance measures, ag-
gregation operators of q-RIVPDHFSs are proposed one after
another.
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For the third part of MAGDM procedures, the TOPSIS
method is an efective tool that help decision makers obtain
the ranking orders of alternatives according to their prefer-
ence values. As aforementioned, decision-making environ-
ments are becoming more and more complicated, it is
necessary to extend the classical TOPSIS into diferent fuzzy
set situations to study practical MAGDM methods. For in-
stance, Hu et al. [39] studied a new TOPSIS under hesitant
fuzzy sets, introduced the so-called HF-TOPSIS and applied it
in supplier selection for an automotive company. Liu and
Rodriguez [40] extended TOPSIS into hesitant fuzzy linguistic
terms to propose a new MAGDM method. Akram et al. [41]
and Alkan and Kahraman [42] investigated TOPSIS method
under Pythagorean fuzzy sets and q-rung orthopair fuzzy sets
and applied it to healthcare technology purchase and gov-
ernment strategies against COVID-19 pandemic evaluation.
Some other new extensions of the classical TOPSIS can be
found in [43–47]. Based on the above analysis, it is necessary
and worth extending the classical TOPSIS to q-RIVPDHFSs
and introducing a novel decision-making method.

Based on the above analysis, the contributions and
novelties of this study are fourfold:

(1) A new information representation tool, called
q-RIVPDHFSs, is proposed to express decision
makers’ complicated evaluation values. Te
q-RIVPDHFSs not only inherent the advantages of
q-RPDHFSs, but also consider interval-valued pos-
sibilities. Hence, q-RIVPDHFSs are suitable to
handle realistic MAGDM problems.

(2) Some aggregation operators for q-RIVPDHFSs are
introduced and based on which a novel MAGDM
method is developed (we call it Algorithm 1 in the
following sections). Te properties of these operators
are studied and the main calculation process of the
decision-making method is illustrated.

(3) An extended TOPSIS under q-RIVPDHFSs is pre-
sented and its detailed calculation process is

demonstrated (we call it Algorithm 2 in the following
sections).

(4) Te efectiveness of the two approaches is validated
through numerical examples. We use the methods to
solve some real MAGDM methods so that their
rightness can be clearly witnessed. In addition, a
comparative analysis with some existing approaches
is conducted to show the advantages of our proposed
methods.

Te rest of this paper is organized as follows. Section 2
reviews basic preliminaries. In Section 3, we frst explain why
we need q-RIVPDHFS, and subsequently, the concept of
q-RIVPDHFS and some other related notions are proposed.
Section 4 presents two algorithms to solve MAGDM
methods and their detailed steps are demonstrated. Section 5
applies the proposed methods in real and practical MAGDM
problems. Conclusion remarks are provided in Section 6.

2. Preliminaries

Tis section reviews the concepts of q-RPDHFSs and in-
terval values, which are important for the following sections.

2.1. Q-Rung Probabilistic Dual Hesitant Fuzzy Sets.

Defnition 1 (see [27]). Let X be a given fxed set, then a
q-rung probabilistic dual hesitant fuzzy set (q-RPDHFS) D
defned on X is expressed as:

A � x, hD(x)|pD(x), gD(x)|tD(x)|x ∈ X􏼈 􏼉, (1)

where hD(x) and gD(x) are two sets of some values in [0, 1],
denoting the possible MDs and NMDs of the element x ∈ X

to set A. In addition, pD(x) and tD(x) are the probabilistic
information of hD(x) and gD(x), respectively, such that

0≤ c, η≤ 1, c
+

( 􏼁
q

+ η+
( 􏼁

q ≤ 1(q> 1), 0≤pi, tj ≤ 1, 􏽘

#h

i�1
pi � 1, 􏽘

#g

j�1
ti � 1, (2)

where c ∈ hD(x), η ∈ gD(x), c+ � ∪ c∈hD(x) max c􏼈 􏼉,
η+ � ∪ η∈gD(x)max η􏼈 􏼉, pi ∈ pD(x), and ti ∈ tD(x), #h and
#g denote the numbers of values in h and g, respectively.
For the sake of easy description, we call the ordered pair
d(x) � (hD(x)|pD(x), gD(x)|tD(x)) a q-rung probabilistic
dual hesitant fuzzy element (q-RPDHFE), which can be
denoted as d � (h|ph, g|tg) for simplifcation. Especially,
when q � 1, D reduces to a probabilistic dual hesitant fuzzy
set and d is reduced to a probabilistic dual hesitant fuzzy
element. When q � 2, then D reduces to a probabilistic dual
hesitant Pythagorean fuzzy set and d is reduced to a
probabilistic dual hesitant Pythagorean fuzzy element.

Te basic operations of q-RPDHFEs are presented as
follows:

Defnition 2 (see [27]). Let d � (h|ph, g|tg),
d1 � (h1|ph1

, g1|tg1
), and d2 � (h2|ph2

, g2|tg2
) be any three

q-RPDHFEs and λ be a positive real number, then:

(1) d1⊕d2 � ∪ c1∈h1 ,c2∈h2 ,η1∈g1 ,η2∈g2
(c

q
1 + c

q
2 − c

q
1c

q
2)

1/q
􏽮􏽮

|pc1
pc2􏼉, η1η2|tη1tη2􏽮 􏽯􏼉;

(2) d1 ⊗ d2 � ∪ c1∈h1 ,c2∈h2 ,η1∈g1 ,η2∈g2
c1c2|pc1

pc2
􏽮 􏽯,􏽮

(ηq
1 + ηq

2 − ηq
1η

q
2)

1/q
|tη1tη2􏽮 􏽯􏼉;
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(3) λ d � ∪ c∈h,η∈g (1 − (1 − cq)λ)1/q|pc􏽮 􏽯, ηλ|tη􏽮 􏽯􏽮 􏽯;
(4) dλ � ∪ c∈h,η∈g cλ|pc􏽮 􏽯, (1 − (1 − ηq)λ)1/q|tη􏽮 􏽯􏽮 􏽯.

Te method to rank any two q-RPDHFEs is presented as
follows:

Defnition 3 (See [27]). Let d � (h|ph, g|tg) be a q-RPDHFE,
then the score function of d is expressed as

S(d) � 􏽘
c∈h

c
q
pc − 􏽘

η∈g
ηq

tη.
(3)

And the accuracy function of d is expressed as:

H(d) � 􏽘
c∈h

c
q
pc + 􏽘

η∈g
ηq

tη.
(4)

For any two q-RPDHFEs d1 � (h1|ph1
, g1|tg1

) and
d2 � (h2|ph2

, g2|tg2
), then we have.

(1) if S(d1)> S(d2), then d1 > d2;
(2) if S(d1) � S(d2), then

if H(d1)>H(d2), then d1 >d2;
if H(d1) � H(d2), then d1 � d2.

2.2. Te Concept of Interval Values

Defnition 4 (See [48]). Let 􏽥a be an interval value and
􏽥a � [aL, aU] � x|aL ≤ x≤ aU􏼈 􏼉. Let 􏽥a1 � [aL

1 , aU
1 ] and

􏽥a2 � [aL
2 , aU

2 ] be any two interval values; if aL
1 , aU

2 ≥ 0 and
0≤ λ≤ 1, then we have

(1) 􏽥a1 + 􏽥a2 � [aL
1 + aL

2 , bL
1 + bL

2];
(2) 􏽥aλ � [(aL)λ, (aU)λ];
(3) λ􏽥a � [λaL, λaU];
(4) 􏽥a1 · 􏽥a2 � [aL

1aL
2 , bL

1bL
2].

3. Q-Rung Interval-Valued Probabilistic Dual
Hesitant Fuzzy Sets

It is noted that in q-RPDHFS, probabilistic information is
denoted by crisp numbers. However, in many real decision-
making situations, instead of crisp numbers, DMs prefer to
employ interval values to depict probabilistic information.
Hence, it is necessary to propose the concept of
q-RIVPDHFSs. In this section, we frst explain the necessity
of proposing q-RIVPDHFSs. Ten, the defnition of

Step 1. Standardize the original decisionmatrix. Attributes in aMAGDMproblem can be usually classifed into two kinds, i.e., beneft
type and cost type. Hence, the original q-rung interval-valued probabilistic dual hesitant fuzzy matrix should be standardized

according to the following formula: 􏽥dij
′ �

(hij|􏽥phij
, gij|􏽥tgij

)

(gij|􏽥tgij
, hij|􏽥phij

, )

⎧⎨

⎩

Step 2. Utilize the q-RIVPDHFWA or the q-RIVPDHFWG operator to calculate the comprehensive evaluation value of
xi(i � 1, 2, . . . , m), i.e., 􏽥di

′ � q − RIVPDHFWA(􏽥di1′, 􏽥di2′, . . . , 􏽥din
′).

or 􏽥di
′ � q − RIVPDHFWG(􏽥di1′, 􏽥di2′, . . . , 􏽥din

′).
Step 3. Compute the score and deviation values of each alternative’s comprehensive evaluation value.
Step 4. Rank the alternatives according to their score values and select the optimal alternative.

ALGORITHM 1: An aggregation operator-based MAGDM method.

Step 1. Standardize the original decision matrix, which is same as the Step 1 presented in Subsection 4.
Step 2. Arrange IVPMEs and IVPNMEs of each q-RIVPDHFE in ascending order according to Remark 1. After this step, the decision
matrix becomes a normalized decision matrix.
Step 3. For attribute ai, extend the shorter evaluation values of alternatives according to Remark 1 until they have the same numbers
of IVPMEs and IVPNMEs. For convenient description, we denote the new decision matrix as 􏽥Dij

″ � (􏽥dij
″)m×n. After this step, with

regard to attribute aj, the series of evaluation values 􏽥d1j
″, 􏽥d2j
″,. . ., 􏽥dnj

″ have the same numbers of IVPMEs and IVPNMEs.
Step 4. Determine the q-RIVPDHFPIS and q-RIVPDHFNIS by x+ � (􏽥d1″)

+, (􏽥d2″)
+, . . . , (􏽥dn

″)+
􏽮 􏽯,

where (􏽥dj
″)+ �

maxs c
(s)

|[􏽥p
L
c(s) + 􏽥p

U
c(s) ], s � 1, 2, . . . , m􏽮 􏽯,

minl η(l)
|[􏽥t

L

η(l) ,􏽥t
U

η(l) ], l � 1, 2, . . . , m􏽮 􏽯

⎧⎨

⎩

⎫⎬

⎭, x− � (􏽥d1″)
− , (􏽥d2″)

+, . . . , (􏽥dn
″)+

􏽮 􏽯,

where (􏽥dj
″)− �

maxs c
(s)

|[􏽥p
L
c(s) + 􏽥p

U
c(s) ], s � 1, 2, . . . , m􏽮 􏽯,

minl η(l)
|[􏽥t

L

η(l) ,􏽥t
U

η(l) ], l � 1, 2, . . . , m􏽮 􏽯

⎧⎨

⎩

⎫⎬

⎭.

Step 6. Calculate the weighted distance between the alternative xi(i � 1, 2, . . . , m) and the q-RIVPDHFPIS x+ and the q-
RIVPDHFNIS x− .
Step 7. Calculate the relative importance degree of xi(i � 1, 2, . . . , m) by CIi � (d(xi, x− )/(d(xi, x+) + d(xi, x− ))).

In addition, the bigger the value CIi is, the better the alternative xi.
Step 8. Rank alternatives according to CIi(i � 1, 2, . . . , m), the fnal ranking result of alternatives is derived.

ALGORITHM 2: A TOPSIS-based MAGDM method.
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q-RIVPDHFSs is provided. Afterward, some other related
notions, such as operational rules, ranking methods, ag-
gregation operators, and distance measures of
q-RIVPDHFSs are also developed.

3.1. Necessity of Proposing q-RIVPDHFS. In the classical
q-RPDHFS, probabilistic information of membership and
membership degrees is denoted by a crisp number.
However, in some realistic situations, it is difcult for
decision makers to provide crisp probabilistic values.
Actually, in most decision-making problems, decision
maker prefers to use interval values to denote the proba-
bilistic information. Hence, q-RPDHFS is insufcient and
inadequate to handle some real decision-making issues.
Te following example to better demonstrate this phe-
nomenon is provided.

Example 1. Two professors are invited to evaluate a doctoral
thesis under the criteria of standardability. One professor is
30% sure about the MD 0.4 and feels 70% confdent in MD
0.8. In addition, he/she is 50% sure about the NMD 0.6 and
feels 50% confdent about the NMD 0.8. Another professor is
20% to 60% confdent in theMD 0.4, and feels 30% to 40% in
theMD 0.9. In addition, he/she feels 10% to 30% in the NMD
0.1, 10% to 20% in the NMD 0.4, and he /she is 40% to 50%
confdent in the NMD 0.8.

It is obvious that the frst professor’s evaluation value
can be denoted as d � 0.3|0.4, 0.8|7{ }, 0.6|0.5, 0.8|5{ }{ },
which is a q-RPDHFE. However, it is impossible to em-
ploy a q-RPDHFE to depict the evaluation value of the
second professor. Tis is because the probabilistic in-
formation that provided by the second professor is in-
terval values. In other words, q-RPDHFSs fail to handle
decision-making problems wherein probabilistic infor-
mation is in the form of interval values. Motived by in-
terval-valued probabilistic dual hesitant fuzzy sets, it is
necessary to propose the interval-valued form
q-RPDHFSs, i.e., q-RIVPDHFSs.

3.2. Te Defnition of q-RIVPDHFSs

Defnition 5. Let X be a given fxed set, then the mathe-
matical expression of a q-rung interval-valued probabilistic
dual hesitant fuzzy set (q-RIVPDHFS) 􏽥D defned on X is
expressed as:

􏽥D � x, h􏽥D(x)|􏽥p􏽥D(x), g􏽥D(x)|􏽥t􏽥D(x)|x ∈ X􏽮 􏽯, (5)

where h􏽥D(x) and g􏽥D(x) are two sets of some values in [0,
1], denoting the possible MDs and NMDs of the element
x ∈ X to set A. In addition, 􏽥p􏽥D(x) � [􏽥pU

􏽥D
(x), 􏽥pL

􏽥D
(x)]

(􏽥pU

􏽥D
(x) � inf 􏽥p􏽥D(x) and 􏽥pL

􏽥D
(x) � sup􏽥p􏽥D(x)) and 􏽥t􏽥D(x) �

[􏽥t
U

􏽥D(x),􏽥t
L

􏽥D(x)] (􏽥tU

􏽥D(x) � inf􏽥t􏽥D(x) and 􏽥t
L

􏽥D(x) � sup􏽥t􏽥D(x))
are two interval values, denoting the interval-valued
probabilistic information of h􏽥D(x) and g􏽥D(x), respec-
tively, such that:

0≤ c, η≤ 1, c
+

( 􏼁
q

+ η+
( 􏼁

q ≤ 1(q> 1), 􏽥p􏽥D(x),􏽥t􏽥D(x)⊆[0, 1],

􏽘

#h

i�1

􏽥p
L

􏽥D
(x)􏼐 􏼑

i
� 1, 􏽘

#g

j�1

􏽥t
L

􏽥D(x)􏼐 􏼑
j

� 1,

(6)
where c ∈ h􏽥D(x), η ∈ g􏽥D(x), c+ � ∪ c∈h􏽥D

(x)max c􏼈 􏼉, η+ �

∪ η∈g􏽥D
(x)max η􏼈 􏼉, 􏽥pL

􏽥D
(x) � Sup(􏽥p􏽥D(x))i, (􏽥t

L

􏽥D(x))i � sup􏽥t􏽥D

(x), and #h and #g denote the numbers of values in h and g,
respectively. For the sake of easy description, we call the or-
dered pair 􏽥d(x) � (h􏽥D(x)|p􏽥D(x), g􏽥D(x)|t􏽥D(x)) a q-rung
interval-valued probabilistic dual hesitant fuzzy element (q-
RIVPDHFE), which can be denoted as 􏽥d � (h|􏽥ph, g|􏽥tg) for
simplifcation. In addition, we can h|􏽥ph and g|􏽥tg the interval-
valued probabilistic membership elements (IVPMEs) and in-
terval-valued probabilistic nonmembership elements
(IVPNMEs), respectively. Especially, when q � 1, then 􏽥D re-
duces to an interval-valued probabilistic dual hesitant fuzzy set
(IVPDHFS) and 􏽥d is reduced to an interval-valued probabilistic
dual hesitant fuzzy element. When q � 2, then 􏽥D reduces to an
interval-valued probabilistic dual hesitant Pythagorean fuzzy set
and 􏽥d is reduced to an interval-valued probabilistic dual hesitant
Pythagorean fuzzy element. In addition, it is noted that
q-RPDHFE is a special case of q-RIVPDHFE, where the upper
bound and lower bound of any interval-valued probabilistic
value are equal.

Example 2 (Continued to Example 1). Te evaluation value
of the second professor can be denoted as 􏽥d �

0.4|[0.2, 0.6], 0.9|[0.3, 0.4]{ },{ 0.1|[0.1,{ 0.3], 0.4| [0.1 , 0.2],

0.8|[0.4, 0.5]}. In addition, as 0.9 + 0.8�1.7> 1, the evalua-
tion value cannot be handled by interval-valued probabilistic
dual hesitant fuzzy set, which also illustrates the power-
fulness of our proposed q-RIVPDHFS.

3.3. Operational Rules of q-RIVPDHFEs. Based on the op-
erational rules for q-RPDHFEs presented in Defnition 2 and
the operations for interval values presented in Defnition 4,
we give the following operational laws for q-RIVPDHFEs.

Defnition 6. For any three q-RIVPDHFEs, 􏽥d � (h|􏽥ph, g|􏽥tg),
􏽥d1 � (h1|􏽥ph1

, g1|􏽥tg1
), and 􏽥d2 � (h2|􏽥ph2

, g2|􏽥tg2
), and λ> 0 be a

positive real number, then

(1) 􏽥d1⊕􏽥d2 � ∪ c1∈h1 ,c2∈h2 ,η1∈g1 ,

η2∈g2 (c
q
1 + c

q
2 − c

q
1c

q
2)

1/q|􏽮􏽮

[􏽥p
L
c1

􏽥p
L
c2

, 􏽥p
U
c1

􏽥p
U
c2

]}, η1η2|[􏽥t
L

η1
􏽥t

L

η2
,􏽥t

U

η1
􏽥t

U

η2
]􏽮 􏽯};

(2) 􏽥d1 ⊗ 􏽥d2 � ∪ c1∈h1 ,c2
∈h2, η1∈g1, η2∈g2 c1􏼈􏼈 c2|[􏽥pL

c1
􏽥pL

c2
,

􏽥p
U
c1

􏽥p
U
c2

]}, (ηq
1 + ηq

2 − ηq
1η

q
2)

1/q
|[􏽥t

L

η1
􏽥t

L

η2
,􏽥t

U

η1
􏽥t

U

η2
]􏽮 􏽯};

(3) λ􏽥d � ∪ c∈h,η∈g (1 − (1 − cq)λ)1/q|[􏽥pL
c , 􏽥pU

c ]􏽮 􏽯, ηλ􏼈􏽮

|[􏽥t
L

η ,􏽥t
U

η ]}};
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(4) 􏽥d
λ

� ∪ c∈h,η∈g cλ|[􏽥pL
c , 􏽥pU

c ]􏽮 􏽯,􏽮 (1 − (1 − cq)λ)1/q􏽮

|[􏽥t
L

η ,􏽥t
U

η ]}}.
Example 3. Let 􏽥d1 � 0.7|[0.4, 0.5], 0.8|[0.3, 0.5]{ },{ 0.3|[0.1,{

0.2], 0.4|[0.1, 0.2], 0.7|[0.3, 0.6]} and 􏽥d2 � 0.5|[0.3,{{ 0.7],

0.6|[0.1, 0.3]}, 0.4|[0.1, 0.2],{ 0.5| [0.6, 0.8]}} be any two
q-RIVPDHFEs, then we have the following results

􏽥d1⊕ 􏽥d2 �

0.7519|[0.12, 0.35],0.7856|[0.04, 0.15],

0.8306|[0.09, 0.35], 0.8515|[0.03, 0.15]
􏼨 􏼩,

0.12|[0.01, 0.04], 0.15|[0.06, 0.16], 0.16|[0.01, 0.04],

0.2|[0.06, 0.16], 0.28|[0.03, 0.12], 0.35|[0.18, 0.48]
􏼨 􏼩

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

􏽥d1 ⊗ 􏽥d2 �

0.35|[0.12, 0.35],0.42|[0.04, 0.15],

0.4|[0.09, 0.35], 0.48|[0.03, 0.15]
􏼨 􏼩,

0.4469|[0.01, 0.04], 0.5297|[0.06, 0.16], 0.4985|[0.01, 0.04],

0.5657|[0.06, 0.16], 0.7275|[0.03, 0.12], 0.7519|[0.18, 0.48]
􏼨 􏼩

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

2􏽥d1 �
0.8283|[0.4, 0.5],0.9133|[0.3, 0.5]{ },

0.09|[0.1, 0.2], 0.16|[0.1, 0.2], 0.49|[0.3, 0.6]{ }
􏼨 􏼩,

􏽥d
2
1 �

0.49|[0.4, 0.5],0.64|[0.3, 0.5]{ },

0.3763|[0.1, 0.2], 0.4985|[0.1, 0.2], 0.8283|[0.3, 0.6]{ }
􏼨 􏼩.

(7)

3.4.RankingMethod forq-RIVPDHFEs. To compare any two
q-RIVPDHFEs, a ranking method is provided as follows:

Defnition 7. Let 􏽥d � (h|􏽥ph, g|􏽥tg) be a q-RIVPDHFE, then
the score function 􏽥d is defned as:

S(􏽥d) � 􏽘
#h

c∈h
c

q 􏽥p
L
c + c

q 􏽥p
U
c􏼐 􏼑 − 􏽘

#g

η∈g
ηq􏽥t

L

η + ηq􏽥t
U

η􏼐 􏼑. (8)

Based on the score function, the deviation function of 􏽥d

is expressed as follows:

Defnition 8. Let 􏽥d � (h|􏽥ph, g|􏽥tg) be a q-RIVPDHFE, and
S(􏽥d) be its score function. Te deviation function of 􏽥d is
expressed as:

Φ(􏽥d) � 􏽘
#h

c∈h
c

q
− S(􏽥d)􏼐 􏼑

2
􏽥p

L
c + 􏽥p

U
c􏼐 􏼑􏼒 􏼓 + 􏽘

#g

η∈g
ηq

− S(􏽥d)􏼐 􏼑
2

􏽥t
L

η + 􏽥t
U

η􏼐 􏼑􏼒 􏼓⎛⎝ ⎞⎠

1/2

. (9)

Based on the score and deviation functions, a method for
ranking any two q-RIVPDHFEs is presented as follows:

Defnition 9. Let 􏽥d1 � (h1|􏽥ph1
, g1|􏽥tg1

) and
􏽥d2 � (h2|􏽥ph2

, g2|􏽥tg2
) be any two q-RIVPDHFEs, S(􏽥d1) and

S(􏽥d2) be the score function of 􏽥d1 and 􏽥d2, and Φ(􏽥d1) and
Φ(􏽥d2) be the deviation function of 􏽥d1 and 􏽥d2. Ten, we have

(1) If S(􏽥d1)> S(􏽥d2), then 􏽥d1 > 􏽥d2;
(2) If S(􏽥d1)< S(􏽥d2), then 􏽥d1 < 􏽥d2;
(3) If S(􏽥d1) � S(􏽥d2), then

If Φ(􏽥d1)<Φ(􏽥d2), then 􏽥d1 > 􏽥d2;
If Φ(􏽥d1)>Φ(􏽥d2), then 􏽥d1 < 􏽥d2;
If Φ(􏽥d1) � Φ(􏽥d2), then 􏽥d1 � 􏽥d2.

3.5. Aggregation Operators for q-RIVPDHFEs

Defnition 10. Let 􏽥dj � (hj|􏽥phj
, gj|􏽥tgj

)(j � 1, 2, . . . , n) be a
collection of q-RIVPDHFEs, and w � (w1, w2, . . . , wn)T be
the corresponding weight vector, such that 􏽐

n
j�1 wj � 1 and

1≥wj ≥ 0, then the q-rung interval-valued probabilistic dual
hesitant fuzzy weighted average (q-RIVPDHFWA) operator
is defned as

q − RIVPDHFWA 􏽥d1,
􏽥d2, . . . , 􏽥dn􏼐 􏼑 � ⊕nj�1wj

􏽥dj. (10)

Specifcally, if w � (1/n, 1/n, . . . , 1/n)T, then the
q-RIVPDHFWA is reduced to the q-rung interval-valued
probabilistic dual hesitant fuzzy average operator.
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Theorem 1. Let 􏽥dj � (hj|􏽥phj
, gj|􏽥tgj

)(j � 1, 2, . . . , n) be a
collection of q-RIVPDHFEs, then the aggregated result by
q-RIVPDHFWA operator is still a q-RIVPDHFE and

q − RIVPDHFWA 􏽥d1,
􏽥d2, . . . , 􏽥dn􏼐 􏼑 � ∪ cj∈hj,ηj∈gj

,

1 − 􏽙
n

j�1
1 − c

q
j􏼐 􏼑

wj⎛⎝ ⎞⎠

1/q

| 􏽙
n

j�1

􏽥p
L
cj

, 􏽙
n

j�1

􏽥p
U
cj

⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, 􏽙

n

j�1
ηwj

j | 􏽙
n

j�1

􏽥t
L

ηj
, 􏽙

n

j�1

􏽥t
U

ηj

⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(11)

Proof. (i) It is obvious that Eq. (11) holds for n � 1; (ii) For n � 2, according to Defnition 6, we can obtain:

w1
􏽥d1 � ∪ c1∈h1 ,η1∈g1

1 − 1 − c
q
1( 􏼁

w1􏼐 􏼑
1/q

| 􏽥p
L
c1

, 􏽥p
U
c1

􏽨 􏽩􏼚 􏼛, ηw1
1 | 􏽥t

L

η1
,􏽥t

U

η1􏽨 􏽩􏽮 􏽯􏼚 􏼛,

w2
􏽥d2 � ∪ c2∈h2 ,η2∈g2

1 − 1 − c
q
2( 􏼁

w2􏼐 􏼑
1/q

| 􏽥p
L
c2

, 􏽥p
U
c2

􏽨 􏽩􏼚 􏼛, ηw2
2 | 􏽥t

L

η2
,􏽥t

U

η2􏽨 􏽩􏽮 􏽯􏼚 􏼛.

(12)

Hence,

q − RIVPDHFWA 􏽥d1,
􏽥d2􏼐 􏼑 � w1

􏽥d1 ⊕w2
􏽥d2 � ∪ c1∈h1 ,η1∈g1 ,c2∈h2 ,η2∈g2

,

1 − 1 − c
q
1( 􏼁

w1 1 − c
q
2( 􏼁

w2􏼐 􏼑
1/q

| 􏽥p
L
c1

􏽥p
L
c2

, 􏽥p
U
c1

􏽥p
U
c2

􏽨 􏽩􏼚 􏼛, ηw1
1 ηw2

2 | 􏽥t
L

η1
􏽥t

L

η2
,􏽥t

U

η1
􏽥t

U

η2􏽨 􏽩􏽮 􏽯􏼚 􏼛,
(13)

which means that (11) holds for <i>n</i≥ 2. (iii) We assume that equation (11) holds for n � k, i.e.,

q − RIVPDHFWA 􏽥d1,
􏽥d2, . . . , 􏽥dk􏼐 􏼑 � ∪ cj∈hj,ηj∈gj

,

1 − 􏽙
k

j�1
1 − c

q
j􏼐 􏼑

wj⎛⎝ ⎞⎠

1/q

| 􏽙
k

j�1

􏽥p
L
cj

, 􏽙
k

j�1

􏽥p
U
cj

⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, 􏽙

k

j�1
ηwj

j | 􏽙
k

j�1

􏽥t
L

ηj
, 􏽙

k

j�1

􏽥t
U

ηj

⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(14)

(iv) For n � k + 1, then we have

q − RIVPDHFWA 􏽥d1,
􏽥d2, . . . , 􏽥dk+1􏼐 􏼑 � ⊕kj�1wj

􏽥dj ⊕wk+1
􏽥dk+1 � ∪ cj∈hj,ηj∈gj

1 − 􏽙

k

j�1j�1
1 − c

q

j􏼐 􏼑
wj⎛⎝ ⎞⎠

1/q

| 􏽙

k

j�1j�1
􏽥p

L
cj

, 􏽙

k

j�1j�1
􏽥p

U
cj

⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, 􏽙

k

j�1j�1
ηwj

j | 􏽙

k

j�1j�1

􏽥t
L

ηj
, 􏽙

k

j�1j�1

􏽥t
U

ηj

⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⊕∪ ck+1∈hk+1 ,ηk+1∈gk+1
1 − 1 − c

q

k+1􏼐 􏼑
wk+1

􏼐 􏼑
1/q

| 􏽥p
L
ck+1

, 􏽥p
U
ck+1

􏽨 􏽩􏼚 􏼛, ηwk+1
k+1 | 􏽥t

L

ηk+1
,􏽥t

U

ηk+1
􏽨 􏽩􏽮 􏽯􏼚 􏼛 � ∪ cj∈hj,ηj∈gj

1 − 􏽙
k+1

j�1
1 − c

q
j􏼐 􏼑

wj⎛⎝ ⎞⎠

1/q

| 􏽙
k+1

j�1

􏽥p
L
cj

, 􏽙
k+1

j�1

􏽥p
U
cj

⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, 􏽙

k+1

j�1
ηwj

j | 􏽙
k+1

j�1

􏽥t
L

ηj
, 􏽙

k+1

j�1

􏽥t
U

ηj

⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(15)

which indicates that equation (11) holds for n � k + 1.
Hence, the proof of Teorem 1 is completed.

In the following, we will give some properties of the
proposed q-RIVPDHFWA operator. □
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Theorem 2 (Monotonicity). Let 􏽥dj � (hj|􏽥phj
, gj|􏽥tgj

) and
􏽥d
∗
j � (h∗j |􏽥p∗hj

, g∗j |􏽥t
∗
gj

)(j � 1, 2, . . . , n) be two sets of
q-RIVPDHFEs. For the elements in 􏽥dj and 􏽥d

∗
j , if cj ≤ c∗j ,

ηj ≥ η∗j , 􏽥phj
� 􏽥p∗hj

and 􏽥tgj
� 􏽥t
∗
gj
, then

q − RIVPDHFWA 􏽥d1,
􏽥d2, . . . , 􏽥dn􏼐 􏼑≤ q − RIVPDHFWA 􏽥d

∗
1 , 􏽥d
∗
2 , . . . , 􏽥d

∗
3􏼐 􏼑. (16)

Proof. For any j � 1, 2, . . . , n, there is cj ≤ c∗j . Ten, for the
aggregated result of the q-RIVPDHFWA operator, we have
(1 − 􏽑

n
j�1 (1 − c

q

j)wj )1/q ≤ (1 − 􏽑
n
j�1 (1 − c

q

j∗)
wj )1/q. Simi-

larly, we have 􏽑
n
j�1 η

wj

j ≥ 􏽑
n
j�1 η

wj

j∗ . According to the ranking
method of any two q-RIVPDHFEs provided in Subsection
3.3, q − RIVPDHFWA(􏽥d1,

􏽥d2, . . . , 􏽥dn)≤ q−

RIVPDHFWA(􏽥d
∗
1 , 􏽥d
∗
2 , . . . , 􏽥d

∗
3 ) can be obtained. □

Theorem 3 (Boundedness). Let 􏽥dj � (hj|􏽥phj
, gj|􏽥tgj

), 􏽥d
−

j �

(h−
j |􏽥ph−

j
, g−

j |􏽥tg−
j
),􏽥d

+

j � (h+
j |􏽥ph+

j
, g+

j |􏽥tg+
j
)(j � 1, 2, . . . , n) be

three sets of q-RIVPDHFEs. If every element in h−
j satisfes

c−
j � min (hj),η−

j � max(gj),(􏽥pL
hj

)− � min(􏽥pL
hj

) ,(􏽥pU
hj

)− �

min(􏽥pU
hj

),(􏽥t
L

hj
)− � max(􏽥pL

hj
), and (􏽥t

U

hj
)+ � max(􏽥pU

hj
), every

element in h+
j satisfes c+

j � max(hj), η+
j � min(gj), and

(􏽥pL
hj

)+ � max(􏽥pL
hj

),(􏽥pU
hj

)+ � max(􏽥pU
hj

),(􏽥t
L

hj
)+ � min(􏽥pL

hj
),

and (􏽥t
U

hj
)+ � min(􏽥pU

hj
), then

q − RIVPDHFWA 􏽥d
−

, 􏽥d
−

, . . . , 􏽥d
−

􏼐 􏼑≤ q − RIVPDHFWA 􏽥d1,
􏽥d2, . . . , 􏽥dn􏼐 􏼑,

≤ q − RIVPDHFWA 􏽥d
+
, 􏽥d

+
, . . . , 􏽥d

+
􏼐 􏼑.

(17)

Proof. For any j � 1, 2, . . . , n, it is obvious that c−
j ≤ cj ≤ c+

j .
Tus, according to the aggregated results,

1 − 􏽙

n

j�1
1 − c

−
j􏼐 􏼑

q
􏼐 􏼑

wj⎛⎝ ⎞⎠

1/q

≤ 1 − 􏽙

n

j�1
1 − c

q
j􏼐 􏼑

wj⎛⎝ ⎞⎠

1/q

≤ 1 − 􏽙

n

j�1
1 − c

+
j􏼐 􏼑

q
􏼐 􏼑

wj⎛⎝ ⎞⎠

1/q

. (18)

Similarly, we can get 􏽑
n
j�1 (η−

j )wj

≥ 􏽑
n
j�1 η

wj

j ≥ 􏽑
n
j�1 (η+

j )wj . Ten, as (􏽥pL
hj

)− ≤ 􏽥pL
hj
≤ (􏽥pL

hj
)+,

we have 􏽑
n
j�1 (􏽥pL

hj
)− ≤ 􏽑

n
j�1 􏽥pL

cj
≤ 􏽑

n
j�1 (􏽥pL

hj
)+. Similarly,

􏽑
n
j�1 (􏽥pU

hj
)− ≤ 􏽑

n
j�1 􏽥pU

cj
≤ 􏽑

n
j�1 (􏽥pU

hj
)+. In addition, as

(􏽥t
L

hj
)− ≥􏽥tL

hj
≥ (􏽥t

L

hj
)+, 􏽑

n
j�1 (􏽥t

L

hj
)− ≥ 􏽑

n
j�1 􏽥t

L

cj
≥ 􏽑

n
j�1 (􏽥t

L

hj
)+,

and 􏽑
n
j�1 (􏽥t

U

hj
)− ≥ 􏽑

n
j�1 􏽥t

U

cj
≥ 􏽑

n
j�1 (􏽥t

U

hj
)+ can be gained.

Finally, according to Subsection 3.3, Teorem 2 can be
proved. □

Theorem 4 (Commutativity). Let 􏽥dj � (hj|􏽥phj
, gj|􏽥tgj

) and
􏽥dj
′ � (hj
′|􏽥phj
′′, gj
′|􏽥tgj
′)(j � 1, 2, . . . , n) be two sets of q-RIV-

PDHFEs, and 􏽥dj
′ is any permutation of 􏽥dj , then

q − RIVPDHFWA 􏽥d1,
􏽥d2, . . . , 􏽥dn􏼐 􏼑 � q − RIVPDHFWA 􏽥d1′, 􏽥d2′, . . . , 􏽥dn

′􏼐 􏼑. (19)

Te proof of Teorem 4 is trivial and we omit it here.

In the following, we will discuss the special cases of the
q-RIVPDHFWA operator with respect to the parameter q.

Case 1. If q� 1, the q − RIVPDHFWA will reduce to the
intuitionistic interval-valued probabilistic dual hesitant
fuzzy weighted average (IIVPDHFWA) operator, that is:
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q − RIVPDHFWAq�1
􏽥d1,

􏽥d2, . . . , 􏽥dn􏼐 􏼑 � ⊕nj�1wj
􏽥dj � ∪ cj∈hj,ηj∈gj

,

1 − 􏽙
n

j�1
1 − cj􏼐 􏼑

wj
| 􏽙

n

j�1

􏽥p
L
cj

, 􏽙
n

j�1

􏽥p
U
cj

⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, 􏽙

n

j�1
ηwj

j | 􏽙
n

j�1

􏽥t
L

ηj
, 􏽙

n

j�1

􏽥t
U

ηj

⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(20)

Case 2. If q� 2, the q − RIVPDHFWA will reduce to the
Pythagorean interval-valued probabilistic dual hesitant
fuzzy weighted average (PIVPDHFWA) operator, that is:

q − RIVPDHFWAq�2
􏽥d1,

􏽥d2, . . . , 􏽥dn􏼐 􏼑 � ⊕nj�1wj
􏽥dj � ∪ cj∈hj,ηj∈gj

,

1 − 􏽙
n

j�1
1 − c

2
j􏼐 􏼑

wj⎛⎝ ⎞⎠

1/2

| 􏽙
n

j�1
􏽥p

L
cj

, 􏽙
n

j�1
􏽥p

U
cj

⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, 􏽙

n

j�1
ηwj

j | 􏽙
n

j�1

􏽥t
L

ηj
, 􏽙

n

j�1

􏽥t
U

ηj

⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(21)

Case 3. If q� 3, the q − RIVPDHFWA will reduce to the
Fermatean interval-valued probabilistic dual hesitant fuzzy
weighted average (FIVPDHFWA) operator, that is:

q − RIVPDHFWAq�3
􏽥d1,

􏽥d2, . . . , 􏽥dn􏼐 􏼑 � ⊕nj�1wj
􏽥dj � ∪ cj∈hj,ηj∈gj

,

1 − 􏽙
n

j�1
1 − c

3
j􏼐 􏼑

wj⎛⎝ ⎞⎠

1/3

| 􏽙
n

j�1

􏽥p
L
cj

, 􏽙
n

j�1

􏽥p
U
cj

⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, 􏽙

n

j�1
ηwj

j | 􏽙
n

j�1

􏽥t
L

ηj
, 􏽙

n

j�1

􏽥t
U

ηj

⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(22)

In the following, we continue to propose the geometric
average operator of the q-RIVPDHFEs.

Defnition 11. Let 􏽥dj � (hj|􏽥phj
, gj|􏽥tgj

) be a collection of
q-RIVPDHFEs, and w � (w1, w2, . . . , wn)T be the corre-
sponding weight vector, such that 􏽐

n
j�1 wj � 1 and

1≥wj ≥ 0, then the q-rung interval-valued probabilistic dual
hesitant fuzzy weighted geometric (q-RIVPDHFWG) op-
erator is defned as:

q − RIVPDHFWG 􏽥d1,
􏽥d2, . . . , 􏽥dn􏼐 􏼑 � ⊗ n

j�1
􏽥d

wj

j � ∪ cj∈hj,ηj∈gj
.

(23)

Specifcally, if w � (1/n, 1/n, . . . , 1/n)T, then the
q-RIVPDHFWG is reduced to the q-rung interval-valued
probabilistic dual hesitant fuzzy geometric operator.

Based on the operational rules presented in Defnition 6,
the following theorem can be obtained.

Theorem 5. Let 􏽥dj � (hj|􏽥phj
, gj|􏽥tgj

)(j � 1, 2, . . . , n) be a
collection of q-RIVPDHFEs, then the aggregated result by
q-RIVPDHFWG operator is still a q-RIVPDHFE and

q − RIVPDHFWG 􏽥d1,
􏽥d2, . . . , 􏽥dn􏼐 􏼑 � 􏽙

n

j�1
c

wj

j | 􏽙

n

j�1
􏽥p

L
cj

, 􏽙

n

j�1
􏽥p

U
cj

⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, 1 − 􏽙

n

j�1
1 − ηq

j􏼐 􏼑
wj⎛⎝ ⎞⎠

1/q

| 􏽙

n

j�1

􏽥t
L

ηj
, 􏽙

n

j�1

􏽥t
U

ηj

⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (24)

Te proof of Teorem 6 is similar to that of Teorem 1,
which is omitted here. In addition, the q-RIVPDHFWG also
has the following properties.

Theorem 6 (Monotonicity). Let 􏽥dj � (hj|􏽥phj
, gj|􏽥tgj

) and
􏽥d
∗
j � (h∗j |􏽥p∗hj

, g∗j |􏽥t
∗
gj

)(j � 1, 2, . . . , n) be two sets of q-RIV-
PDHFEs. For the elements in 􏽥dj and 􏽥d

∗
j , if cj ≤ c∗j , ηj ≥ η∗j ,

􏽥phj
� 􏽥p∗hj

, and 􏽥tgj
� 􏽥t
∗
gj
, then
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q − RIVPDHFWG 􏽥d1,
􏽥d2, . . . , 􏽥dn􏼐 􏼑≤ q − RIVPDHFWG 􏽥d

∗
1 , 􏽥d
∗
2 , . . . , 􏽥d

∗
3􏼐 􏼑. (25)

Theorem 7 (Boundedness). Let 􏽥dj � (hj|􏽥phj
, gj|􏽥tgj

),
􏽥d

−

j � (h−
j |􏽥ph−

j
, g−

j |􏽥tg−
j
), and 􏽥d

+

j � (h+
j |􏽥ph+

j
, g+

j |􏽥tg+
j
)

(j � 1, 2, . . . , n) be three sets of q-RIVPDHFEs. If every element
in h−

j satisfes c−
j � min(hj), η−

j � max(gj), and
(􏽥pL

hj
)− � min(􏽥pL

hj
), (􏽥pU

hj
)− � min(􏽥pU

hj
), (􏽥t

L

hj
)− � max(􏽥pL

hj
),

and (􏽥t
U

hj
)+ � max(􏽥pU

hj
); every element in h+

j satisfes

c+
j � max(hj), η+

j � min(gj), and (􏽥pL
hj

)+ � max(􏽥pL
hj

),

(􏽥pU
hj

)+ � max(􏽥pU
hj

), (􏽥t
L

hj
)+ � min(􏽥pL

hj
), and

(􏽥t
U

hj
)+ � min(􏽥pU

hj
), then

q − RIVPDHFWG 􏽥d
−

, 􏽥d
−

, . . . , 􏽥d
−

􏼐 􏼑≤ q − RIVPDHFWG 􏽥d1,
􏽥d2, . . . , 􏽥dn􏼐 􏼑, ≤ q − RIVPDHFWG 􏽥d

+
, 􏽥d

+
, . . . , 􏽥d

+
􏼐 􏼑. (26)

Theorem 8 (Commutativity). Let 􏽥dj � (hj|􏽥phj
, gj|􏽥tgj

) and
􏽥dj
′ � (hj
′|􏽥phj
′′, gj
′|􏽥tgj
′)(j � 1, 2, . . . , n) be two sets of q-RIV-

PDHFEs, and 􏽥dj
′ is any permutation of 􏽥dj, then

q − RIVPDHFWG 􏽥d1,
􏽥d2, . . . , 􏽥dn􏼐 􏼑 � q − RIVPDHFWG 􏽥d1′, 􏽥d2′, . . . , 􏽥dn

′􏼐 􏼑. (27)

Te proofs of Teorems 6 and 7 are similar to those of
Teorems 2 and 3. In addition, Teorem 8 is trivial.

Tere are some special cases of the q-RIVPDHFWG
operator with respect to the parameter q.

Case 4. If q� 1, the q − RIVPDHFWG will reduce to the
intuitionistic interval-valued probabilistic dual hesitant
fuzzy weighted geometric (IIVPDHFWG) operator, that is:

q − RIVPDHFWGq�1
􏽥d1,

􏽥d2, . . . , 􏽥dn􏼐 􏼑 � ⊗ n
j�1

􏽥d
wj

j � ∪ cj∈hj,ηj∈gj

􏽙

n

j�1
c

wj

j | 􏽙
n

j�1

􏽥p
L
cj

, 􏽙
n

j�1

􏽥p
U
cj

⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, 1 − 􏽙

n

j�1
1 − ηj􏼐 􏼑

wj
| 􏽙

n

j�1

􏽥t
L

ηj
, 􏽙

n

j�1

􏽥t
U

ηj

⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(28)

Case 5. If q� 2, the q − RIVPDHFWG will reduce to the
Pythagorean interval-valued probabilistic dual hesitant
fuzzy weighted geometric (PIVPDHFWG) operator, that is:

q − RIVPDHFWGq�2
􏽥d1,

􏽥d2, . . . , 􏽥dn􏼐 􏼑 � ⊗ n
j�1

􏽥d
wj

j � ∪ cj∈hj,ηj∈gj
,

􏽙

n

j�1
c

wj

j | 􏽙
n

j�1

􏽥p
L
cj

, 􏽙
n

j�1

􏽥p
U
cj

⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, 1 − 􏽙

n

j�1
1 − η2j􏼐 􏼑

wj⎛⎝ ⎞⎠

1/2

| 􏽙
n

j�1

􏽥t
L

ηj
, 􏽙

n

j�1

􏽥t
U

ηj

⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(29)

Case 6. If q� 3, the q − RIVPDHFWG will reduce to the
Fermatean interval-valued probabilistic dual hesitant fuzzy
weighted geometric (FIVPDHFWG) operator, that is:
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q − RIVPDHFWGq�3
􏽥d1,

􏽥d2, . . . , 􏽥dn􏼐 􏼑 � ⊕nj�1wj
􏽥dj � ∪ cj∈hj,ηj∈gj

􏽙

n

j�1
c

wj

j 􏽙

n

j�1

􏽥p
L
cj

, 􏽙
n

j�1

􏽥p
U
cj

⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, 1 − 􏽙

n

j�1
1 − η3j􏼐 􏼑

wj⎛⎝ ⎞⎠

1/3

| 􏽙
n

j�1

􏽥t
L

ηj
, 􏽙

n

j�1

􏽥t
U

ηj

⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(30)

3.6. Distance Measure between Two q-RIVPDHFEs. In this
subsection, we aim at proposing a distance measure between
two q-RIVPDHFEs. Before doing so, we frst propose the
concept of normalized q-RIVPDHFE.

Defnition 12. Let 􏽥d � (h|􏽥ph, g|􏽥tg) be a q-RIVPDHFE, then
􏽥d is called a normalized q-RIVPDHFE if and only if all
IVPMEs and IVPNMEs are in ascending order.

Remark 1. It is noted that a q-RIVPDHFE can be called a
normalized q-RIVPDHFE if and only if all IVPMEs and
IVPNMEs are in ascending order. Hence, if a q-RIVPDHFE
is nonnormalized, then a transformation method is neces-
sary, which is presented as follows: Let 􏽥d � (h|􏽥ph, g|􏽥tg) be a
q-RIVPDHFE c(s)|[􏽥pL

c(s) + 􏽥pU
c(s) ] and c(k)|[􏽥pL

c(k) + 􏽥pU
c(k) ] be

any two IVPMEs of 􏽥d (where c(s)|[􏽥pL
c(s) + 􏽥pU

c(s) ], c(k)|

[􏽥pL
c(k) + 􏽥pU

c(k) ] ∈ h|􏽥ph) and η(l)|[􏽥t
L

η(l) ,􏽥t
U

η(l) ] and η(m)|[􏽥t
L

η(m) ,􏽥t
U

η(m) ]

be any two IVPNMEs of 􏽥d (where η(l)|[􏽥t
L

η(l) ,􏽥t
U

η(l) ], η(m)

|[􏽥t
L

η(m) ,􏽥t
U

η(m) ] ∈ g|􏽥tg), where s, k � 1, 2, . . . , #h, l, m �

1, 2, . . . , #g, and #h and #g denote the numbers of
IVPMEs and IVPNMEs in d, respectively. Ten,

(1) if c(s)(􏽥pL
c(s) + 􏽥pU

c(s) )> c(k)(􏽥pL
c(k) + 􏽥pU

c(k) ), then

c(s)|[􏽥pL
c(s) + 􏽥pU

c(s) ]> c(k)|[􏽥pL
c(k) + 􏽥pU

c(k) ];

(2) if c(s)(􏽥pL
c(s) + 􏽥pU

c(s) ) � c(k)(􏽥pL
c(k) + 􏽥pU

c(k) ), then if c(s) >

c(k), then c(s)|[􏽥pL
c(s) + 􏽥p

U

c(s) ]> c(k)| [􏽥pL
c(k) + 􏽥pU

c(k) ]; If

c(s) � c(k), then c(s)|[􏽥pL
c(s) + 􏽥pU

c(s) ] � c(k)|[􏽥pL
c(k) +

􏽥pU
c(k) ].

Te two IVPNMEs η(l)|[􏽥t
L

η(l) ,􏽥t
U

η(l) ] and η(m)|[􏽥t
L

η(m) ,􏽥t
U

η(m) ]

can be compared in a similar way. For a q-RIVPDHFE
􏽥d � (h|􏽥ph, g|􏽥tg), if all IVPMEs and IVPNMEs of 􏽥d are in
ascending order, then we call 􏽥d normalized q-RIVPDHFE.

Based on the above defnition, the distance measure
between any two q-RIVPDHFE is defned as follows.

Defnition 13. Let 􏽥d1 � (h1|􏽥ph1
, g1|􏽥tg1

) and
􏽥d2 � (h2|􏽥ph2

, g2|􏽥tg2
) be any two normalized q-RIVPDHFEs,

then the distance between 􏽥d1 and 􏽥d2 is presented as follows:

d 􏽥d1,
􏽥d2􏼐 􏼑

�

􏽐
n
i�1 c

σ(i)
1􏼐 􏼑

q
􏽥p

L

c
σ(i)

1
+ 􏽥p

U

c
σ(i)
1

􏼒 􏼓 − c
σ(i)
2􏼐 􏼑

q
􏽥p

L

c
σ(i)

2
+ 􏽥p

U

c
σ(i)
2

􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ 􏽐

n
j�1 ησ(j)

1􏼐 􏼑
q

􏽥t
L

ησ(j)

1
+ 􏽥t

U

ησ(j)

1
􏼒 􏼓 − ησ(j)

2􏼐 􏼑
q

􏽥t
L

ησ(j)

2
+ 􏽥t

U

ησ(j)

2
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

#h + #g
,

(31)

where c
σ(i)
1 |[􏽥pL

c
σ(i)
1

, 􏽥pU

c
σ(i)

1
] ∈ h1|􏽥ph1

, ησ(j)
1 |[􏽥t

L

ησ(j)

1
,􏽥t

U

ησ(j)

1
] ∈ g1|􏽥tg1

,

c
σ(i)
2 |[􏽥pL

c
σ(i)
2

, 􏽥pU

c
σ(i)

2
] ∈ h2|􏽥ph2

, ησ(j)
2 |[􏽥t

L

ησ(j)

2
,􏽥t

U

ησ(j)

2
] ∈ g2|􏽥tg2

,

c
σ(i)
1 |[􏽥pL

c
σ(i)
1

, 􏽥pU

c
σ(i)
1

]≤ c
σ(i+1)
1 |[􏽥pL

c
σ(i+1)
1

, 􏽥pU

c
σ(i+1)
1

], ησ(j)
1 |[􏽥t

L

ησ(j)

1
,􏽥t

U

ησ(j)

1
]

≤ η(j+1)
1 |[􏽥t

L

ησ(j+1)

1
,􏽥t

U

ησ(j+1)

1
], c

σ(i)
2 |[􏽥pL

c
σ(i)

2
, 􏽥pU

c
σ(i)
2

]≤ c
σ(i+1)
2 |[􏽥pL

c
σ(i+1)

2
,

􏽥pU

c
σ(i+1)
2

], and ησ(j)
2 |[􏽥t

L

ησ(j)

2
,􏽥t

U

ησ(j)

2
]≤ ησ(j+1)

2 |[􏽥t
L

ησ(j+1)

2
,􏽥t

U

ησ(j+1)

2
]. In

addition, #h and #g represent the numbers of IVPMEs and
IVPNMEs of 􏽥d1 and 􏽥d2, respectively.

Remark 2. In Defnition 13, it is noted that when computing
the distance between two q-RIVPDHFEs, they should have
the same numbers of IVPMEs and IVPNMEs. However, this
requirement cannot be always satisfed in most practical
decision-making situations. Hence, we propose the fol-
lowing method to extend the shorter q-RIVPDHFEs. Let
􏽥d1 � (h1|􏽥ph1

, g1|􏽥tg1
) and 􏽥d2 � (h2|􏽥ph2

, g2|􏽥tg2
) be any two

normalized q-RIVPDHFEs, which can be denoted as:
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􏽥d1 �

c
σ(1)
1 | 􏽥p

L

c
σ(1)
1

, 􏽥p
U

c
σ(1)

1
􏼔 􏼕, c

σ(2)
1 | 􏽥p

L

c
σ(2)
1

, 􏽥p
U

c
σ(2)

1
􏼔 􏼕, . . . , c

σ #h1( )
1 | 􏽥p

L

c
σ #h1( )
1

, 􏽥p
U

c
σ #h1( )
1

􏼢 􏼣􏼨 􏼩,

ησ(1)
1 | 􏽥t

L

ησ(1)

1
,􏽥t

U

ησ(1)
1

􏼔 􏼕, ησ(2)
1 | 􏽥t

L

ησ(2)

1
,􏽥t

U

ησ(2)
1

􏼔 􏼕, . . . , ησ #g1( )
1 | 􏽥t

L

η
σ #g1( )
1

,􏽥t
U

η
σ #g1( )
1

􏼢 􏼣􏼨 􏼩

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

􏽥d2 �

c
σ(1)
2 | 􏽥p

L

c
σ(1)
2

, 􏽥p
U

c
σ(1)

2
􏼔 􏼕, c

σ(2)
2 | 􏽥p

L

c
σ(2)
2

, 􏽥p
U

c
σ(2)

2
􏼔 􏼕, . . . , c

σ #h2( )
2 | 􏽥p

L

c
σ #h2( )
2

, 􏽥p
U

c
σ #h2( )
2

􏼢 􏼣􏼨 􏼩,

ησ(1)
2 | 􏽥t

L

ησ(1)

2
,􏽥t

U

ησ(1)
2

􏼔 􏼕, ησ(2)
2 | 􏽥t

L

ησ(2)

2
,􏽥t

U

ησ(2)
2

􏼔 􏼕, . . . , ησ #g2( )
2 | 􏽥t

L

η
σ #g2( )
2

,􏽥t
U

η
σ #g2( )
2

􏼢 􏼣􏼨 􏼩

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

(32)

Without loss of generality, we assume #h1 > #h2 and
#g1 < #g2, then we can generalize 􏽥d1 and 􏽥d2 into

􏽥d1′ � h1′|􏽥ph1′
, g1′|􏽥tg1′

􏼐 􏼑 � c
σ(1)
1 | 􏽥p

L

c
σ(1)

1
, 􏽥p

U

c
σ(1)

1
􏼔 􏼕, c

σ(2)
1 | 􏽥p

L

c
σ(2)

1
, 􏽥p

U

c
σ(2)

1
􏼔 􏼕, . . . , c

σ #h1( )
1 | 􏽥p

L

c
σ #h1( )
1

, 􏽥p
U

c
σ #h1( )
1

􏼢 􏼣􏼨 􏼩,􏼨

ησ(1)
1 | 􏽥t

L

ησ(1)

1
,􏽥t

U

ησ(1)
1

􏼔 􏼕, ησ(2)
1 | 􏽥t

L

ησ(2)

1
,􏽥t

U

ησ(2)
1

􏼔 􏼕, . . . , ησ #g1( )
1 | 􏽥t

L

η
σ #g1( )
1

,􏽥t
U

η
σ #g1( )
1

􏼢 􏼣, ησ #g1( )
1 |0, . . . ., ησ #g1( )

1 |0􏼨 􏼩􏼩,

􏽥d2′ � h2′|􏽥ph2′
, g2′|􏽥tg2′

􏼐 􏼑 � c
σ(1)
2 | 􏽥p

L

c
σ(1)

2
, 􏽥p

U

c
σ(1)

2
􏼔 􏼕, c

σ(2)
2 | 􏽥p

L

c
σ(2)

2
, 􏽥p

U

c
σ(2)

2
􏼔 􏼕, . . . , c

σ #h2( )
2 | 􏽥p

L

c
σ #h2( )
2

, 􏽥p
U

c
σ #h2( )
2

􏼢 􏼣, c
σ #h2( )
2 |0, . . . , c

σ #h2( )
2 |0􏼨 􏼩,􏼨

ησ(1)
2 | 􏽥t

L

ησ(1)

2
,􏽥t

U

ησ(1)
2

􏼔 􏼕, ησ(2)
2 | 􏽥t

L

ησ(2)

2
,􏽥t

U

ησ(2)
2

􏼔 􏼕, . . . , ησ #g2( )
2 | 􏽥t

L

η
σ #g2( )
2

,􏽥t
U

η
σ #g2( )
2

􏼢 􏼣􏼨 􏼩􏼩,

(33)

where #h2′ � #h1′ � #h1 and #g1′ � #g2′ � #g2.

4. Two MAGDM Methods under
q-RIVPDHFSs Condition

In this subsection, we propose two methods, namely, Algo-
rithms 1 and 2 to deal with MAGDM problems under
q-RIVPDHFSs. To this end, we frst introduce the basic
structure of a typical MAGDM problem in which attributes’
evaluation values are in the form of q-RIVPDHFEs. Subse-
quently, we introduce an aggregation operator-based method
and a TOPSIS-basedmethod to handle theMAGDMproblem.
Te main steps of these two approaches are provided in detail.

4.1. Structure of a Typical MAGDM Problem with
q-RIVPDHFSs. A typical MAGDM problem under q-rung

interval-valued probabilistic dual hesitant fuzzy situation
can be described as follow: we assume that there are m
alternatives, which are denoted as X � x1, x2, . . . , xm􏼈 􏼉. A
set of decisionmakers are invited to evaluate the capability of
the m alternatives. In order to evaluate the alternatives
comprehensively, decision makers provide their evaluated
values under n attributes, which can be denoted as
A � a1, a2, . . . , an􏼈 􏼉. As diferent attributes probably have
diferent importance, we assume the weight vector of the n
attributes to be w � (w1, w2, . . . , wn)T, such that 􏽐

n
j�1 wj � 1

and 0≤wj ≤ 1. Based on the proposed q-RIVPDHFSs, de-
cision makers utilize a q-RIVPDHFE 􏽥dij � (hij|􏽥phij

, gij|􏽥tgij
)

to denote their evaluation information over attribute aj(j �

1, 2 . . . , n) of alternative xi(i � 1, 2, . . . , m). At last, a q-rung
interval-valued probabilistic dual hesitant fuzzy decision
matrix 􏽥D can be obtained, which is shown as follows:

􏽥D � 􏽥dij􏼐 􏼑
m×n

�

h11|􏽥ph11
, g11|􏽥tg11

􏼐 􏼑 h12|􏽥ph12
, g12|􏽥tg12

􏼐 􏼑 · · · h1n|􏽥ph1n
, g1n|􏽥tg1n

􏼐 􏼑

h21|􏽥ph21
, g21|􏽥tg21

􏼐 􏼑 h22|􏽥ph22
, g22|􏽥tg22

􏼐 􏼑 · · · h2n|􏽥ph2n
, g2n|􏽥tg2n

􏼐 􏼑

· · · · · · ⋱ · · ·

hm1|􏽥phm1
, gm1|􏽥tgm1

􏼐 􏼑 hm2|􏽥phm2
, gm2|􏽥tgm2

􏼐 􏼑 · · · hmn|􏽥pmn, gmn|􏽥tgmn
􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (34)

5. Illustrative Examples

Medical tourism is internationally recognized as a low-carbon
and energy-saving sunrise industry. Te volume of world
medical tourism increased to about 10 USD billion in 2012 and

is expected to increase to 33 USD billion by 2020 [49].
According to the defnition by the World Tourism Organi-
zation (UNWTO), medical tourism combines well-being
tourism with medical recuperation and rehabilitation, which
refers to a new tourism service with the theme of medical
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treatment, nursing, and recovery of health [50]. In many re-
gions, the demand for medical tourism is quite high, especially
in developing and less developed countries where many pa-
tients have to endure inconveniences of low medical quality,
long waiting time for medical facilities, low medical service
level, and highmedical costs [51]. As a result, such patientsmay
move to treatment areas or countries that canmeet their needs.
In most cases, traveling abroad means that tourists can beneft
from more afordable or better treatment because they prefer
medical tourism destinations that provide foreign medical
tourists with advanced medical technology, high-quality
medical services, and infrastructure. In view of the potential
and proftability of the medical tourism business, more and
more regions or countries are developing diversifed medical
service products to actively promote their medical tourism
business. Recently, to understand the decision-making process
of medical tourists and potential consumers in choosing
medical tourism destination brands, Yu et al. [52] investigated
the attributes of medical tourism destinations most concerned
by medical tourism consumers. Te researchers found that the
multiple attributes of medical tourism destinations, i.e., pro-
fessionalism of the medical staf (G1), the convenience of the
information collection process (G2), and personal information
security (G3), and procedural convenience (G4), will produce a
positive impact on customer participation. Table 1 gives brief
explanations of these attributes.

Based on the above analysis, let us consider a medical
location selection problem. Tere is a world-famous medical
tourism city. To better promote the local medical tourism
market, the place decides to further carry out publicity plans to
enhance its infuence in the global medical tourism market.
Particularly, considering thatmedical tourism is closely related
to the physical and mental health of customers, trust related to
potential risks related to medical activities (such as medical
accidents or distrust of medical staf and facilities) is very
critical. Terefore, relevant departments will evaluate the
major local medical institutions serving international medical
consumers and select high-quality ones as iconic brands for
publicity. After screening, the performance of four medical
institutions {A1, A2, A3, A4} on the four attributes {G1, G2, G3,
G4} mentioned above will be examined tomeasure their ability
to provide a highly satisfactory tourist experience. Several feld
experts are invited to form a special group to produce the
evaluation of these candidates. Experts agree to express their

opinions by q-RIVPDHFSs, and their assessments are sum-
marized in the decisionmatrix displayed in Table 2.Teweight
vector of the four attributes is w � (0.3, 0.2, 0.1, 0.4)T. Sub-
sequently, the four medical tourism brands will be evaluated
according to the decision matrix, and then the follow-up
publicity plan will be formulated.

5.1. Te Decision-Making Process by Using Algorithm 1

Step 1. Normalize the original decision matrix. It is
noted that all the attributes are beneft type. Hence, the
original decision matrix does not need to be
normalized.
Step 2. Utilize the q-RIVPDHFWA operator to ag-
gregate the attribute values of the alternative xi. Ten,
the comprehensive evaluation values of all candidate
alternatives are obtained. As the overall evaluation
values are complicated, we omit them in order to save
space.
Step 3. Compute the scores of the overall evaluation
values according to Defnition 7, we can get:

S 􏽥d1′􏼐 􏼑 � 0.1987, S 􏽥d2′􏼐 􏼑 � 0.2753, S 􏽥d3′􏼐 􏼑 � 0.1395, S 􏽥d4′􏼐 􏼑 � 0.0366.

(35)

Step 4. Rank alternatives and we can get x2≻x1≻x3≻x4,
and A2 is the optimal alternative.

5.2. Te Decision-Making Process by Using Algorithm 2

Step 1. As all attributes are beneft types, the original
decision matrix does not need to be normalized.
Step 2. Arrange IVPMEs and IVPNMEs of each q-RIV-
PDHFE in ascending order according to Remark 1.
Step 3. For attribute ai, extend the shorter evaluation
values of alternatives according to Remark 2 until they
have the same numbers of IVPMEs and IVPNMEs.
After the above two steps, the new decision matrix is
listed in Table 3.
Step 4. Determine the q-RIVPDHFPIS x+ and
q-RIVPDHFNIS x− , and we can obtain

x
+

�

0.7|[0.5, 0.1], 0.7|[0.3, 0.6]{ }, 0.6|[0.3, 0.5], 0.9|[0.2, 0.5]{ }{ },

0.6|[0.2, 0.4], 0.8|[0.6, 0.7]{ }, 0.5|[0.7, 1], 0.7|[0.4, 0.6]{ }{ },

0.6|[0.9, 1], 0.9|[0.4, 0.8]{ }, 0.8|[0.1, 0.2], 0.9|[0.3, 0.8]{ }{ },

0.3|[0.3, 1], 0.8|[0.3, 0.7]{ }, 0.4|[0.7, 1], 0.6|[0.3, 0.6]{ }{ }

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

x
−

�

0.1|[0.1, 0.7], 0.4|0{ }, 0.2|[0.2, 0.5], 0.5|[0.1, 0.4]{ }{ },

0.4|[0.1, 0.3], 0.7|[0.1, 0.6]{ }, 0.4|[0.3, 0.6], 0.5|0{ }{ },

0.4|[0.1, 0.2], 0.6|0{ }, 0.4|[0.2, 0.3], 0.5|[0.1, 0.5]{ }{ },

0.2|[0.1, 0.2], 0.3|0{ }, 0.1|[0.4, 0.7], 0.4|0{ }{ }

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

(36)
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Table 1: Te attributes of medical tourism destinations brand.

Attributes Explanations
G1: Professionalism of medical staf
(doctors and nurses) Te professional skills and foreign language skills of medical staf are high

G2: Convenience of the information
collection process

Te specialties of the medical staf and information about medical facilities can be easily
found; information about medical facilities can be provided in foreign languages

G3: Personal information security Te measures implemented by medical facilities to protect personal information are strict
G4: Procedural convenience Making an appointment with medical facilities is convenient and easy

Table 2: Te Q-rung interval-valued probabilistic dual hesitant fuzzy decision matrix D.

a1
x1 0.7|[0.3, 0.6], 0.6|[0.3, 0.4]{ }, 0.2|[0.2, 0.5], 0.4|[0.4, 0.5]{ }{ }

x2 0.4|[0.9, 1]{ }, 0.3|[0.4, 0.5], 0.5|[0.3, 0.5]{ }{ }

x3 0.1|[0.1, 0.7], 0.4|[0.2, 0.3]{ }, 0.3|[0.2, 0.6], 0.5|[0.1, 0.4]{ }{ }

x4 0.7|[0.5, 1]{ }, 0.9|[0.2, 0.5], 0.6|[0.3, 0.5]{ }{ }

a2
x1 0.6|[0.2, 0.4], 0.7|[0.1, 0.6]{ }, 0.5|[0.7, 1]{ }{ }

x2 0.8|[0.6, 0.7], 0.6|[0.2, 0.3]{ }, 0.3|[0.5, 1]{ }{ }

x3 0.8|[0.4, 0.8], 0.6|[0.1, 0.2]{ }, 0.4|[0.3, 0.6], 0.6|[0.2, 0.4]{ }{ }

x4 0.4|[0.1, 0.3], 0.6|[0.4, 0.7]{ }, 0.7|[0.4, 0.6], 0.8|[0.1, 0.4]{ }{ }

a3
x1 0.9|[0.4, 0.8], 0.4|[0.1, 0.2]{ }, 0.8|[0.1, 0.2], 0.3|[0.7, 0.8]{ }{ }

x2 0.6|[0.9, 1]{ }, 0.4|[0.2, 0.3], 0.6|[0.5, 0.7]{ }{ }

x3 0.5|[0.2, 0.4], 0.9|[0.1, 0.6]{ }, 0.7|[0.1, 0.2], 0.9|[0.3, 0.8]{ }{ }

x4 0.3|[0.8, 1]{ }, 0.5|[0.1, 0.5], 0.3|[0.2, 0.5]{ }{ }

a4
x1 0.2|[0.5, 0.6], 0.4|[0.2, 0.4]{ }, 0.4|[0.7, 1]{ }{ }

x2 0.7|[0.3, 0.8], 0.2|[0.1, 0.2]{ }, 0.6|[0.2, 0.3], 0.1|[0.4, 0.7]{ }{ }

x3 0.3|[0.3, 1]{ }, 0.7|[0.1, 0.3], 0.1|[0.6, 0.7]{ }{ }

x4 0.8|[0.3, 0.7], 0.2|[0.2, 0.3]{ }, 0.7|[0.2, 0.4], 0.6|[0.3, 0.6]{ }{ }

Table 3: Te normalized decision matrix.

a1
x1 0.6|[0.3, 0.4], 0.7|[0.3, 0.6]{ }, 0.2|[0.2, 0.5], 0.4|[0.4, 0.5]{ }{ }

x2 0.4|[0.9, 1], 0.4|0{ }, 0.3|[0.4, 0.5], 0.5|[0.3, 0.5]{ }{ }

x3 0.1|[0.1, 0.7], 0.4|[0.2, 0.3]{ }, 0.3|[0.2, 0.6], 0.5|[0.1, 0.4]{ }{ }

x4 0.7|[0.5, 1], 0.7|0{ }, 0.6|[0.3, 0.5], 0.9|[0.2, 0.5]{ }{ }

a2
x1 0.6|[0.2, 0.4], 0.7|[0.1, 0.6]{ }, 0.5|[0.7, 1], 0.5|0{ }{ }

x2 0.6|[0.2, 0.3], 0.8|[0.6, 0.7]{ }, 0.3|[0.5, 1], 0.3|0{ }{ }

x3 0.6|[0.1, 0.2], 0.8|[0.4, 0.8]{ }, 0.4|[0.3, 0.6], 0.6|[0.2, 0.4]{ }{ }

x4 0.4|[0.1, 0.3], 0.6|[0.4, 0.7]{ }, 0.8|[0.1, 0.4], 0.7|[0.4, 0.6]{ }{ }

a3
x1 0.4|[0.1, 0.2], 0.9|[0.4, 0.8]{ }, 0.8|[0.1, 0.2], 0.3|[0.7, 0.8]{ }{ }

x2 0.6|[0.9, 1], 0.6|0{ }, 0.4|[0.2, 0.3], 0.6|[0.5, 0.7]{ }{ }

x3 0.5|[0.2, 0.4], 0.9|[0.1, 0.6]{ }, 0.7|[0.1, 0.2], 0.9|[0.3, 0.8]{ }{ }

x4 0.3|[0.8, 1], 0.3|0{ }, 0.3|[0.2, 0.5], 0.5|[0.1, 0.5]{ }{ }

a4
x1 0.2|[0.5, 0.6], 0.4|[0.2, 0.4]{ }, 0.4|[0.7, 1], 0.4|0{ }{ }

x2 0.2|[0.1, 0.2], 0.7|[0.3, 0.8]{ }, 0.1|[0.4, 0.7], 0.6|[0.2, 0.3]{ }{ }

x3 0.3|[0.3, 1], 0.3|0{ }, 0.1|[0.6, 0.7], 0.7|[0.1, 0.3]{ }{ }

x4 0.2|[0.2, 0.3], 0.8|[0.3, 0.7]{ }, 0.7|[0.2, 0.4], 0.6|[0.3, 0.6]{ }{ }
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Step 5. Calculate the weighted distance between each
alternative and q-RIVPDHFPIS x+ and q-RIV-
PDHFNIS x− . Additionally, based on the distance
between each alternative and the q-RIVPDHFPIS x+

and q-RIVPDHFNIS x− , the relative importance de-
gree of each alternative can be obtained. Tese results
are listed in Table 4.
Step 6. According to CIi(i � 1, 2, 3, 4), we can obtain
the ranking result of alternatives, i.e., x4≻x2≻x1≻x3.
Terefore, the optimal alternative is x4.

5.3. Comparative Analysis. In this subsection, to better
demonstrate the advantages of our proposed MAGDM
methods, we conduct comparative analysis. More specif-
cally, we compare our proposed methods with that intro-
duced by Li et al. [27] based on the q-RPDHFSs that
presented by Liu and Chen [37] based on interval-valued
probabilistic dual hesitant fuzzy sets to illustrate the ad-
vantages of our method.

5.3.1. Comparison with Li et al.’s [27] Method. Te method
proposed by Li et al. [27] is based on q-RPDHFSs, which
provide decision makers with large information space to
express their evaluation values. In addition, decision makers
are allowed to give several set of values for MDs and NMDs,
and can assign a probability value to each value. However, in
real problems, decision makers are more inclined to use an
interval value to express the probability value, rather than a
single real value. In Examples 1 and 2, we provide illustrative
instances to explain why we need q-RIVPDHFSs. In addi-
tion, to better show the advantages and superiorities of our

proposed method over that introduced by Li et al. [27], we
provide the following examples.

Example 4 (Revised from [27]). Let us consider an investment
projection selection problem. An enterprise nowwants to invest
its idle money in an investment project to make some profts.
After elementary evaluation, four possible investment alterna-
tives are taken into consideration, which is denoted as
x1, x2, x3, x4􏼈 􏼉. To comprehensively evaluate the four alter-
natives, the following three attributes are taken into account, i.e.,
the quality of product and service (G1), social and environ-
mental impacts (G2), and economic benefts (G3). Te weight
vector of attributes is w � (0.3, 0.2, 0.5)T. Decision makers are
invited to provide q-RDHFEs to express their evaluation values,
and the original decision matrix is listed in Table 5. As pointed
out in Defnition 5, q-RPDHFE is a special case of q-RIV-
PDHFE. As a matter of fact, it is easy to convert a q-RPDHFE
into a q-RIVPDHFE. For example, let d � 0.7|0.2, 0.6|0.2,{{ 0.5
|0.6}, 0.2|1{ }} be a q-RPDHFE, then it can be converted into
d � 0.7|[0.2,{{ 0.2], 0.6|[0.2, 0.2], 0.5|[0.6, 0.6]}, 0.2|{ [1, 1]}}.
Hence, our proposedmethods can be applied to solveMAGDM
problems where decision makers’ evaluation values are
expressed by q-RPDHFEs. We use Li et al.’s [27] method and
our proposed Algorithms 1 and 2 to solve Example 5 and
present the decision-making results in Table 6.

From Table 6, it is found that our proposed Algorithms 1
and 2 can successfully solve Example 4, which indicates that our
proposed methods can deal with decision-making problems in
q-rung probabilistic dual hesitant fuzzy environment. However,
Li et al. [27] is not as fexible as the Algorithms 1 and 2 in-
troduced in this study. To better demonstrate the advantages of
our proposed Algorithms 1 and 2, the following example is
provided.

Table 5: Te original decision matrix in Example 4.

G1 G2 G3

x1 0.7|0.2, 0.6|0.2, 0.5|0.6{ }, 0.2|1{ }{ } 0.7|1{ }, 0.5|1{ }{ } 0.2|1{ }, 0.2|1{ }{ }

x2 0.1|1{ }, 0.4|1{ }{ } 0.3|1{ }, 0.7|1{ }{ } 0.7|1{ }, 0.3|0.5, 0.2|0.5{ }{ }

x3 0.6|1{ }, 0.5|1{ }{ } 0.6|1{ }, 0.2|1{ }{ } 0.1|1{ }, 0.7|1{ }{ }

x4 0.05|0.7, 0.2|0.3{ }, 0.5|1{ }{ } 0.3|1{ }, 0.6|0.5, 0.5|0.5{ }{ } 0.8|1{ }, 0.5|1{ }{ }

Table 6: Decision-making results of Example 4 by employing diferent MAGDM methods.

Score values S(di)(i � 1, 2, 3, 4) Te fnal ranking results

Li et al.’s [27] method (q� 3 and L� (1, 1, 1)) S(d1) � − 0.0373, S(d2) � − 0.2261
S(d3) � − 0.1033, S(d4) � − 0.1563 x1≻x3≻x4≻x2

Algorithm 1 (q� 3) S(d1) � 0.2531, S(d2) � 0.2984
S(d3) � − 0.0090, S(d4) � 0.3471 x4≻x2≻x1≻x3

Algorithm 2 (q� 3) S(d1) � 0.1941, S(d2) � 0.3729
S(d3) � 0.4085, S(d4) � 0.5434 x4≻x3≻x2≻x1

Table 4: Distance of each alternative between q-RIVPDHFPIS x+ and q-RIVPDHFNIS x− .

d(xi, x+) d(xi, x− ) CIi(i � 1, 2, 3, 4)

x1 0.2104 0.0888 0.2967
x2 0.1960 0.1024 0.3433
x3 0.2149 0.0819 0.2759
x4 0.1172 0.2042 0.6353
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Example 5 (Continued to Example 4). In some real deci-
sion-making problems, decision makers prefer to use
q-RIVPDHFEs rather than q-RPDHFEs to express their
evaluation values. Hence, we make revisions in Example 4.
We change the original decision matrix listed in Table 5. We
assume the attribute value of G2 of an alternative x1 is
changed from 0.7|1{ }, 0.5|1{ }{ } into 0.7|[0.31]{ }, 0.5|1{ }{ }. In
addition, the value of an attribute of G1 of an alternative x1 is
changed from 0.05|0.7, 0.2|0.3{ }, 0.5|1{ }{ } into
0.05|[0.50.7], 0.2|0.3{ }, 0.5|1{ }{ }. Te other attribute values

keep unchanged.Te new decision matrix is listed in Table 7.
We use Li et al.’s [27] method and our proposed Algorithms
1 and 2 to solve Example 4 and the results are presented in
Table 8

As we can see from Table 8, our proposed Algorithms 1
and 2 can successfully solve Example 5, however, Li et al.’s
[27] method is powerless to handle such a problem. Tis is
because Li et al.’s [27] method is based on q-RPDHFS and
hence it is incapable to handle MAGDM problems wherein
probabilistic information is denoted by interval values.

Table 7: Te original decision matrix in Example 5.

G1 G2 G3

x1 0.7|0.2, 0.6|0.2, 0.5|0.6{ }, 0.2|1{ }{ } 0.7|[0.31]{ }, 0.5|1{ }{ } 0.2|1{ }, 0.2|1{ }{ }

x2 0.1|1{ }, 0.4|1{ }{ } 0.3|1{ }, 0.7|1{ }{ } 0.7|1{ }, 0.3|0.5, 0.2|0.5{ }{ }

x3 0.6|1{ }, 0.5|1{ }{ } 0.6|1{ }, 0.2|1{ }{ } 0.1|1{ }, 0.7|1{ }{ }

x4 0.05|[0.50.7], 0.2|0.3{ }, 0.5|1{ }{ } 0.3|1{ }, 0.6|0.5, 0.5|0.5{ }{ } 0.8|1{ }, 0.5|1{ }{ }

Table 8: Decision-making results of Example 5 by employing diferent MAGDM methods.

Score values S(di)(i � 1, 2, 3, 4) Te fnal ranking results

Li et al.’s [27] method (q� 3 and L� (1,1,1)) Cannot be calculated None

Algorithm 1 (q� 3) S(d1) � 0.1548, S(d2) � 0.2984
x2≻x4≻x1≻x3S(d3) � − 0.0090, S(d4) � 0.2860

Algorithm 2 (q� 3) S(d1) � 0.1648, S(d2) � 0.3871
x4≻x3≻x2≻x1S(d3) � 0.4241, S(d4) � 0.5641

Table 9: Te original decision matrix of Example 5.

G1 (MC)
USA 0.4686|0.6, 0.5527|0.2, 0.5071|0.2{ }, 0.3671|1{ }{ }

CAN 0.5164|0.5, 0.4598|0.5{ }, 0.3173|1{ }{ }

RUS 0.4977|0.54, 0.6015|0.36, 0.4778|0.06, 0.5858|0.4{ }, 0.2590|1{ }{ }

DNK 0.1523|0.7, 0.0878|0.3{ }, 0.5940|0.9, 0.6249|0.1{ }{ }

CHN 0.2191|0.7, 0.2583|0.3{ }, 0.6074|0.6, 0.6544|0.4{ }{ }

NOR 0.2526|0.48, 0.2064|0.32, 0.2814|0.12, 0.2370|0.08{ }, 0.5950|1{ }{ }

G2 (DD)
USA 0.7131|1{ }, 0.2148|0.8, 0.2454|0.2{ }{ }

CAN 0.2779|1{ }, 0.6320|0.6, 0.6947|0.4{ }{ }

RUS 0.4651|0.5, 0.4411|0.5{ }, 0.2285|0.5, 0.2|0.5{ }{ }

DNK 0.3206|0.3, 0.2893|0.3, 0.4271|0.2, 0.4008|0.2{ }, 0.3469|0.5, 0.3262|0.5{ }{ }

CHN 0.5211|1{ }, 0.3682|0.5, 0.2921|0.5{ }{ }

NOR 0.2427|0.36, 0.3042|0.24, 0.2033|0.24, 0.2681|0.16{ }, 0.7319|1{ }{ }

G3 (EI)
USA 0.3039|0.6, 0.4457|0.4{ }, 0.3298|0.42, 0.3103|0.28, 0.2887|0.18, 0.2716|0.12{ }{ }

CAN 0.4772 |0.56, 0.5251|0.24, 0.4500|0.14, 0.5004|0.06{ },

0.2880|0.35, 0.2512|0.35, 0.3099|0.15, 0.2703|0.15{ }
􏼨 􏼩

RUS 0.1342|1{ }, 0.7319|0.6, 0.6553|0.4{ }{ }

DNK 0.5716|0.7, 0.5207|0.3{ }, 0.3537|0.5, 0.2604|0.5{ }{ }

CHN 0.7710|0.54, 0.7107|0.36, 0.7124|0.06, 0.6367|0.04{ }, 0.1491|1{ }{ }

NOR 0.2681|0.8, 0.3|0.2{ }, 0.6164|1{ }{ }

G4 (MR)
USA 0.6370|0.35, 0.6|0.35, 0.6697|0.15, 0.6361|0.15{ }, 0.2826|1{ }{ }

CAN 0.3|0.7, 0.2686|0.3{ }, 0.4749|1{ }{ }

RUS 0.3145|0.42, 0.3779|0.28, 0.3773|0.18, 0.4349|0.12{ }, 0.4580|1{ }{ }

DNK 0.1679|0.48, 0.2349|0.32, 0.1351|0.12, 0.2047|0.08{ }, 0.4182|0.6, 0.4778|0.4{ }{ }

CHN 0.2438|0.55, 0.1776|0.45{ }, 0.4524|0.45, 0.4145|0.45, 0.4295|0.05, 0.3935|0.05{ }{ }

NOR 0.3630|1{ }, 0.5233|0.35, 0.4924|0.35, 0.4142|0.15, 0.3897|0.15{ }{ }
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Hence, the decision-making approaches presented in this
study are more powerful and fexible than that introduced by
Li et al. [27].

5.3.2. Comparison with Liu and Cheng’s [37] Method.
We continue to compare our proposed method with that
introduced by Liu and Cheng [37] based on IVPDHFSs. Te
IVPDHFS is constructed by a set of MDs and NMDs as well
as their probabilistic information, which is similar to
q-RIVPDHFS. However, the constraint of q-RIVPDHFS is
laxer than that of IVPDHFS. In other words, q-RIVPDHFS
is more powerful and fexible than IVPDHFS. In addition, in
order to demonstrate the advantages of our proposed de-
cision-making method over that introduced d by Liu and
Cheng [37], the following example is provided.

Example 6 (Revised from [37]).Te geopolitics of the Arctic
is becoming increasingly prominent with global warming. In
order to achieve peaceful and sustainable development, the
complex political and geographical environment urges us to
assess the geopolitical risks in the Arctic. Hao et al. have
studied geopolitical risks in the Arctic. Te study established
a committee of experts to assess the risks of arctic resource
development operations in six countries: Russia (RUS),
Canada (CAN), the United States (USA), Denmark (DNK),
Norway (NOR), and China (CHN) and in four dimensions:
G1 potential military conficts (MCs),G2 diplomatic disputes
(DDs), G3 dependence on energy imports (EIs), and G4
control over marine routes (MRs). Te weight vector of
attributes is w � (0.2895, 0.1711, 0.0658, 0.4737)T. Decision
makers used probabilistic dual hesitant fuzzy sets (PDHFS)
to express their evaluation values and the original decision
matrix is listed in Table 9.We use our proposedmethods and
Liu and Cheng’s [37] method to solve Example 5 and present
the decision results in Table 10.

It is noted that the evaluation values in Example 5 is based
on PDHFS, which is a special case of IVPDHFS proposed by
Liu and Cheng [37]. Hence, both our proposed methods and

Liu and Cheng’s [37] method can solve this example. As can be
seen from Table 6, the ranking results of the method proposed
by Liu and Cheng [37] are basically consistent with the ranking
results of Algorithm 1 in this paper, in which USA has the
highest risk of arctic investment, and NOR has the lowest risk.
Te ranking results of Algorithm 2 in this paper are somewhat
diferent from the frst twomethods. AlthoughUSA still has the
highest risk of arctic investment, DNK has the lowest risk, and
NOR has the second highest risk. In summary, it can be seen
from the ranking results that our method has the same efect as
the method of Liu and Cheng [37]. However, our proposed
methods are more powerful and fexible than that introduced
by Liu and Cheng [37]. Tis is because Liu and Cheng’s [37]
method is based on IVPDHFS, which is a special case of our
q-RIVPDHFS. In other words, our proposed methods have
wider application than Liu and Cheng’s [37] method. For
example, in Example 5, the attribute value G4 of CAN is
changed from 0.3|0.7, 0.2686|0.3{ }, 0.4749|1{ }{ } to
0.6|0.7, 0.2686|0.3{ }, 0.4749|1{ }{ }. We use Liu and Cheng’s

method [37] and our proposed methods to solve the revised
example and the decision results are presented in Table 11. As
seen from Table 11, Liu and Cheng’s [37] method fails to
handle the revised example because the revised evaluation
value cannot be handled by IVPDHFS. Terefore, our pro-
posed methods are more powerful than that developed by Liu
and Cheng [37].

 . Conclusion

Te main contribution of this paper is to propose two new
MAGDM methods to deal with decision-making problems
under complicated and uncertain environments. In order to
do this, we frst introduce a new concept, called
q-RIVPDHFSs, to represent decision makers’ complex and
uncertain evaluation information. Compared with
q-RPDHFSs, the newly developed q-RIVPDHFSs allow
interval-valued probabilistic information, which makes
them more powerful and useful to handle decision makers’

Table 10: Te score values and ranking results of Example 5 by utilizing diferent methods.

Method USA CAN RUS DNK CHN NOR Ranking
Liu and Cheng’s [37] method based on the three-phased
MCGDM framework with IVPDHFSs 1 0.7305 0.6614 0.6439 0.8371 0 USA≻CHN≻CAN,

≻RUS≻DNK≻NOR

Our method based on Algorithm 1 (q� 1) 0.6076 − 0.1287 0.4586 − 0.4420 − 0.1879 − 0.4997 USA≻RUS≻CAN,
≻CHN≻DNK≻NOR

Our method based on Algorithm 2 (q� 1) 0.3842 0.3496 0.3684 0.2936 0.3300 0.3767 USA≻NOR≻RUS,
≻CAN≻CHN≻DNK

Table 11: Te decision results of revised Example 5 by utilizing diferent methods.

Method USA CAN RUS DNK CHN NOR Ranking
Liu and Cheng’s [37] method based on the three-phased
MCGDM framework with IVPDHFSs Cannot be calculated None

Our method based on Algorithm 1 (q� 3) 0.3986 0.0844 0.2818 − 0.1416 − 0.0221 − 0.2824 USA≻RUS≻CAN
≻CHN≻DNK≻NOR

Our method based on Algorithm 2 (q� 3) 0.3184 0.2909 0.2840 0.1779 0.2310 0.2975 USA≻NOR≻CAN
≻RUS≻CHN≻DNK
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fuzzy cognitive information in MAGDM procedures. Af-
terward, some other related notions, such as operational
rules, comparison methods, distance measures, and aggre-
gation operators, have been proposed and discussed. Based
on these new concepts, we introduced two methods to re-
solve fuzzy MAGDM problems. Te methods include the
one based on aggregation operator and the one based on
TOPSIS method. Last but not least, we conducted numerical
experiments to demonstrate the validity and advantages of
our proposed methods.

In future works, we plan to continue our studies from
two aspects. First, we shall investigate more applications of
our methods in more down-to-earth MAGDM problems,
such as supplier selection [53, 54], investment projection
selection [55, 56], best airline selection [57, 58], low-carbon
supplier selection [59, 60], and healthcare waste treatment
technology selection [61, 62]. Second, we shall study more
aggregation operators for fusing q-rung interval-valued
probabilistic dual hesitant fuzzy information. In the present
article, we have only introduced the simple weighted average
and geometric operators for q-RIVPDHFEs. In future
works, we will propose new operators for q-RIVPDHFEs by
extending the power Bonferroni mean [63], power Heronian
mean [64], power Maclaurin symmetric mean [65], power
Muirhead mean [66], etc., into q-RIVPDHFSs. Finally, we
did not consider decision makers’ consensus in this study.
As a matter of fact, decision makers’ consensus is very
important in decision-making process. A high consensus
degree can guarantee the quality of the fnal decision results.
Terefore, consensus-based decision-making methods have
become a promising research topic [67–70]. In the future, we
will consider novel MAGDM methods based on consensus
under q-RIVPDHFSs.
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