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Internet of Things (IoT) has been used in smart cities, agriculture, weather forecasting, smart grids, and waste management. The IoT
has huge potential but needs refinement. The paper focuses on lowering IoT sensor power consumption to improve network life. This
work selects the best IoT cluster header (CH) to maximize energy consumption. The suggested technique uses particle swarm
optimization (PSO) with artificial neural networks (ANNs). The optimal CH in an IoT network cluster was identified by taking into
account the number of active nodes, the load, the residual energy, and the cost function. This work compares the suggested method
with artificial bee colony, genetic, and adaptive gravity search algorithms. The hybrid solution beats conventional methods.

1. Introduction

A smart city is an urban environment that uses information
and communication technology (ICT) and other closely
related technologies to improve the efficiency of everyday
urban activities and the quality of service (QoS) provided to
urban residents [1, 2]. Continued population growth and
urbanization are driving the need for creative approaches to
urban management with minimal impact on the environ-
ment, public life, and governance. The process of integrating
intelligent urbanization has been facilitated through the use of
ICT in city operations. With the proliferation of smart devices
and recent advances, the idea of smart cities has gained a lot of
attention. Internet of Things (IoT) has been used in smart
cities, agriculture, weather forecasting, smart grids, and waste
management etc [3, 4]. As a result of the Internet of Things
(IoT), traditional networks have emerged, connecting mil-
lions of connected devices. Further, realization of this IoT
concept in smart cities requires continuous technological
advances in ubiquitous computing, wireless sensor networks
(WSNs), machine-to-machine communication, and design of
cross-industry applications.

The de facto policy of the IoT is to enable unified commu-
nications through uniquely identifiable smart devices with

minimal human intervention. The IoT paradigm has attracted
significant interest from awide variety of interest groups, includ-
ing smart city, smart home, smart health, and many others.

Getting everything from the cloud is getting more com-
plicated. Cloud computing provides a variety of resources,
such as storage and processing, that you can access when you
need them. Despite its many advantages, there are also some
drawbacks that prevent full adoption of the cloud and reali-
zation of its various advantages. The problems we faced with
cloud infrastructure adaptability were high latency, high
power consumption, and uncertain geographic location.

To address these issues, the idea of fog computing was
developed to improve and ensure real-time responsiveness
while minimizing cloud load [5]. End users and cloud data
centers are usually separated by a layer of fog. Edge detection,
location detection, geographical edge adaptation, wireless
network access, and power reduction are the main functions
of this core. In most cases, it is not practical to exceed the
amount of power consumed by a cloud data center. Some
energy consumption can be minimized, but the fog layer uses
small self-powered data centers to make minor adjustments
to minimize power consumption. Fog computing can help
manage smart devices by adding data to the network’s edge.
Fog is context aware, low latency, and mobile. As IoT devices
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proliferate, cloud utilization increases. Due to fog’s popular-
ity, researchers monitor energy use. Figure 1 shows the
detailed layout of the access point and fog gateway, and
section Abbreviations describe the abbreviation used in this
research work. Using context-aware computing at the 45-fog
layer has been proven successful in processing data streams
from various IoT applications [6–8].

The fog layer computings are intended to offload tasks
from the cloud layer and increase service response time
[9, 10]. As sustainability is one of the most pressing issues
in smart infrastructure today, energy conservation at all levels
of smart city IoT infrastructure is an important research
work [11, 12].

Numerous research projects have been conducted on the
topic of energy-saving strategies that can be found in the
device or sensor layer [13–15]. Duty cycle mechanisms
play an important role in reducing energy consumption at
both system and network levels in IoT environments
[16–19]. Dhall and Agrawal [16] introduced an improved
duty cycling algorithm that uses effective path selection
methods based on residual energy parameters to minimize
power consumption and maximize network reliability and
lifetime. Amirtharaj et al. [17] proposed an algorithm to
improve the duty cycle efficiency of Linux-based IoT devices
by finding and deactivating units that take up time and aren’t
necessary that are initialized in user space. It presents an
energy-efficient context-aware traffic scheduling method
that first defines IoT applications based on the diverse traffic
requirements they have and then assigns those apps to vari-
ous weighted quality classes [18]. Kozłowski and Sosnowski
[19] proposed various power consumption models for the
various duty cycle schemes and the maximum power level
consumed by the additional wake-up system was determined
to determine commonly used duty cycles in typical IoT net-
works that made it a fair alternative to the cycle method. IoT
andWSN environments typically consist of large numbers of

low-cost, battery-powered devices with limited functionality.
Because IoT devices are frequently installed in hospitable
and unmanned environments, it is impractical to change
their batteries. Therefore, the most critical aspect in the pro-
cess of creating an effective IoT or WSN is the conservation
of power [7, 8, 20–22].

Early WSN network research focused on smart grids and
environmental and agricultural monitoring, utilizing low-
rate, delay-tolerant techniques. Smart cities, industrial auto-
mation, healthcare, transit automation, and multimedia use
IoT technologies [7, 8]. These are classified as delay-sensitive
applications and must be considered for timing constraints.
Therefore, the second most important issue in IoT is node-
to-node and end-to-end latency. Furthermore, it is difficult
to ensure a given delay [20–22]. In different areas of IoT
and WSN, researchers have proposed different energy har-
vesting approaches [21, 23–25] to meet the demand of dif-
ferent energy sources. The models proposed by Barath et al.
[26], Zhan and Lai [27], and Sendra Compte et al. [28] are
useful for predicting potential energy demand based on
historical evidence. On the other hand, if the harvest is
uncontrolled or unpredictable, this algorithm will not work
well. Various models have been proposed to overcome this
limitation by Beheshtiha et al. [29], Briante et al. [30], Oliveira
and Castro [31], and Oliveira et al. [32], with the aim of
balancing power supplies and minimizing dispersion at dif-
ferent sensor nodes under different environmental condi-
tions. Various update algorithms are used. A number of
references [33, 34] often deal with energy minimization in
cloud layers.

Fog devices are commonly employed in IoT contexts,
and study shows fog node middleware has more computa-
tional capacity than end devices but less than cloud centers.
Ma et al. [35] proposed this IoT-based fog computing model
that used genetic algorithms to reduce faulty nodes and
power consumption. IoT networks are efficiently handled
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FIGURE 1: A complex smart city scenario with ICT infrastructure conceptual layers.
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using fog nodes, edge nodes, or a combination of cloud and
fog by Skarlat et al. [36], Souza et al. [37], Minh et al. [38],
Naas et al. [39], Taneja and Davy [40], and Lera et al. [41].

Various service deployment methods have been pro-
posed for different platforms to reduce power consumption.
Similarly, there are many publications where authors used
different optimization strategies to reduce energy consump-
tion at fog and edge levels. In contrast, advances in fog layer
research in smart city research have only recently been rec-
ognized for their relevance and research potential [42–44].
Examples of such applications of scenarios include large-
scale video summarization for smart cities [42], urban traffic
monitoring [43], and automatic adjustment of surveillance
cameras for smart cities [44]. However, little research has
focused on the energy savings of fog layers. To further
enhance the effectiveness of performance mediation, some
authors apply different optimization strategies to optimize
performance mediation at different levels [45–49]. An opti-
mized model based on genetic algorithms, proposed in a
study by Skarlat et al. [45], considers application and
resource QoS heterogeneity to install this IoT application
using fog resources. Zubair et al. [46] and Sun et al. [47]
used a multiobjective optimization technique to solve the
placement of services on different platforms. Guerrero
et al. [48] gave a comparative overview of different optimi-
zation techniques. Kaur and Sood [49] presented forecasting
and predictive models that solve work scheduling problems
using artificial neural networks and genetic algorithms.

Traffic, load, and temperature make IoT increasingly
energy intensive. Therefore, a high-energy-efficiency IoT
architecture must be proposed to ensure network stability
and lifespan. For this purpose, this study uses a hybrid parti-
cle swarm optimization-neural network (PSO-NN) to find
the optimal cluster header (CH) in specific IoT networks.
This hybrid strategy begins with a search for the most signif-
icant regions that have been uncovered by the PSO algo-
rithm. Next, the NN is used to increase utilization of the
found regions.

Listed below are some of the primary contributions made
by the hybrid model that was suggested.

(1) Select the optimal CH using the PSO hybrid model.
(2) Utilize the PSO-NN model in order to improve the

performance metrics of WSN sensors, namely those
that have an impact on the amount of energy con-
sumed, such as load, temperature, delay, and distance
between BT and CH.

The rest is structured like this: The most recent research
on how to optimize the power consumption of WSN sensors
in IoT systems is discussed in detail in Section 2. Section 3
gives architectural context. Section 4 outlines the design pro-
posal. Section 5 analyzes experimental data. Section 6 dis-
cusses conclusions and future study.

2. Related Works

IoT networks have been expanded in several ways. This sec-
tion examines renowned works. Neuro-fuzzy rule clustering

improves end-to-end efficiency and packet delivery rate. This
technique helps forward packets effectively and extends net-
work life [11]. Calculating CH’s leftover energy and distance
to the sink node offer network efficiency. Simulations suggest
that neuro-fuzzy reduces energy consumption and increases
network longevity. The creators of this work believe that all
network nodes can be trusted; however, this isn’t necessar-
ily true.

A methodology for choosing the best cluster header (CH)
is also suggested. Short battery life, memory, and communi-
cation distances characterize sensor nodes. This communi-
cation protocol conveyed the authors’ data to IoT BT [12].
Two of the best CHs within the same cluster are selected
during the CH selection process to extend the network life-
time. The method of choosing dual CH is data entropy
knowledge fusion. Entropy data are used for classification
and fusion. Dinesh Reddy et al. [13] combined moth flame
optimization (MFO) and ant lion optimization (ALO) to
choose the ideal CH in WSN-IoT networks. This methodol-
ogy selects the best CH by choosing the node nearest to the
BT, transmits data quickly, saves node power, and reduces
IoT device load and temperature. ABC, AGSA, PSO, GA,
ALO, GSA, and MFO were compared to the hybrid model.
Modern hybrid models store more WSN-IoT resources. It
constructs an energy-aware CH selection model for WSN-
IoT networks by using SAWOA as its primary tool. The
delay, the amount of time, the power, the load, and the
temperature were used to determine CH performance [14].

The proposed model is compared to a number of algo-
rithms based on WOA, including CH, GSA, ABC, GA,
AGSA, and PSO selection models. The simulation model’s
results show that SAWOA is effective in selecting a CH in
order to extend network life. Beloglazov and Buyya [15] used
a novel MOFGSA algorithm to choose the best CH. The
energy of each node in the IoT initially supplies the packets
in a significant amount for efficient routing. Fractional the-
ory and GSA are combined in this FGSA algorithm.

The effectiveness of the algorithm is evaluated alongside
that of other algorithms already in existence, such as ABC,
GSA, multiparticle swarm cooperative algorithm, and so on
to ensure a longer IoT node lifespan. Dhall and Agrawal [16]
proposed this HEEQA algorithm to achieve a balance
between system energies. Then, tune the message authenti-
cation code layer parameters to reduce system power con-
sumption. With 190 of these IoT computers, achieving QoS
is a big challenge, and maintaining power balance is critical
to extending sensor life. Combining quantum PSO with
modern uncontrolled gene sorting methods allows for the
accomplishment of this goal. The HEEQA algorithm opti-
mizes power consumption and improves network durability,
throughput, and coverage according to simulation results.
Amirtharaj et al. [17] proposed unequal clustering of time
delay routing techniques to overcome WSN power con-
sumption and data transmission problems. It’s compared
to others. This approach enhances network efficiency and
balances energy usage, increasing network life. The proposed
technique is ideal for low-latency IoT applications.
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A Hy-IoT algorithm is proposed, which extends the per-
formance of clustering to encompass actual cyber-IoT infra-
structures [20]. To take advantage of the CH region,
weightable election probabilities are updated based on resid-
ual strength, distance, and observed heterogeneity conditions
by looking at different dynamic steps. Compared to LEACH,
SEP, and Z-SEP, simulations show that Hy-IoT extends net-
work life and improves performance. Vigorito et al. [21]
proposed a new OGMAD approach that modifies the active
period superframe, so that it corresponds to the data that
were requested. This approach improves link utilization
while guaranteeing more time slot nodes. Hu et al. [22] pro-
posed a context knowledge-based cryptographic protocol for
IoT networks that select the optimal cryptographic protocol
based on data sensitivity and system requirements.

This approach reduced execution time by 68% while sav-
ing 79% on memory usage and 56% on battery usage. Hsu
et al. [23] proposed an IoT- and environment-based robot
architecture that allows the robot to communicate with any
computer on this IoT network. Jurdak et al. [24] used the
sensor routing protocol in many applications and also pre-
sented a neuro-fuzzy approach for identifying intruders in
low-power WSN network. Lee and Chung [25] provided a
system to detect and monitor cloud assaults that can be
applied to IoT networks. Barath et al. [26] and Zhan and
Lai [27] offered a unique IoT-based mechanism to improve
home surveillance utilizing smartphone apps and online
apps. This strategy protects consumers from home break-
ins. From the above, we may conclude that despite the
many CH selection models, they all spend a lot of energy.
We employ a hybrid PSO-NN algorithm to optimize power
consumption by selecting the optimal CH.

3. IoT-Based Adaptive Cluster Head Selection

An IoT network is composed of numerous sensor nodes, each
of which has limitedmemory and requires a significant amount
of electricity [24, 28–30]. These nodes are constantly producing
data, so the battery is used more often. High-energy consump-
tion shortens network life. One of the energy optimization
strategies is choosing the optimal CH. Clustering groups sensor
nodes and assigns a leader depending on criteria. A cluster is
called a group and a CH is called a group leader.

In the present paper, it considers C nodes in each cluster
denoted by Cj, where J= 1, 2.., N. Y nodes in each cluster are
presented by Yj, where J= 1, 2,…, M. TCH stands for total
number of CHs. Only the TCH that has been selected is able
to interact with the IoT base station. Choosing the best CH
for an IoT-based WSN that would maximize uptime has
increased challenging.

3.1. Mathematical Formulation of Fitness Function. Tradi-
tional WSNs like distance, delay, and power prefer CH.
Load and temperature should be considered when combin-
ing WSN and IoT. CH was chosen to improve network
capacity and endurance by supporting high power nodes
with low load, latency, distance, and temperature. Maximiz-
ing the fitness function improves network stability and effi-
ciency, which is given in Equation (1):

FFuni¼ wt0 ∗ FFunTemp þ wt1 ∗ FFunLoad þ wt2 ∗ FFunEner
þwt4 ∗ 1 − FFunDistð Þ þ wt5 ∗ 1 − FFunDelað Þ;

ð1Þ

where the weighted parameters are wt0, wt1, wt3, wt4, and
w5 and the fitness function (FFuni) is the sum of those
values. The following subsections illustrate the mathemati-
cally modeled calculation of the four parameters outlined
during this experiment.

3.2. Energy Computation. In IoT systems, the energy that is
absorbed along a single path will be split into two distinct
halves at some point. The first component is the total
amount of power amplifier energy, denoted by Eam; the other
component is the total amount of energy used by the other
circuit blocks, denoted by Ecb. The following is the formula
that is used to get the total amount of energy that is con-
sumed by each link:

Ec ¼ Eam þ Ecb…: ð2Þ

It is not possible to replenish the energy contained in IoT
nodes. The initial amount of energy that the IoT node has is
denoted by Ec= 0. Every node that is part of a cluster is
responsible for sending the packets to the CH. Throughout
transmittal of packets from xth-specific node to yth CH
as nodes lose energy. IoT nodes have receiver and transmitter
hardware. A node’s energy lost as a transmitter and receiver
when it sends or receives data. The transmitter’s energy dis-
sipation may be from power electronics or radiophysics,
while the receiver’s is from radiophysics. Equation (3)
defines the node as transferring X bytes of data to CH.
Equation (5) demonstrates energy dissipation when CH
receives X bytes from a typical node.

The resources of IoT nodes are unable to be replenished.
The initial energy of the IoT node is denoted by the value
Ec= 0. Every node that is part of the cluster is responsible for
sending the packet to the CH. Each CH and node lose energy
during packet transmission from the xth node to the yth CH.
Each IoT node is equipped with receiver and transmitter
hardware. Energy is lost as a transmitter and receiver when
a node transmits or receives specific data. Energy dissipation
in the transmitters could be due to power electronic
equipment.

There are two distinct methods for releasing stored
energy. The first scenario is depicted in Equation (3) and
occurs when the node is being transferred X bytes of data
to the CH. Equation (5) describes the energy dissipation that
occurs when the CH gets the information of X bytes from the
conventional node.

Ec Dista0N0ð Þ ¼ Eee ∗ xÞ þ Efes ∗ x
�j jDista0N0 − Distn0CluH j j;

ð3Þ
where EcðDista0N0Þ is the energy dissipation of the a0th con-
ventional node, Eee represents electronic energy, and Efes
represents free energy house.
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and,

Eee ¼ Ete þ Edae; ð4Þ

where Ete is being transmitter of energy and Edae is informa-
tion aggregation energy.

Ee DistnCluH
� �¼ Eee ∗x: ð5Þ

Following the data send and receive operations, the
energy levels in all of the conventional nodes and the CH
should be altered. Equation (6) gives the modified energy
available inside the traditional node to the CH. Equation (7)
gives the energy modifications in CH after receiving the
information.

Information is sent to CH through the conventional node
until the energy of the node becomes nonzero. A dead node
has its energy level zero and Equation (8) presents the fitness
function related to energy. If the node has high energy, CH
should be chosen.

EEþ1 Dista0N0ð Þ ¼ EE Dista0N0ð Þ − E Dista0N0ð Þ: ð6Þ

Equation (7) defines the receiving data from the typical
node, and it provides the changed energy that is readily
available in CH.

EEþ1 Distn0CluH
� �¼ EE Distn0CluH

� �
− E Distn0CluH

� �
: ð7Þ

The regular node will continue to transfer the data to the
CH as long as the energy level of the node is greater than
zero. A node is considered to be “dead” whenever its energy
level reaches 0, at which point it is removed from the net-
work. Equation (8) is used to represent the fitness function
for energy.

FitFunEner ¼
1
Y

∑
Y

i¼1
Ec Dista0N0ð Þ

� �
þ 1
TCluH

∑
CluH

n¼1
Ee Distn0CluH
� �� �

:

ð8Þ

To be selected as CH, the node’s energy must be high.

3.3. Compute Distance. The fitness function of the space
between detector nodes and the IoT Bstn is modeled mathe-
matically in Equation (9), which explains how it works. In
order to pick the CH that is the least difficult, the distance
that separates the nodes from the IoT Bstn should be the
shortest possible.

FitFunDist ¼ ∑
CluH

n¼1

Dista0N0 − Distn0CluH
�� ���� ��þ Distn0CluH − DistBStn

�� ���� ��
P ∗Qð Þ ;

ð9Þ

where Dista0N0 −Distn0CluH is the difference between the a0th
traditional node and the n0th, Distn0CluH −DistBStn is distance

between the nth CH and the IoT Bstn, and P and Q (in
denominator) are the dimension ranges (in meters).

3.4. Delay Computation. In order to select the most straight-
forward CH, the delay ought to be as brief as is practicable. It
is required that the delay can be between 0 and 1ms. Because
the length of the delay is proportional to the number of
nodes in the cluster, you should eliminate nodes from the
cluster in order to shorten the length of the delay.
Equation (10) provides a mathematical description of the
fitness function for delay transmission between devices con-
nected to the IoT and CH. The dividend is a representation
of the majority of the information that was transferred from
CH to Bstn, while the divisors represent the individual
nodes.

FitFunDela ¼
Max∑TCluH

n¼1 CluHn0

Z
: ð10Þ

4. PSO-Based Parameter Optimization Model

Kennedy and Eberhart created the PSO in 1995, and it was
influenced by the actions of animal groups such as fish,
swarms, and bird [23].

The PSO is an iterative optimization approach that is
easy to apply, scalable, resilient, and fast to converge. It
uses simple mathematical operators and is memory and per-
formance efficient [50]. The PSO method is composed of a
horde of particles, each of which stands for a different feasi-
ble approach to resolving the issue at hand.

The location, velocity, and fitness value of each particle
are all determined by an optimization function. The value of
the particle’s velocity gives information about both the direc-
tion and the distance of its movement. The procedure
described in the proposed work begins with the initialization
of a group of random particles for L, N, and E. After that, it
updates generations in order to search for the best possible
answer. Each particle iteration uses the two “best” values.
First is the best, thus, far. The particle swarm optimizer
tracks each particle’s best value so far. gbest is a global best
value (the global best position). Each particle updates its
location and velocity by monitoring pbest and gbest and
the velocity and location of the particles are modified using
the below mentioned equations:

Vi;j t þ 1ð Þ¼ w ∗Vi;j tð Þ þ c1 ∗ r1 ∗ plBi j tð Þ − xi;j tð Þ
� �

þc2 ∗ r2 ∗ pgBj tð Þ − xi;j tð ÞÞ;
ð11Þ

xi;j t þ 1ð Þ ¼ xi;j tð Þ þ vi;j t þ 1ð Þ; ð12Þ

where discovery and exploitation abilities of PSOs are impar-
tial by the inertia weight ω. Two distinct random numbers,
viz., r1 and r2 are (0, 1), contributing to the algorithm’s
existence. The acceleration coefficients (c1, c2) force each
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particles in the most favorable direction. t denotes the latest
version.

W ∗ vi; jðtÞ: explores PSO’s new territory,
c1 ∗ r1 ∗ ðplBi j ðtÞ− xi; jðtÞÞ represents one’s own thoughts, and

c2 ∗ r2 ∗ pgBj ðtÞ− xi; jðtÞÞ represents particle cooperation.
Algorithm 1 describes our suggested PSO-based param-

eter selection technique for feedforward NNs, which we have
developed and the same returns a configuration that is near
optimal. The algorithm is described in terms of two use case
scenarios, which are referred to as smart city services and
proxy IoT services, respectively. Section 5 will go into further
detail on these topics.

5. Results and Discussion

CH selection in IoTmay be simulated withMATLABR2015a.
The Xively IoT platform supplies the data that are used in this
simulation. In the course of this research, a number of perfor-
mance indicators, including energy, load, temperature, the
number of active nodes, and cost functions, were taken into
consideration in order to determine the best CH.

The simulation is based on a field that is 100× 100m in
size. The IoT big topic is expected to be at the forefront of the
study sector. In the following part of this section, a compari-
son is made between the results obtained by the suggested
model and those obtained by previously developed algo-
rithms such as SVM, GSA, and BPSO algorithms.

5.1. Performance Evaluation: The Number of Alive Nodes.
Figure 2 shows how the number of active network nodes is
used to evaluate and compare the proposed model to existing
models. All nodes are valid during the first 1,000 iterations of

the simulation, as shown in the following figure. For all
models, the number of active nodes steadily decreased after
1,000 iterations. The current model has no live nodes after
1,700 iterations. Even after 1,700 iterations, the model that
was proposed still contained approximately 20 nodes that
were active. The suggested model keeps more nodes alive
before the final iteration, extending network longevity.

5.2. Performance Evaluation: The Load Metric. The results of
the suggested model with CHs functioning as a load may be
shown in Figure 3. If the load is distributed uniformly over all
of the CHs, then the efficiency of the IoT network will be at
its highest possible level. According to this figure, the load is
distributed very evenly over all CHs using the methodology
that was provided. In addition to this, the proposed model
optimizes the load in each iteration of the process. Even after
1,500 iterations, the CH load is still significantly lower than
the version that is currently in use.

The IoT network consumes less energy as a result of this,
which increases the network’s efficiency.
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FIGURE 2: Evaluation of performance established on the total num-
ber of functioning nodes.
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FIGURE 3: Performance evaluation established on load metric. The
temperature produced by the sensor nodes will be lower when the
load on the CH is lower.

Initialization of xi, vi, c1, c2, lb, ub
While Icurrent<= Imax do

1. Map xi into W and b

2. Evaluate Equations 11 and 12. This phase is called train-
ing of FFNN

3: Fitness (i.e., FFNN error or MSE) can be obtained using
Equation 1.

if pBestScore > Fitness then

| pBestScore= Fitness and pBestPosition= x.

Else

End

If gBestScore> fitness then

| gBestScore= Fitness and gBestPosition= x.

Else

End

4: Now calculate w by using Equation 11.

5: Update velocity vijðtþ 1Þ and position xijðtþ 1Þ of
particles according to Equations 11 and 12, respectively.

End

Final: PSO’s best particle positions (pBest) are the (W and
b) for FFNN.

ALGORITHM 1: Pseudocode for FFNN training using PSO.
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5.3. Performance Evaluation: The Energy Metric. The perfor-
mance of the suggested energy-based model is shown in
Figure 4 to the performance of other models that already
exist. At the beginning, each model assumes that the energy
of the network is 0.5 J. The energy required to complete a
task decreases proportionately with the number of iterations
performed. In comparison to the model that is currently
being used, the proposed model consistently results in a
greater amount of energy being present in the network after
each iteration. This helps ensure that the network will con-
tinue to function effectively in the years to come.

5.4. Performance Evaluation: The Cost Function. Figure 5
depicts the cost function-based output of the proposed
model. The convergence of an algorithm is determined by
the cost function.

As the number of iterations in an algorithm rises, the
convergence of the method should generally get better.

The proposed model outperforms the current model in
terms of convergence, as can be seen in the graph. As shown
in Figures 2–5, the proposed model outperforms the current
model for all the measures considered. Existing models make
use of “blind operators” for the sake of manipulation, which

are independent of the fitness function. Simulated annealing,
which plays the role of an operator in the PSO-NN process,
makes it feasible to guarantee that the blind operator is
replaced with a local search that uses the solution as the
initial state. This makes it possible to guarantee that the blind
operator is replaced. After completing the primary objective,
the enhanced solution is implemented in place of the initial
one. The utilization of the PSO algorithm is consequently
improved as a consequence of the process of simulated
annealing. As a consequence of this, the simulated annealing
algorithm contributes to an improvement in the effectiveness
of PSO in locating the best solution. The end conclusion is
that the suggested model beats existing approaches when it
comes to optimizing the effectiveness of IoT networks.

5.5. Comparison with the State-of-the Art Approaches. Here
are some comparisons of hybrid PSO with other approaches
in terms of IoT-based smart cities:

(1) Genetic algorithms: Both PSO and genetic algorithms
are metaheuristic optimization algorithms that can be
used to optimize IoT-based smart cities. However,
hybrid PSO combines PSO with genetic algorithms
to improve the performance of the algorithm. Hybrid
PSO can be more efficient than genetic algorithms
alone because it uses PSO to explore the search space
and genetic algorithms to exploit the best solutions.

(2) Ant colony optimization: It is another optimization
technique that can be used to optimize IoT-based smart
cities. Like genetic algorithms, hybrid PSO combines
PSO with ant colony optimization to improve the per-
formance of the algorithm. Hybrid PSO can be more
efficient than ant colony optimization alone because it
uses PSO to explore the search space and ant colony
optimization to exploit the best solutions.

(3) Convex optimization: It is a mathematical optimiza-
tion technique that can be used to optimize IoT-based
smart cities. However, convex optimization requires
that the objective function and the constraints be con-
vex, which may not always be the case in real-world
scenarios. Hybrid PSO does not have this limitation
and can be used to optimize a wide range of objective
functions and constraints.

(4) Reinforcement learning: It is a machine learning tech-
nique that can be used to optimize IoT-based smart
cities. However, reinforcement learning requires a large
amount of data to train the model, which may not
always be available in real-world scenarios. Hybrid
PSO does not require training data and can be used
to optimize IoT-based smart cities in real time.

In conclusion, hybrid PSO can be a powerful optimiza-
tion technique for IoT-based smart cities. It combines the
strengths of PSO with other optimization techniques to
improve the performance of the algorithm and can be used
to optimize a wide range of tasks in real time. However, the
choice of optimization technique ultimately depends on the
specific requirements of the problem at hand.
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6. Conclusion and Future Direction

In spite of the fact that the IoT has enormous promise in a
large number of different applications in the modern world,
there are a lot of hurdles to jump over first. To make the IoT
more robust, there are a number of difficulties that need to be
resolved, including those pertaining to data access, hardware
compatibility, and optimization of power consumption. For
the purpose of this investigation, we settled on concentrating
on the challenge of energy optimization. In order to solve this
problem, this research paper employs a hybrid metaheuristic
algorithm known as PSO-NN to optimize the sensor power
consumption of this IoT-based WSN. For the purpose of
modeling this IoT network, this research makes use of the
Xively IoT platform. There have been a total of 2,000 itera-
tions of the IoT. In this piece of work, numerous performance
parameters, like cost function, residual energy, number of
active nodes, temperature, and load, are used to determine
the best CH for the operation of IoT network 370. It then
compares the proposed method with various existing meth-
ods. The results of the experiments demonstrate that the pro-
posed method is superior to the method that is currently
being used. In the future, determining the best CH may also
involve taking into account a number of other performance
parameters, including link lifetime, node density, and latency.
When we utilize this strategy in real-time applications, such as
those employed in a variety of sensors, we are also able to test
the scalability of the work that we have planned.

Future research work will address the power optimiza-
tion for each individual clustering IoT networks, and related
security issues.
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CH: Cluster head
PSO: Particle swarm optimization
ANN: Artificial neural network
QoS: Quality of service
WSN: Wireless sensor network
BT: Base station
PSO-NN: Particle swarm optimization-neural network.
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