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In this work, the double Sumudu–Elzaki transform was used for solving fractional-partial differential equations (FPDEs) with
starting and boundary conditions. We will use the fractional-order derivative (Caputo’s derivatives) idea. Theorems and facts that
are crucial to the newly introduced transform are also discussed and illustrated. By using this newly designed integral transform
and its properties, FPDEs can be reduced into algebraic equations. This strategy has the precise answer since it does not need any
discrimination, transformation, or limited assumptions. Five further instances were given to support our conclusions. The results
showed that the recommended strategy is superb, reliable, and efficient. It is also a simple method for solving specific problems in a
number of applied scientific and technical fields.

1. Introduction

Integral transformations are seen as themost efficient method
of resolving fractional-partial differential equations (FPDEs).
FPDEs can mathematically describe a wide variety of phe-
nomena in mathematical physics and in many other scientific
fields, making them valuable [1–5]. With integral transforma-
tions [6–9], these equations can also be modified to identify
precise FPDE solutions. The direct power of transformation
techniques has been the inspiration for ongoing research to
understand and improve them. Many integral transforms
were developed and implemented to solve FPDEs. These
transformations allow us to get the exact solutions of the target
equationswithout having to linearize or discretize. They are used
to convert FPDEs to ordinary equations when using only one
transformation and to algebraic equations when using a double
integral transformation. Some examples of these transforma-
tions are: the Sumudu transform [10], the natural transform
[11], the Elzaki transform [12], the novel transform [13], the
Aboodh transform [14], the double Sumudu transform [15, 16],
the double Elzaki transform [17], the double Shehu transform
[18], and the double Laplace–Sumudu transform [19, 20].

Diverse partial differential equations have recently been
effectively solved using the double Sumudu–Elzaki transform
(DSET), a novel double integral transform technique [21].
Unfortunately, unlike other integral transforms, this trans-
formation is unable to handle complex mathematical models
or nonlinear problems. In order to handle a variety of non-
linear differential equations, some researchers have com-
bined these integral transforms with additional techniques,
such as the homotopy perturbation method, the variational
iteration method, the differential transform method, and the
Adomian decomposition method [22, 23].

The primary goal of this research is to broaden the appli-
cation of DSET by using it to solve FPDEs. We show the
effectiveness of the proposed method by applying DSET to a
number of interesting applications to get the exact solutions.

The following subjects will be covered in this essay’s
succeeding sections. We provide some basic definitions and
theorems of CFDs in Section 2. Section 3 presents the funda-
mental DSET definitions, features, and theorems. Section 4
describes the model and process for using the DSET to pro-
vide accurate analytical answers to the specified FPDEs. Five
exemplary scenarios are utilized in Section 5 to illustrate the

Hindawi
Mathematical Problems in Engineering
Volume 2023, Article ID 9971083, 12 pages
https://doi.org/10.1155/2023/9971083

https://orcid.org/0000-0003-1324-0823
https://orcid.org/0000-0002-6946-9267
https://orcid.org/0000-0002-5393-3555
mailto:shamsalden20@hotmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9971083


recommended approach’s liability, convergence, and efficacy.
In Section 6, we explain the numerical results and show
how the DSET is accurate and efficient. Section 7 also has
conclusions.

2. Preliminaries

In this section, we present basic definitions and notions that
will be used in the present work.

Definition 1 (see [24]). Suppose that ξðu; tÞ is a continuous
function. Then, the RLPFIs (Riemann–Liouville partial fractional
integrals) are given by:

tI βξ u; tð Þ ¼ 1
Γ βð Þ

Z
t

0
t − τð Þβ−1ξ u; τð Þdτ ¼ 1

Γ βð Þ t
β−1 × ξ u; tð Þ;   

ð1Þ

uI αξ u; tð Þ ¼ 1
Γ αð Þ

Z
u

0
u − ςð Þα−1ξ ς; tð Þdς¼ 1

Γ αð Þ u
α−1 × ξ u; tð Þ:

ð2Þ

Definition 2. The CPFDs (Caputo partial fractional deriva-
tives) of order ς>0; and τ>0; of ξðu; tÞ, are given by:

∂βξ u; tð Þ
∂tβ

¼ 1
Γ m − βð Þ

Z
t

0
t − τð Þm−β−1 ∂

mξ u; τð Þ
∂τm

dτ;   

m − 1<β<m;m 2 N;

ð3Þ
∂αξ u; tð Þ

∂uα
¼ 1
Γ n − αð Þ

Z
u

0
u − ςð Þn−α−1 ∂

nξ ς; tð Þ
∂ςn

dς;   

n − 1<α<n; n 2 N:

ð4Þ

Definition 3. Assume that the function Eβ; αðuÞ denoted to
Mittag–Leffler [25], then

Eβ;α uð Þ ¼ ∑
1

k¼0

uk

Γ βkþ αð Þ ;    u;2C;ℜe βð Þ>0;ℜe αð Þ>0:

ð5Þ

3. Double Sumudu–Elzaki Transform (DSET)

In this section, a new integral transform called the DSET is
introduced that combines the Sumudu transform and the
Elzaki transform. We present the fundamental DSET defini-
tions, features, and theorems.

Definition 4. Let ξðu; tÞ is a real-valued function of two vari-
ables u; and v, then

(i) The SST (single Sumudu transform) of ξðu; tÞ w.r.t u
denoted by Su½ξðu; tÞ :w� ¼Ψðw; tÞ and defined as
follows:

Su ξ u; tð Þ :w½ � ¼ Ψ w; tð Þ ¼ 1
w

Z 1

0
e−

u
wξ u; tð Þdu; u>0:

ð6Þ
(ii) The SET (single Elzaki transform) of ξðu; tÞ w.r.t t,

denoted by Et½ξðu; tÞ : q� ¼Ψ ðu; qÞ; and defined as
follows:

Et ξ u; tð Þ : q½ � ¼ Ψ u; qð Þ;¼q
Z 1

0
e−

t
qξ u; tð Þdt; t>0: ð7Þ

Proposition 1 (see [26]). Assume that Ψðw; tÞ; and Ωðw; tÞ
be the ST of ξðu; tÞ and ψðu; tÞ; respectively, then the ST of
the convolution theorem is given by as follows:

Su ξ × ψð Þ u; tð Þ : w; tð Þ½ � ¼ w Ψ w; tð ÞΩ w; tð Þ: ð8Þ

Proposition 2 (see [12]). Assume that Ψ ðu; qÞ; and Ωðu; qÞ
be the ET of ξðu; tÞ and ψðu; tÞ, respectively, then the ET of
the convolution theorem is given by

Et ξ × ψð Þ u; tð Þ : u; qð Þ½ � ¼ 1
q
Ψ u; qð ÞΩ u; qð Þ: ð9Þ

Lemma 1 (see [26]). Assume that α>0, and ξðu; tÞ is the
exponential order. Then, the SST of uI αξðu; tÞ is given by:

Su uIαξ u; tð Þ½ � ¼ wα
 Su ξ u; tð Þ½ �: ð10Þ

Proof. From Equation (2) above,

uI αξ u; tð Þ ¼ 1
Γ αð Þ t

α−1 × ξ u; tð Þ; ð11Þ

by applying ST to Equation (11), and using Proposition 1, we
get
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Su uI αξ u; tð Þ½ � ¼ Su
1

Γ αð Þ u
α−1 × ξ u; tð Þ

� �

¼ w
Γ αð Þ Su uα−1ð ÞSu ξ u; tð Þð Þ

¼ w
Γ αð Þ α − 1ð Þ!wα−1Su ξ u; tð Þð Þ ¼ wαSu ξ u; tð Þð Þ:

ð12Þ

□

Lemma 2 (see [27]). Assume that β>0; ξðu; tÞ is the expo-
nential order. Then, the SET of tI βξðu; tÞ is given by:

Et tI βξ u; tð Þ½ � ¼ qβ Et ξ u; tð Þ½ �: ð13Þ

Proof. From Equation (1) above,

tI βξ u; tð Þ ¼ 1
Γ βð Þ t

β−1 × ξ u; tð Þ; ð14Þ

by applying ET to Equation (11), and using Proposition 2, we
get

Et tI βξ u; tð Þ½ � ¼ Et
1

Γ βð Þ t
β−1 × ξ u; tð Þ

� �

¼ 1
qΓ βð Þ Et t

β−1ð ÞEt ξ u; tð Þð Þ

¼ 1
qΓ βð Þ β − 1ð Þ!qβþ1Et ξ u; tð Þð Þ ¼ qβEt ξ u; tð Þð Þ:

ð15Þ

□

Definition 5. The DSET) of ξðu; tÞ, w.r.t u and t denoted by
SuEt½ξðu; tÞ : ðw; qÞ� ¼Ψðw; qÞ and defined as follows:

SuEt ξ u; tð Þ : w; qð Þ½ � ¼ Ψ w; qð Þ

¼ q
w

Z 1

0

Z 1

0
e
−

u
w
þ t
q

� �
  ξ u; tð Þdu dt;

ð16Þ

provided the integral exists.
Or

SuEt ξ u; tð Þ : w; qð Þ½ � ¼ Ψ w; qð Þ
¼ q2

Z 1

0

Z 1

0
e− uþtð Þ 

  ξ wu; qtð Þdu dt: ð17Þ

Recall that: SuEt½ξðu; tÞ� ¼ EtSu½ξðu; tÞ�; when ξðu; tÞ
satisfies the necessary conditions [28].

The inverse ðSwÞ−1ðEqÞ−1½Ψðw; qÞ� ¼ ξðu; tÞ is defined
by:

Swð Þ−1 Eq
À Á

−1 Ψ w; qð Þ½ � ¼ ξ u; tð Þ
¼ 1
2πi

Z
ρþi1

ρ−i1

1
w
e
u
w

1
2πi

Z
σþi1

σ−i1
q e

t
qΨ w; qð Þ dq

� �
dw:

ð18Þ

Theorem 1 (see [21]) (existence condition). If a function ξðu;
tÞ in all finite interval ð0;UÞ and ð0;TÞ is a continuous
function as well as on an exponential scale ec1uþc2t , then DSET
of ξðu; tÞ exists for all 1

w and 1
q supplied Re½1w�>c1 and Re½1q�

>c2:

Lemma 3 (see [21]). If SuEt½ξðu; tÞ� ¼Ψ ðw; qÞ, then the

DSET of the FPDs ∂ξ
∂u ;

∂ξ
∂t ;

∂2ξ
∂u2 ; and

∂2ξ
∂t2 ; can be represented as

follows:

(I) SuEt½∂ξ∂u� ¼ 1
wΨðw; qÞ− 1

wΨð0; qÞ:
(II) SuEt½∂ξ∂t� ¼ 1

qΨ ðw; qÞ− q Ψ ðw; 0Þ:
(III) SuEt½∂

2ξ
∂u2� ¼ 1

w2 Ψ ðw; qÞ− 1
w2 Eðξð0; tÞÞ− 1

w Eðξuð0; tÞÞ:
(IV) SuEt½∂

2ξ
∂t2 � ¼ 1

q2 Ψ ðw; qÞ− Sðξðu; 0ÞÞ− q Sðξtðu; 0ÞÞ:
The results mentioned above can be generally expanded

as follows:

SuEt
∂nξ
∂un

� �
¼ w−n

 Ψ w; qð Þ − ∑
n−1

k¼0
w−nþkEt

∂k

∂uk
ξ 0; tð Þ

� �
;

ð19Þ

SuEt
∂mξ
∂tm

� �
¼ q−m Ψ w; qð Þ − ∑

m−1

j¼0
q2−mþj Su

∂j

∂tj
ξ u; 0ð Þ

� �
:

ð20Þ

Theorem 2. The DSET for some functions is given below

(I) SuEt½c : ðw; qÞ� ¼ c q2; c2R:
(II) SuEt½umtn : ðw; qÞ� ¼m!n!wmqnþ2;m; n2Zþ:
(III) SuEt½ec1uþc2t : ðw; qÞ� ¼ q2

ð1−c1wÞð1−c2qÞ :
(IV) SuEt½sinðc1uÞsinðc2tÞ : ðw; qÞ� ¼ c1w

ð1þc12w2Þ
c2q3

1þc22q2
: 

(V) SuEt½1− ec2t : ðw; qÞ� ¼ −c2q3

ð1−c2qÞ :
(VI) SuEt½ð1 − ec2tÞsinðc1uÞ : ðw; qÞ� ¼ −c1c2wq3

ð1−c2qÞð1þc12w2Þ :

Proof.Here, we will provide evidence for results (I), (III), and
(VI).
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(I) Gives us

SuEt c : w; qð Þ½ � ¼ q
w

Z 1

0

Z 1

0
e
−

u
w
þ t
q

� �
  ξ u; tð Þdu dt

¼ 1
w

Z 1

0
e−

u
w c du

� �
q
Z 1

0
e−

t
q 1ð Þdt

� �
¼ c q2:

ð21Þ

(III) Gives us

SuEt ec1uþc2t : w; qð Þ½ � ¼ q
w

Z 1

0

Z 1

0
e
−

u
w
þ t
q

� �
  ec1uþc2t

 du dt

¼ 1
w

Z 1

0
e
−

1
w
− c1

� �
u

 du

0
B@

1
CA q

Z 1

0
e
−

1
q
− c2

� �
t  

dt

0
B@

1
CA

¼ 1
1 − c1wð Þ

q2

1 − c2qð Þ ¼
q2

1 − c1wð Þ 1 − c2qð Þ :

ð22Þ

(VI) Gives us

SuEt 1 − ec2tð Þsin c1uð Þ : w; qð Þ½ �

¼ q
w

Z 1

0

Z 1

0
e
−

u
w
þ t
q

� �
   1 − ec2tð Þsin c1uð Þ du dt

¼ 1
w

Z 1

0
e−

u
w sin c1uð Þdu

� �
q
Z 1

0
e−

t
q 1 − ec2tð Þdt

� �

¼Su sin c1uð Þ :w ½ �Et 1 − ec2t : q½ � ¼ c1w
1þ c12w2ð Þ

−c2q3

1 − c2qð Þ
¼ −c1c2wq3

1þ c12w2ð Þ 1 − c2qð Þ :

ð23Þ

The same method can be used to demonstrate the
remaining results.

The DSET for some fundamental functions is summed
up in Table 1 below. □

Lemma 4 (see [20, 27]). The single ST of u−1þαEβ; αðμuβÞ;
takes the form:

Su uα−1Eβ;α μuβð ÞÂ Ã¼ wα−1 1 − μwβð Þ−1;     μj j< wβj j;
ð24Þ

and the single ET of t−1þαEβ; αðμtβÞ takes the form:

Et tα−1Eβ;α μtβð ÞÂ Ã¼ qαþ1 1 − μqβð Þ−1;     μj j< qβj j: ð25Þ

Lemma 5 (see [12, 29]) (DL-DSE duality). If the DSET of ξðu;
tÞ exist, then

SuEt ξ u; tð Þ : w; qð Þ½ � ¼ q
w
LuLt ξ u; tð Þ : 1

w
;
1
q

� �� �
; ð26Þ

where LuLt ½ξðu; tÞ : ðw; qÞ� ¼Ψ ðw; qÞ¼ R10 R10 e−ðw uþq tÞ 
  

ξðu; tÞdu dt:

Theorem 3. Assume ξðu; tÞ and ψðu; tÞ are two functions
with the DSET, then

(I) SuEt½c1ξðu; tÞþ c2ψðu; tÞ� ¼ c1SuEt½ξðu; tÞ : ðw; qÞ�
þ c2SuEt½ψðu; tÞ : ðw; qÞ�:

(II) SuEt ½e−c1u−c2tξðu; tÞ : ðw; qÞ� ¼ ð1þc2qÞ
ð1þc1wÞΨð w

1þc1w
; q
1þc2q

Þ:
(III) SuEt½ξðλ u; μ tÞ : ðw; qÞ� ¼ 1

r Ψ ðwλ ; qμÞ;   r¼ λμ:
(IV) ð−1ÞmþnSuEt½umtn ξðu; tÞ : ðw; qÞ� ¼

q
w

∂mþn

∂wm∂qn ½wq SuEt½ξðu; tÞ : ðw; qÞ ��:

Proof.

(I) The use of the DSET specification makes the proof
of (I) simple to demonstrate.

(II)

SuEt e−c1u−c2tξ u; tð Þ : w; qð Þ½ �

¼ q
w

Z 1

0

Z 1

0
e
−

u
w
þ t
q

� �
  e−c1u−c2tξ u; tð Þdu dt

¼ q
w

Z 1

0

Z 1

0
e
−

1
w
þ c1

� �
u−

1
q
þ c2

� �
t

 ξ u; tð Þdu dt

¼ q
w

Z 1

0

Z 1

0
e
−

1þ c1w
w

� �
u−

1þ c2q
q

� �
t

 ξ u; tð Þdu dt:
ð27Þ

TABLE 1: DSET for some functions.

Sr. no. ξðu; tÞ  SuEt ½ξðu; tÞ�¼Ψðw; qÞ
1 c c q2;  c2R
2 umtn, m; n2Zþ m!n!wmqnþ2

3 ec1uþc2t q2

ð1−c1wÞð1−c2qÞ
4 sinðc1uþ c2tÞ q2ðc1wþc2qÞ

ð1þc21w
2Þð1þc22q

2Þ
5 cosðc1uþ c2tÞ q2ð1−c1c2wqÞ

ð1þc21w
2Þð1þc22q

2Þ
6 sinhðc1uþ c2tÞ q2ðc1wþc2qÞ

ð1−c21w2Þð1−c22q2Þ
7 coshðc1uþ c2tÞ q2ð1þc1c2wqÞ

ð1−c21w2Þð1−c22q2Þ

8 J0ðb  
ffiffiffiffiffiffi
u t

p Þ 4q2

4þb2wq
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Put p¼ w
1þc1w

;   s¼ q
1þc2q

; then

SuEt e−c1u−c2tξ u; tð Þ : w; qð Þ½ �

¼ 1þ c2q
1þ c1w

s
p

Z 1

0

Z 1

0
e
−

u
p
þ t
s

� �
ξ u; tð Þdu dt

0
B@

1
CA

¼ 1þ c2q
1þ c1w

Ψ p; sð Þ ¼ 1þ c2q
1þ c1w

Ψ
w

1þ c1w
;

q
1þ c2q

� �
:

ð28Þ
(III) Suppose γ¼ λ u and η¼ μ t; then

SuEt ζ λ u; μ tð Þ : w; qð Þ½ �

¼ q
w

Z 1

0

Z 1

0
e
−

u
w
þ t
q

� �
 ξ λ u; μ tð Þdu dt

¼ 1
w

Z 1

0
e−

u
w q

Z 1

0
e−

t
qξ λ u; μ tð Þ dt

� �
du

¼ 1
μw

Z 1

0
e−

u
w q

Z 1

0
e−

η
qμξ λu; ηð Þ dη

� �
du

¼ 1
μw

Z 1

0
e−

u
wΨ λu;

q
μ

� �
du

¼ 1
μλ

Z 1

0

1
w
e−

γ
wλΨ γ;

q
μ

� �
dγ

¼ 1
μλ

Ψ
w
λ
;
q
μ

� �
:

ð29Þ

(IV) Here, by combining Lemma 5 with the properties of
DLT in [23], we obtain,

−1ð ÞmþnSuEt um tn ξ u; tð Þ : w; qð Þ½ �
¼ q
w

−1ð ÞmþnLuLt um tn ξ u; tð Þ : 1
w
;
1
q

� �� �

¼ q
w

∂mþn

∂wm∂qn
LuLt ξ u; tð Þ : 1

w
;
1
q

� �� �� �

¼ q
w

∂mþn

∂wm∂qn
w
q
SuEt ξ u; tð Þ : w; qð Þ ½ �

� �
:

ð30Þ

□

Theorem 4 (see [12, 29]) (convolution theorem). Assume
that ξðu; tÞ and ψðu; tÞ are two functions with the DSET,
then,

SuEt ξ × ψð Þ u; tð Þ : w; qð Þ½ � ¼ w
q
Ψ w; qð ÞΩ w; qð Þ; ð31Þ

where ðξ×ψÞðu; tÞ¼ R u0R t0ξðu− τ; t − ςÞ ψðτ; ςÞ dτ dς:

Proof. Using Lemma 5, we obtain,

SuEt ξ × ψð Þ u; tð Þ : w; qð Þ½ � ¼ q
w
LuLt ξ × ψð Þ u; tð Þ : 1

w
;
1
q

� �� �

¼ q
w

LuLt ξ u; tð Þ : 1
w
;
1
q

� �� �
LuLt ψ u; tð Þ : 1

w
;
1
q

� �� �� �

¼ q
w

w
q
SuEt ξ u; tð Þ : w; qð Þ½ �

� �
w
q
SuEt ψ u; tð Þ : w; qð Þ½ �

� �� �

¼w
q

SuEt ξ u; tð Þ : w; qð Þ½ �ð Þ SuEt ψ u; tð Þ : w; qð Þ½ �ð Þ

¼w
q
Ψ w; qð ÞΩ w; qð Þ:

ð32Þ
□

Lemma 6 (see [24]). Assume that β; α>0; and ξðu; tÞ are
exponential orders. Then, the DSET of tI βξðu; tÞ; and
uI αξðu; tÞ; respectively, are given by as follows:

SuEt tI βξ u; tð Þ½ � ¼ qβ SuEt ξ u; tð Þ½ �; ð33Þ

SuEt uI αξ u; tð Þ½ � ¼ wα
 SuEt ξ u; tð Þ½ �: ð34Þ

Lemma 7 (see [24]). Assume that β; α>0; and ξðu; tÞ are
exponential orders. Then, the DSET of tI β uI αξðu; tÞ is given by:

SuEt tI β uI αξ u; tð Þ½ � ¼ wαqβSuEt ξ u; tð Þ½ �: ð35Þ

Theorem 5. The DSET for CFDs can be expressed as follows:

(I) SuEt½∂
αξ

∂uα� ¼ Ψðw; qÞ
wα −∑n−1

k¼0w
−αþkEt ½ ∂k∂uk ξð0; tÞ�;

n− 1<α<n:
(II) SuEt½∂

βξ
∂tβ � ¼

Ψðq;wÞ
qβ

−∑m−1
j¼0 q

2−βþjSu½ ∂j∂tj ξðu; 0Þ�;
m− 1<β<m:

Proof. Here, we will provide evidence for result (I).
The CFD w.r.t u; for the function ξðu; tÞ can be rewritten

as follows [30]:

∂αξ
∂uα

¼ 1
Γ n − αð Þ u

n−α−1 ×
∂nξ u; tð Þ
∂un

; ð36Þ
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by applying DSET to Equation (36), we get

SuEt
∂αξ
∂uα

� �
¼ SuEt

1
Γ n − αð Þ u

n−α−1 ×
∂nξ u; tð Þ
∂un

� �

¼ 1
Γ n − αð Þ SuEt u

n−α−1ð ÞSuEt
∂nξ u; tð Þ
∂un

� �

¼wn−α Ψ w; qð Þ
wn − ∑

n−1

k¼0
w−nþkEt

∂k

∂uk
ξ 0; tð Þ

� �� �

¼Ψ w; qð Þ
wα − ∑

n−1

k¼0
w−αþkEt

∂k

∂uk
ξ 0; tð Þ

� �
:

ð37Þ

The samemethod can be used to demonstrate the remain-
ing result. □

4. Applications of DSET

In this section, we will apply the DSET to a family of FPDEs
and get a simple formula for the general solution.

We consider a general nonhomogeneous FPDE of the
form:

a
∂βξ u; tð Þ

∂tβ
þ b

∂αξ u; tð Þ
∂uα

þ c R ξ u; tð Þð Þ ¼ h u; tð Þ; u; t>0;

m − 1<β ≤m ;  n − 1<α ≤ n;   m; n 2 N;
ð38Þ

on the ICs:

∂jξ u; 0ð Þ
∂tj

¼ gj uð Þ;  j¼ 0; 1;…;m − 1; ð39Þ

and the BCs:

∂kξ 0; tð Þ
∂uk

¼ fk tð Þ;  k¼ 0; 1;…; n − 1; ð40Þ

where a; b; and c are constants, Rðξðu; tÞÞ is a linear opera-
tor, and hðu; tÞ is the source term.

Applying DSET to Equation (38), we get

a q−β Ψ w; qð Þ − ∑
m−1

j¼0
q2−βþj Su

∂j

∂tj
ξ u; 0ð Þ

� � !

þ b w−αΨ w; qð Þ − ∑
n−1

k¼0
w−αþkEt

∂k

∂uk
ξ 0; tð Þ

� �� �
þ c SuEt   R ξ u; tð Þð Þ½ � ¼ H w; qð Þ :

ð41Þ

Using the SST for the conditions Equation (39) and the
SET for the conditions Equation (40), to get

Su
∂jξ u; 0ð Þ

∂tj

� �
¼ Gj wð Þ;  j¼ 0; 1;…;m − 1; Et

∂kξ 0; tð Þ
∂uk

� �
¼ Fk qð Þ; k¼ 0; 1;…; n − 1:

ð42Þ

By substituting Equation (42) into Equation (41), we
have

a q−βΨ w; qð Þ − ∑
m−1

j¼0
q2−βþj Gj wð Þ

 !

þ b w−αΨ q;wð Þ − ∑
n−1

k¼0
w−αþkFk qð Þ

� �
¼H w; qð Þ − c SuEt   R ξ u; tð Þð Þ½ � :

ð43Þ

Simplifying Equation (43), we obtain

Ψ w; qð Þ ¼ a q−β þ b w−α½ �−1 a ∑
m−1

j¼0
q2−βþj Gj wð Þ

 !
þ b ∑

n−1

k¼0
w−αþk Fk qð Þ

� �
þ H w; qð Þ

−c SuEt   R ξ u; tð Þð Þ½ �

8><
>:

9>=
>;: ð44Þ

Taking ðSwÞ−1ðEqÞ−1 of Equation (44), we get

ξ u; tð Þ¼

Swð Þ−1 Eq
À Á

−1 a q−β þ b w−α½ �−1 a ∑
m−1

j¼0
q2−βþj Gj wð Þ

 !
þ b ∑

n−1

k¼0
w−αþkFk qð Þ

� �
þ H q;wð Þ

−c SuEt   R ξ u; tð Þð Þ½ �

8><
>:

9>=
>;

2
64

3
75: ð45Þ
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5. Illustrative Examples

In this section, we will construct a few different examples to
show how the DSET can be used and how effective it is.

Example 1. Consider the linear fractional heat equation:

∂βξ
∂tβ

−
∂2ξ
∂u2

¼ 0; 0<β ≤ 1; ð46Þ

with the ICs:

ξ u; 0ð Þ ¼ sin u; ð47Þ

and the BCs:

ξ 0; tð Þ ¼ 0;  ξu 0; tð Þ ¼ Eβ −tβð Þ: ð48Þ

Solution. Operating the DSET on Equation (46) and SST on
Equation (47) and the SET on Equation (48), we get

q−β Ψ w; qð Þ − q2−βSu ξ u; 0ð Þ½ �
− w−2Ψ w; qð Þ − w−2Et ξ 0; tð Þ½ � − w−1Et

∂
∂u

ξ 0; tð Þ
� �� �

¼ 0;

ð49Þ

substituting the SST and SET of initial and boundary condi-
tions

Su ξ u; 0ð Þ½ � ¼ w
1þ w2 ;  Et ξ 0; tð Þ½ � ¼ 0; Et

∂
∂u

ξ 0; tð Þ
� �

¼ q2 1þ qβð Þ−1;
ð50Þ

in Equation (49), and simplifying, we get

Ψ w; qð Þ ¼ wq2

w2 þ 1ð Þ 1þ qβð Þ ; ð51Þ

taking ðSwÞ−1ðEqÞ−1 of Equation (51), we get

ξ u; tð Þ ¼ Swð Þ−1 Eq
À Á

−1 wq2

w2 þ 1ð Þ 1þ qβð Þ
� �

¼ Eβ −tβð Þsin u:

ð52Þ

In Figure 1, we sketch the approximate solution of
Equation (52) with different values of the fractional order
β when t¼ 0:03 and u2 ð0; 6Þ.

Example 2. Consider the linear fractional Klein–Gordon
equation:

∂βξ
∂tβ

−
∂2ξ
∂u2

− ξ¼ 0; 1<β ≤ 2; ð53Þ

on the ICs:

ξ u; 0ð Þ ¼ sinuþ 1; ξt u; 0ð Þ ¼ 0; ð54Þ

and the BCs:

ξ 0; tð Þ ¼ Eβ tβð Þ;   ξu 0; tð Þ ¼ 1: ð55Þ

Solution. Operating the DSET on Equation (53) and SST on
Equation (54) and the SET on Equation (55), we get

q−β Ψ w; qð Þ − q2−βSu ξ u; 0ð Þ½ � − q3−βSu
∂
∂t
ξ u; 0ð Þ

� �

− w−2Ψ w; qð Þ − w−2Et ξ 0; tð Þ½ � − w−1Et
∂
∂u

ξ 0; tð Þ
� �� �

−Ψ w; qð Þ ¼ 0;

ð56Þ

substituting the SST and SET of initial and boundary condi-
tions

0 1 2 3 4 5 6
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

β = 1
β = 0.95

β = 0.85
β = 0.75

ξ(
u,

 t)

u

FIGURE 1: 2D approximate solution of Equation (52).
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Su ξ u; 0ð Þ½ � ¼ w
1þ w2 þ 1; Su

∂
∂t
ξ u; 0ð Þ

� �
¼ 0; Et ξ 0; tð Þ½ �

¼ q2 1 − qβð Þ−1;    Et
∂
∂u

ξ 0; tð Þ
� �

¼ q2;

ð57Þ

in Equation (56), we get

Ψ w; qð Þ¼ 1

q−β − w−2
− 1ð Þ q2−β

w
1þ w2 þ 1

� ��
−w−2 q2 1 − qβð Þ−1ð Þ − w−1q2�;

ð58Þ

simplifying Equation (58), we obtain

Ψ w; qð Þ ¼ wq2

w2 þ 1
þ q2

1 − qβð Þ ; ð59Þ

taking ðSwÞ−1ðEqÞ−1 of Equation (59), we get

ξ u; tð Þ ¼ Swð Þ−1 Eq
À Á

−1 wq2

w2 þ 1
þ q2

1 − qβð Þ
� �

¼ sin uþ Eβ tβð Þ:

ð60Þ

In Figure 2, we sketch the approximate solution of
Equation (60) with different values of the fractional order
β when t¼ 1:5 and u2 ð1; 6Þ:

Example 3. Consider the linear one-dimensional time frac-
tional Burgers equation:

∂βξ
∂tβ

−
∂2ξ
∂u2

þ ∂ξ
∂u

¼ 0; 0<β ≤ 1; ð61Þ

on the ICs:

ξ u; 0ð Þ ¼ e−u; ð62Þ

and the BCs:

ξ 0; tð Þ ¼ Eβ 2tβð Þ;    ξu 0; tð Þ ¼ −Eβ 2tβð Þ: ð63Þ

Solution. Operating the DSET on Equation (61) and SST on
Equation (62) and the SET on Equation (63), we get

q−β Ψ w; qð Þ − q2−βSu ξ u; 0ð Þ½ �
− w−2Ψ w; qð Þ − w−2Et ξ 0; tð Þ½ � − w−1Et

∂
∂u

ξ 0; tð Þ
� �

 

� �
þw−1Ψ w; qð Þ − w−1Et ξ 0; tð Þ½ � ¼ 0;

ð64Þ

substituting

Su ξ u; 0ð Þ½ � ¼ 1
1þ w

;  Et ξ 0; tð Þ½ � ¼ q2

1 − 2qβð Þ ;  Et
∂
∂u

ξ 0; tð Þ
� �

¼ −
q2

1 − 2qβð Þ ;

ð65Þ

1
1

1.5

1.5

2

2

2.5

2.5

3

3

3.5

3.5

4

4 4.5 5 5.5 6

β = 2
β = 1.95

β = 1.85
β = 1.75

ξ(
u,

 t)

u

FIGURE 2: 2D approximate solution of Equation (60).

0

0.5

1

1.5

2

2.5

3

3.5

4

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

β = 1
β = 0.95

β = 0.85
β = 0.75

ξ(
u,

 t)

u

FIGURE 3: 2D approximate solution of Equation (68).
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in Equation (64), we get

 Ψ w; qð Þ¼ 1

q−β − w−2 þ w−1ð Þ q2−β
1

1þ w
− w−2 q2

1 − 2qβð Þ
�

þw−1 q2

1 − 2qβð Þ þ w−1 q2

1 − 2qβð Þ
�
;

ð66Þ

simplifying Equation (66), we obtain

Ψ w; qð Þ ¼ q2

wþ 1ð Þ 1 − 2qβð Þ ; ð67Þ

taking ðSwÞ−1ðEqÞ−1 of Equation (67), we get

ξ u; tð Þ ¼ Swð Þ−1 Eq
À Á

−1 q2

wþ 1ð Þ 1 − 2qβð Þ
� �

¼ e−uEβ 2tβð Þ:

ð68Þ

In Figure 3, we sketch the approximate solution of
Equation (68) with different values of the fractional order
β when t¼ 0:8 and u2 ð1; 6Þ:

Example 4. Consider the linear fractional Fokker–Planck
equation:

∂βξ
∂tβ

−
∂2ξ
∂u2

−
∂ξ
∂u

¼ 0; 0<β ≤ 1; ð69Þ

on the ICs:

ξ u; 0ð Þ ¼ u; ð70Þ

and the BCs:

ξ 0; tð Þ ¼ tβ

Γ 1þ βð Þ ;   ξu 0; tð Þ ¼ 1: ð71Þ

Solution. Operating the DSET on Equation (69) and SST on
Equation (70) and the SET on Equation (71), we get

q−β Ψ w; qð Þ − q2−βSu ξ u; 0ð Þ½ �
− w−2Ψ w; qð Þ − w−2Et ξ 0; tð Þ½ � − w−1Et

∂
∂u

ξ 0; tð Þ
� �

 

� �
− w−1Ψ w; qð Þ − w−1Et ξ 0; tð Þ½ �ð Þ ¼ 0;

ð72Þ

substituting

Su ξ u; 0ð Þ½ � ¼ w;   Et ξ 0; tð Þ½ � ¼ qβþ2;  Et
∂
∂u

ξ 0; tð Þ
� �

¼ q2;

ð73Þ

in Equation (72), we get

 Ψ w; qð Þ
¼ 1

q−β − w−2
− w−1ð Þ q2−β w − w−2qβþ2 þ w−1q2 − w−1qβþ2½ �;

ð74Þ

simplifying Equation (74), we obtain

Ψ w; qð Þ ¼ q2wþ qβþ2; ð75Þ

taking ðSwÞ−1ðEqÞ−1 of Equation (75), we get

ξ u; tð Þ ¼ Swð Þ−1 Eq
À Á

−1 q2wþ qβþ2½ � ¼ uþ tβ

Γ 1þ βð Þ :

ð76Þ

In Figure 4, we sketch the approximate solution of
Equation (76) with different values of the fractional order
β when t¼ 4 and u2 ð1; 6Þ:

4

5

6

7

8

9

10

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

β = 1
β = 0.95

β = 0.85
β = 0.75

ξ(
u,

 t)

u

FIGURE 4: 2D approximate solution of Equation (76).
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Example 5. Consider the linear fractional telegraph equation:

∂2ξ
∂t2

þ ∂ξ
∂t

þ ξ¼ ∂αξ
∂uα

; 1<α ≤ 2; ð77Þ

on the ICs:

ξ u; 0ð Þ ¼ Eα uαð Þ þ uEα;2 uαð Þ;   ξt u; 0ð Þ
¼ − Eα uαð Þ þ uEα;2 uαð ÞÂ Ã

;
ð78Þ

and the BCs:

ξ 0; tð Þ ¼ e−t;    ξu 0; tð Þ ¼ e−t: ð79Þ

Solution. Operating the DSET on Equation (77) and SST on
Equation (78) and the SET on Equation (79), we get

q−2Ψ w; qð Þ − Su ξ u; 0ð Þ½ � − q Su
∂
∂t
ξ u; 0ð Þ

� �
þ q−1Ψ w; qð Þ − q Su ξ u; 0ð Þ½ � þ Ψ w; qð Þ

¼ w−αΨ w; qð Þ − w−αEt ξ 0; tð Þ½ � − w−αþ1Et
∂
∂u

ξ 0; tð Þ
� �

 

� �
;

ð80Þ

substituting

Su ξ u; 0ð Þ½ � ¼ 1þ wð Þ
w 1 − wαð Þ ;   Su

∂
∂t
ξ u; 0ð Þ

� �

¼ −
1þ wð Þ

w 1 − wαð Þ ;   Et ξ 0; tð Þ½ � ¼ Et
∂
∂u

ξ 0; tð Þ
� �

¼ q2

1þ q
;

ð81Þ

in Equation (81), we get

 Ψ w; qð Þ ¼ 1
q−2 þ q−1 þ 1 − w−αð Þ

1þ wð Þ
w 1 − wαð Þ − q

1þ wð Þ
w 1 − wαð Þ þ q

1þ wð Þ
w 1 − wαð Þ

−w−α q2

1þ q
− w−αþ1 q2

1þ q

2
6664

3
7775; ð82Þ

simplifying Equation (82), we obtain

Ψ w; qð Þ ¼ q2 1þ wð Þ
w 1þ qð Þ 1 − wαð Þ ; ð83Þ

taking ðSwÞ−1ðEqÞ−1 of Equation (83), we get

ξ u; tð Þ ¼ Swð Þ−1 Eq
À Á

−1 q2

1þ qð Þ
1þ wð Þ

w 1 − wαð Þ
� �

¼ e−t Eα uαð Þ þ uEα;2 uαð ÞÂ Ã
:

ð84Þ

In Figure 5, we sketch the approximate solution of
Equation (84) with different values of the fractional order
α when u¼ 3 and t 2 ð1; 6Þ:

6. Results and Discussion

In order to show the accuracy and usefulness of the recom-
mended approach, in this section we will look at the numeri-
cal evaluation of the results of fractional equations that have
been proposed to be solved. Furthermore, we will compare
the numerical behavior of the solutions to FPDEs with that of
equations with integer derivatives. When β¼ 1 and α; β¼ 2;
the closed-form solutions for Examples 1–5 is simply calcu-
lated. We have chosen to look at the numerical results for
different values of fractional-order values α and β. We
noticed that the solutions obtained for β¼ 1; 0:95; 0:85;
0:75; and α; β¼ 2; 1:95; 1:85; 1:75; are in coordination with
the solutions of the closed forms for β¼ 1 and α; β¼ 2; as
shown in Figures 1–5. It is sufficient to note that when β→ 1
and α; β→ 2; the solutions resulting from the fractional
equations approach these exact solutions.

0

5

10

ξ(
u,

 t)

15

1 1.5 2 2.5 3 3.5
t

4 4.5 5 5.5 6

α = 2
α = 1.95

α = 1.85
α = 1.75

FIGURE 5: 2D approximate solution of Equation (84).
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7. Conclusion

This article discusses a new double transformation called
DSET. First, we applied theDSET to a few particular functions;
following that, some theorems and properties connected to the
DSET were presented and proved. To demonstrate the appli-
cability and efficacy of the proposed transform, we used DSET
to solve a wide range of FPDEs inmathematical physics. Based
on the obtained findings, we conclude that the provided trans-
form is efficient, suitable, reliable, and adequate to acquire the
accurate solutions of FPDEs according to the taken-into-
account starting and boundary conditions. Therefore, we
may state that a broad class of linear FPDE schemes can be
solved using this approach.
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