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Venture capitalists invest not only in the business aspect of a deal but also in its contractual terms. Therefore, the selection of deals
and the combination of contractual terms pose challenging decisions for them. This paper consists of two main sections. The first
section introduces a novel framework for the valuation of venture capital (VC) deals, including startups and their contractual terms.
By taking into account risk situations, this section presents the valuation of combined contractual terms, including call options,
liquidity preference, and participant rights. In the second section, a new multiobjective mathematical model for VC deals and
contractual terms portfolio selection is developed using right-tail probability, strategy alignment, and a utility function. To solve the
proposed model, three metaheuristic algorithms—Non-Dominated Sorting Genetic Algorithm (NSGA-II), Multi-Objective Binary
Harmony Search Algorithm, and Dynamic Tuning Parameter Binary Harmony Search Algorithm (DTPBHS)—are applied. Based
on numerical examples, DTPBHS outperforms other algorithms in the “Mean Ideal Distance” index, but NSGA-II demonstrates the
best performance in the “Rate of Achievement of two objectives simultaneously” index. Furthermore, we demonstrate that the

proposed utility function is more robust than the right-tail probability function under default deals conditions.

1. Introduction

Venture capitalists, a specific type of financial intermediary,
identify investees, such as startups, with significant potential
for growth and entrepreneurial capacity. They provide these
companies with funds, networking capabilities, and business
skills to capitalize on market opportunities [1-3], playing a
crucial role in the survival of new ventures [4].

On the one hand, investee selection involves not only
evaluating venture projects but also considering contractual
terms for venture capital (VCs). When selecting investees,
VCs should assess factors such as the status of technology
and the market, competitive position, growth strategy, and
customer management [5]. This situation introduces a signif-
icant level of uncertainty and complexity in the valuation and
selection of deals and their contractual terms. Therefore, VCs
need to evaluate and maximize the profitability of investments
by employing reliable and flexible methods for choosing
investees and determining their contractual terms.

On the other hand, the investment strategies of VC firms
play a primary role in the survival of new investments [6]
and the selection of investees. These strategies may encom-
pass the degree of VC participation in portfolio companies
[7], as well as the level of diversification or localization.

In this paper, we will address three questions: How to
value deals that combine contractual terms in uncertain con-
ditions? How to model the portfolio selection of deals? What
constitutes a robust objective function in the context of deal
defaults?

Because the contractual terms of deals have a direct
impact on investee selection, we propose a multidimensional
method for the valuation of deals and their components,
such as call options, liquidity preference, and participant
rights. We apply the stochastic real options (ROs) method,
stochastic DCF, and default rates to consider uncertainty and
risk, offering an alternative to using risk-adjusted discount
rates. Moreover, we introduce a new multiobjective mathe-
matical model that incorporates both VC strategic and
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financial objectives, considering uncertainty and constraints.

The model helps in better-assessing risks and portfolio bud-

geting for deal selection, considering both financial and nonfi-

nancial dimensions. Furthermore, we compare the performance

of a utility selection approach to that of a right-tail selection

approach when designing an index robust against deal defaults.
The main contributions of this paper include:

(i) Introducing a novel method for valuing deals and
their contractual terms, incorporating default rates.

(ii) Developing a new multiobjective mathematical model
for the portfolio selection of deals and contractual
terms.

(iii) Employing a novel utility function for the selection
of a VC portfolio and comparing its efficiency to the
right-tail function in the context of a deal default
scenario.

The remainder of this paper is organized as follows: In
Section 2, we provide an overview of recent research on the
valuation of deal contractual terms, VC strategy, and portfo-
lio optimization. Section 3 explores the concepts of contrac-
tual terms valuation, VC portfolio selection, and strategic
alignment. Additionally, we present a method for estimating
the strategic misalignment of a deal with a VC strategy. In
Section 4, we develop a meta-heuristic algorithm based on
the harmony search (HS) algorithm to address the NP-hard
computational complexity of the model for solving real-size
problems. Section 5 discusses the applicability and results of
the model using a numerical example, evaluating the perfor-
mance of the proposed algorithms and the utility metric
instead of the right-tail metric. Finally, in Section 6, we draw
our conclusions and provide a summary to conclude the paper.

2. Literature Review

2.1. VC Contractual Terms Valuation. From the point of view
of the information process perspective for VC decision-
making, there are four stages: screening, origination, evalua-
tion (due diligence), and negotiation [8]. Throughout these
stages, qualitative and quantitative decision-making factors
are hierarchically evaluated. Decision-making about valua-
tion is one of the important challenges for VC investors
because there are many uncertainties about the value of the
deals. The valuation does not only include the startup’s busi-
ness of a deal but also contractual terms. Liquidity prefer-
ence, investment amount, ownership stake, board control,
option pool, prorata rights, valuation, antidilution, vesting,
ownership stake, investment amount, participation, redemp-
tion rights, and dividends are negotiable and flexible contrac-
tual terms [9]. Some of these contractual terms have a direct
effect on the valuation of a deal, such as the vesting situation,
while others, like the option pool [10], have an indirect effect
on the value of deals [11]. These contractual terms collec-
tively influence the value of a deal. Therefore, a method is
needed to evaluate both the business and contractual terms
of deals under uncertain conditions.
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There are several quantitative and qualitative methods
for startup deal valuation, such as the Berkus method, Jordan
Cooper, risk factor, VC methods, First Chicago, Chepakovich,
multiples method, market-oriented approaches, score card,
RO, and DCF [12-14]. Numerous of these methods are too
qualitative and provide imprecise outputs (in some cases,
unrealistic results) for startups.

RO valuation considers the cash flow value and adds the
value of managerial flexibility to assets [15], as discussed by
Li et al. [16], who proposed an RO valuation method for
financial incentive allocation in infrastructural projects.
They examined the effects of ambiguity on RO value based
on pessimistic and optimistic approaches and concluded that
the RO valuation method is better than the net present value
(NPV) method for uncertainty analysis. As argued by Mon-
tajabiha et al. [17], the n-fold compound option model was
used to evaluate multistages investment projects in R&D
pharmaceutical projects. They also applied a robust model
for R&D portfolio selection but did not utilize the value
distribution function and the information on fat-tail distri-
butions. Nigro et al. [18] assessed pharmaceutical industry
projects by RO and categorized the project based on growth
phases, and optimized the mathematical model, but they did
not consider the uncertainty of valuations. One of the most
popular methods for option pricing is the Black-Scholes
model, which has been the subject of numerous discussions
and examinations in academic literature [19]. There are dif-
ferent versions of the Black—Scholes model, such as litera-
tures [20, 21], but the main difference in the proposed
method compared to the literature is that the proposed val-
uation method is a combination of RO, DCF, decision tree,
and Monte Carlo simulation [14].

2.2. VC Portfolio. Operation research problems usually answer
only one of the “what,” “where,” and “when” questions [22].
This paper aims to address the combination of these questions
for the VCs portfolio. Generally, VCs aim to select the best
deals for success, but various risks can undermine profitability.
As discussed in the review paper by Chaparro et al. [23],
portfolio selection methods can be classified into 12 sectors:
financial methods, probabilistic methods, option pricing the-
ory, strategic methods, scoring methods, combinatorial opti-
mization, behavioral methods, mapping approaches, ROs,
integrated methods, information gap theory, and scenario-
based approach. The paper suggests that the portfolio selec-
tion method should be based on the innovation level. When
there is radical innovation, qualitative methods are preferred.
As a result, the priority is behavioral and information gap
theory. The second priority is integrated methods and ROs.
In this paper, we consider that VCs do not invest in extreme
radical innovation investees. Therefore, integrated methods
and ROs are assumed to be appropriate.

According to Guo et al.’s research [24], different stake-
holders have different tendencies toward portfolio selection
goals, which are assumed in the proposed mathematical
model. At the first level, top managers prefer to select a
portfolio aligned with organizational strategies. At the sec-
ond level, portfolio managers want to choose the projects
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that maximize portfolio return. They pay great attention to
the interrelation and synergies of projects. At the third level,
the project managers should meet resource limitations and
risk tolerance. In this paper, the proposed model belongs to
the first and second levels of stakeholders. Aouni et al. [25]
used the stochastic goal programing model and the concept
of utility function in the case of 15 deals in order to design
the decision-making process of VCs under three different
scenarios. In another article published by Aouni et al. [26],
a goal programing model based on fuzzy logic VC decision
was proposed. The effect of the entry of a new deal on the
existence of a portfolio and the effect of mutual interaction
between new deals are considered by Zhao et al. [27].
Moreover, VCs can choose their deal portfolio based on the
risk-taking or risk-aversion of investors by using a tuning
parameter [27].

One of the most important criteria for VC portfolio opti-
mization is portfolio size. According to Cumming [28], four
categories of factors affect the size of a portfolio: (1) Char-
acteristics of VC funds, including the type of fund (such as
public or private VC), fund duration, fundraising, and the
number of VC fund managers. (2) Characteristics of entrepre-
neurial companies, including development stage, technology,
and geographical location. (3) The character of financing,
including staging, syndication, and deal size. (4) Market con-
ditions. In an area where the number of VCs is limited, entre-
preneurs are likely not in a position to select among VC
financiers [29]. Overall, the number of investees in a portfolio
depends on many factors, such as funding stage, VC budget,
VC type, the level of diversification, geographical distance, VC
experience, financed entrepreneurial firms number, VC firm
age, fundraising number and successful exits number [29, 30].
For example, Huntsman and Hoban [31] have demonstrated
that ten investments may not be enough to reach a reasonably
steady portfolio return for a VC portfolio, and portfolio diversity
is not proportional to the fund size. Also, VC fund contractual
conditions usually deny each investment from investing in
more than a specific percentage (usually 10%) of the fund,
and it is critical to maintain the appropriate diversity level
[29]. In addition, the fund availability established by each
investment company is seriously and directly associated
with the fund size. As the investable companies grow, they
are more likely to enter new funds. So, the small fund size
restricts the VCs from accessing the advantages of investment
results [29]. In the proposed model, the number and amount
of investments are considered, and it is assumed that the stock
offering of each deal is fixed for a certain amount of money
because there are limited stock volume choices available for
VCs to select. This assumption reflects the fact that investees,
such as startup founders, prefer to keep a certain amount of
equity to preserve their decision-making power in corporate
governance.

Diversification criteria are another factor for portfolio
selection. There are three principal categories of diversifica-
tion (specialization): industry, stage of venture, and geogra-
phy. Organizational learning theory discusses that specialized
investor perseverance relies on extraordinary success in the

field. However, diversified VCs are more likely to sustain due
to less competition in a particular industry. Portfolio diversi-
fication is often beneficial in the early stages/high-risk stages.
Informal venture capital (IVC) (including lesser-known indi-
viduals, entrepreneurial friends, and angel investors forming
groups of IVCs) is less profited than formal venture capital
(FVC) in terms of industry and stage diversity. Insufficient
investment for IVC can push them to participate in fewer
investment rounds, despite successful investment selections.
It may prevent them from thoroughly enjoying the diversity
benefits. The previous investment experience is suggested to
provide a more robust alternative for IVC diversification
needs. As a result, IVC can profit more by concentrating on
the typical industry by achieving an expressive investment
[32]. The small funds can protect forthcoming assets under
management by adopting specialized strategies with relatively
small investments in a restricted number of companies with
losing diversification. In contrast, small funds may invest in
many portfolio companies and choose a diversification strat-
egy [29]. Therefore, in this article, according to the impor-
tance of this concept, the diversification index is used.

As discussed by Treville et al. [33], the worth of a VC
portfolio is determined by the value of the small number of
top deals that are available for assessment. Therefore, it can be
acknowledged that the value of a portfolio relies on the presence
of fat right-tail distribution deals rather than averages (IVC or
FVC investor returns are extremely skewed, high probability of
low-expected NPV and low probability of high-expected NPV,
and existing literature confirms it [32]). The combination of the
right tail of deals for the portfolio deal’s probability distribution
of NPV (we call it PDNPV) is different from the summation
of deal value because this problem is not always subadditivity,
no smooth, and nonconvex [34-36].

The “strategy” is the key to reaching profit for VCs [5].
As a result, the alignment of investee characteristics with the
VC strategies is an important issue in selecting deals. Conse-
quently, VC investors have strategies for reaching their goals.
Ayob and Dana [37] proposed three strategies for VC pro-
ducts in developing countries, consisting of producing low-
cost, differentiated, and specialized products. Park and Bae
[38] proposed a 3D integrative framework of VC strategy
in developing countries. The framework consists of three
dimensions: target market, product/market maturity, and tech-
nological capability. They have also proposed seven practical
strategies based on the main three strategies.

Various models exist for VC portfolio selection, includ-
ing stochastic goal programing [25], fuzzy goal programing
[26], modern portfolio theory [39], data envelopment analysis
[40], and fuzzy inference system—agent [41]. Many research
studies have focused on assessing the weight of selection cri-
teria and integrating multicriteria decision-making techni-
ques with fuzzy theory. However, only a limited number of
studies have applied mathematical models specifically to the
selection of VCs’ investees (as opposed to deals). This limited
usage underscores the untapped potential of mathematical
models in the field of deal portfolio selection.
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Ficure 1: The framework of proposed venture capital portfolio
selection.

To the best of our knowledge, no research has been con-
ducted on the combined valuation and selection of startup
deals and their contractual terms (such as call options,
liquidity preference, and participant rights) for VC. There-
fore, we propose a new method for valuation and a multi-
objective portfolio selection mathematical model for VC,
considering both financial and nonfinancial objectives. Vari-
ous factors, including strategy alignment, the level of investee
innovation, diversification, deal options, fund limitations,
and the number of investments, are taken into account.

3. Problem Description and Formulation

The framework of this paper consists of two main concepts:
valuation and selection of VC portfolio (Figure 1).

In Figure 1, we apply valuation and portfolio selection
concepts to design a new model for deal contractual terms
valuation and portfolio optimization. For valuation, the input

0,=S$- N(d,) - Xe™ - N(d,);

The parameters of the valuation model are described as
follows:

(O, Call option premium at time t*—the value of a call
option with expiration time “¢”;

d1:
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data involve free cash flows (FCFs) probability function, default
rates in different periods, the data related to ROs, and contrac-
tual terms. The inserted data for portfolio selection includes VC
strategies, diversification index, the minimum NPV required
for VC, valuation of deals and their contractual terms, budget
constraints, and the maximum number of investees. Then, a
solver method like a Meta-heuristic algorithm will determine
the portfolio’s compound.

3.1. The Valuation of VC Contractual Terms. In this paper, it
is assumed that there are several deals with a variety of con-
tractual terms. Therefore, we not only evaluate the NPV of a
deal but also assess the effect of deals with contractual terms
between the founder and the investors. We consider all kinds
of deal risks into three groups: hard factors, soft factors, and
scenario factors.

The factors with sufficient data about future scenarios
and probabilities are classified as hard factors. In this group,
these factors will be estimated using decision trees and prob-
ability distribution functions. The second group consists of
scenario factors, where the scenarios are identifiable, but their
probabilities cannot be determined directly. Here, we employ
the RO method to account for them. In the third group, soft
factors are typically examined qualitatively, including indi-
vidual and managerial attributes of the investor, the motiva-
tion and experience of the founders, the team members’
ability to recover in case of partial failures, and their resilience
in the face of economic, political, social, and legal conditions
[42]. The evaluation of these soft factors is carried out using
expert-elicited Bayesian network (EBN) analysis, as described
by Valaei and Khodakarami [42]. The output of EBNs is the
default rate in each period of a deal’s life.

In the following, By using an example, we will present how
to calculate the value of a stochastic European call option by
using a Monte Carlo Simulation for a startup deal. Then, the
formula for the valuation of contractual terms, specifically for
liquidity preference and participant rights, is proposed.

In this paper, the price of a European call option is calcu-
lated based on the Black—Scholes model (Equation (1)) (it is
evident that various alternative methods exist for RO pricing
that can be used, including Binomial Models) [43]. The inputs
of the model consist of the current underlying asset price, the
strike underlying asset price, the time to maturity, the risk-
free rate, and the volatility of the underlying asset [43].

In($) + (@ +9)t

i s dy=d, - oV, (1)

(V,) Future FCF value *—future FCF value of deal at
time “t”;

(R,) Realized FCF value *—the FCF value of a deal at
time “t”;
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FIGURE 2: A simple NPV decision tree of a deal.

(S;) FCF value of the deal at time “t” *—overall past and
future value of FCF at time “#” related to stock ownership. It
sums of V; and Y R;;

(X;) Strike price of deal *—the exercise price is the value
at which the option can be exercised at time “”;

(g) Time to maturity of call option;

(a) Risk-free rate;

(o) Volatility—the underlying asset volatility;

N() Cumulative normal density function N (0.1);

(O,) Call option premium *—the value of a call option
with expiration time g

(P?,) Failure probability—default rate at time “t”;

(P',) No failure probability at time “t” (P',=1—P?);

(w) Share ownership percentage;

(L) liquidity preference multiple;

*If there is a sign of “’” such as O’ it shows the present
value of each parameter.

For instance, there is a probability distribution of net
present value (PDNPV) for a deal. Because the NPV of a
deal is not a single value, the NPV of derivative tools, such
as a call option, will not be a singular value either. Therefore,
in this paper, we employ the Monte Carlo simulation method
to generate PDNPV for deals and their options, reflecting the
premium cost in the cash flow of a deal.

In this paper, the value of the current underlying asset is
a probability distribution function. Assuming that the NPV

_Og

Deal NPV =

T=5 , T=5 ,
<HP%> (v s Rt)+
t=1 t=1

£ (1 )a-en(5r)) -x-0,
T=g+1 t=2 t=1

motion follows a random walk based on Geometric Brow-
nian Motion, as described in Equation (2) [44], We calculate
the standard NPV of a new deal (without considering the
default rate) with a call option using Equation (3).

S, = Syexp Ky - ?)At + ax/A_te} , (2)

-0y S, — X, <0

Deal NPV, =¢ = . (3)
S.-X -0, $-X >0

Based on Equation (3), if the price of the deal is higher
than the strike price, the call option will be exercised. Other-
wise, the investment will not continue, and the deal will be
abandoned, resulting in the NPV of the deal will be negative,
equal to the option premium. For instance, Figure 2 shows
the PDNPV of a deal with a European call option and a time
to maturity of 4 years, demonstrated using a Monte Carlo
simulation (The Monte Carlo simulation is done by Crystal
Ball software). If there is a failure probability in each period
(1 —Py), the NPV of the startup is shown in Figure 2.

The NPV of a startup deal with a call option (with expi-
ration g year) and the default rate is shown in Equation (4).

T=g . g
17 (Vg—l—t;Rt) - X, <0

T=g g ’ (4)
(HP}) <Vg + tZIRt> -X;20



The NPV of a startup with a call option (with expiration g),
default rate, and liquidity preference is shown in Equation (5).

Deal NPV=
-0,
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The NPV of a startup with a call option (with expiration
g), default rate, liquidity preference, and participant right is
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T:g . g
t:HIPt (Vg +t§Rt> - X,<0

)

T=g g
<H1P}> (Vg +tlet) —Xg >0, g<5
t= =
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(5)

\
shown in Equation (6). To assess the impact of certain inde-
pendent contractual terms, please refer to reference [11].

Deal NPV=
T=g g
-0, I17! (vg+ ZR,) - X,<0
t=1 t=1
=5 | .oT=5
T=5 Vs + t; R Vs + El Ry
(EP}) min (LgXX’g) = +w X max| 0, — - (LgXX;) +
T=g ' g
L . TTPH) (Vo + SR ) =X, 20, g<5
o -1, = =
2R, 2R
T=5 T — =
I (gptl’l><l =P | mind (L,x ). [ = | b+ wxmaxd o | = | - (1,x X)) -X,-0,

3.2. VC Portfolio Selection. The mathematical model in this
paper is based on the multidimensional multiple-choice
knapsack problem (MMKP) [45] and the portfolio selection
problem under the value-at-risk measure [36, 46], which
does not have the subadditivity property. MMKP is a gener-
alization of the ordinary knapsack problem [47], and it is a
more complex variant of the binary knapsack problem and
computationally is an NP-Hard problem [45, 48, 49]. More-
over, the NP-Hard complexity of portfolio selection problem
with Value at Risk objective (such as right tail probability) is
proved by Benati and Rizzi [46]. Since the real-world invest-
ment problems are composed of different objectives, it is
proposed a multiobjective stochastic version of the multidi-
mensional multichoice knapsack problem. Thus, the pro-
posed model is a multiobjective binary model to select a

(6)

set of deals and their RO, maximizing the right tail of a
cumulative probability of the portfolio NPV and minimizing
the strategic misalignment of the selected deals.

In this section, the proposed mathematical model is
introduced. The following assumptions are made:

(i) The cash flow predictions of each deal are indepen-
dent of each other.

(ii) It is assumed that the stock offering of deals is fixed
for a certain amount of fixed money.

(iii) The portfolio’s budget is deterministic, and it is
divided into consuming and reserving budgets.

(iv) The focus of this paper is limited to a specific geo-
graphical area (without geographical diversification).

(v) The FCFs are predicted stochastically.
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In the following, decision variables are determined, and
the abbreviations and parameters used in the mathematical
model are defined.

3.2.1. Model Indices. Investee: i;

Industry: j

Deals: u (all kinds of contractual terms for each deal are
considered independent variables).

3.2.2. Model Parameters. Z,: The first objective function is
designed for calculating the right tail of the portfolio NPV
distribution;

Z,: The second objective function aims to quantify the
strategy misalignment;

MNPV: The minimum attractive NPV for the VC
portfolio;

Dj;: The total amount of strategy misalignment for inves-
tee i in industry j;

d]);: The amount of strategy misalignment for investee i in
industry j regarding strategic dimension y;

U: The maximum number of company strategy
dimensions;

Cjiu: The investment cost for the investee i in industry j
with deal u;

Pji,: The present value of future cost for the investee i in
industry j with deal u;

B: The maximum available budget;

E: The maximum reserved available budget;

N: The maximum number of the deals that VC can
manage;

L: The minimum amount of Herfindahl diversification
index for VC portfolio;

H: The maximum amount of Herfindahl diversification
index for VC portfolio;

k: The maximum number of industries;

n;: The maximum number of investee in industry j;

Tj;: The maximum number of deals for the investee i in
industry j;

NPVj;,: NPV of the investee i in industry j with deal u;

@;;,,(MNPV): The complementary cumulative distribu-
tion function of the NPV of investee i in industry j with deal

u for the MNPV;
n; Ti;

f T 2 El i (h): f(h) is a joint probability distribution
function for the sum of the probability distribution function
of K\ Sl i

jj=14ai=1 u:l)(]zu-

3.2.3. Decision Variables. yj;,: Binary variable for selecting
the deal 7 in industry j;

@, Auxiliary binary variable for selecting the deal i in
industry j.

To evaluate the strategic misalignment between investees
and VCs, a distinct version of the index, influenced by lit-
eratures [50, 51] and incorporating the Herfindahl index
[52, 53], is employed. This index measures the Euclidean
Distance for each dimension. The formulations are as follows
(Equation (7)):

Investee i strategy index in dimantion of y — VCstrategy index in dimantion of y

where Dj; represents the overall strategic misalignment of
deal i in industry j, and djyi is the strategic misalignment of
deal i in industry j at dimension y.

As given in Table 1, For instance, if a VC with an “import
substitution” strategy intends to invest in a deal with an

Max Z;:
k n Ty k n Ty

> 2 2 P (MNPV)a, + ¥ 3 3

j=li=1t=1 j=li=1t=1J —c0

ko Ty

Z Z ZC}iu(){jiu+ajiu) <B, (10)

j=li=li=1

MNPV

7" Maximun strategy index in dimantion of y — Minimum strategy index in dimantion of y’

(7)

\
“early market entry” strategy, conflicts may arise in strategic
alignment [38].

In order to show the formulas, in Equations (8)—(17), we
illustrate the complete mathematical model as follows:

VABRERIE A ,) s (8)
(®;,(MNPV — h) - y;3,) f< ) (h) dh
\
k i T
Z P]zu()(jiu +a]1u) SE? (11)
j=li=1t=1
k 1 le
1< Z ()(jiu + ajiu) <N, (12)
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Mathematical Problems in Engineering 9
TasLE 2: Coding of solutions.
Industry 1 Industry 2 Industry n
Investee 1 Investee 2 Investee 1 Investee 2 Investee 1 Investee 2
Deal Deal Deal Deal Deal Deal Deal Deal Deal Deal Deal Deal Deal Deal Deal Deal Deal Deal Deal Deal Deal Deal Deal Deal
12 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
o o o o o0 1 0 O 1 O ©0 O ©0 O 0 O 0 0O 0 0 0 0 0 0
k (1 T : variable shows the value of a deal with individual contractual
'21 '21 21 (i + @ju) terms (consisting of options).
=1 \i=lu=
L<1- <H, 13 . .
ko T ’ (13) 4. Algorithm Design
Z . Z ()(]m + ajiu)

j=li=lu=1 The number of variables in the proposed problem could
increase significantly when a VC has several investees with dif-
T; ferent contractual terms. The exact algorithms, such as branch
) (ju + @) <Lj=1....k i=1....n, (14)  and bond algorithms and dynamic programing algorithms, can-
u=l not handle large-scale problems, and solving them requires a
significant amount of CPU time due to their NP-hardness [57].
Hiu + @ <=1k, i=1..n, u=L..T; (15)  Given these challenging, several meta-heuristic algorithms have
been developed for optimization in the last few decades [58]. As
kon T discussed by Zou et al. [59], the HS algorithm is a well-organized
> @iy = 1, (16) method for solving knapsack problems, and it can find better
j=li=lu=1 solutions compared to other metaheuristics, such as genetic
algorithm in a stochastic multiobjective problem under the
Xiiw = {0.1}. (17)  same situation [60, 61]. The HS method is an emerging meta-

As we aim to capitalize on the asymmetric returns of deals,
the first objective (8) employs the right tail of PDNPV at the
point of MNPV. This aligns with the opportunistic strategy of
seeking the highest investment return. Proceeding from the left
side of the distribution, we utilize numerical integration with a
trapezoidal base and calculate the cumulative probabilistic dis-
tribution functions until reaching the value of MNPV (its
proof is presented in the Appendix [54]). The second objective
(9) focuses on estimating the strategic misalignment of a port-
folio, resulting in a value of one or greater.

Constraints (10) and (11) are related to budget consid-
erations. Constraint (10) pertains to the maximum budget
available for selecting deals right now, while Constraint (11)
entails reserving a budget for the future cost of the selected
deal, including the exercise of options in subsequent years.

Additionally, Constraint (12) establishes boundaries for
both the maximum and minimum number of investees that
can be managed, resembling a cardinality constraint [55]. In
this research, industrial diversification is considered due to
the importance of the industrial type of investees that oper-
ate. A diversification index called the Herfindahl index
[52, 53] is applied in Constraint (13) on the portfolio selec-
tion model. It is proposed that the upper and lower bounds
of the constraint be determined based on successful and
similar VC practices (see [56]).

Since VCs can choose only one deal for each investee, we
use Constraint (14). Constraint (15) is intended to decide
between the primary and auxiliary variable choices. In the
first part of the primary objective function, you must select
one of the deals. Therefore, we add Constraint (16) to the
model. Constraint (17) represents binary variables. Each

heuristic optimization algorithm employed to cope with numer-
ous challenging tasks during the past decade. The HS algorithm
is inspired by the underlying principles of musicians’ improvi-
zation of harmony, which can be seen as a search process for the
global optimum in optimization problems that are evaluated by
an objective function [62]. The musical harmony in HS is simi-
lar to a variable vector, and the best harmony achieved in the
end can be seen as the optimal global solution [58].

4.1. Dynamic Parameters Tuning Multiobjective HS. A variety
of harmony algorithms have been proposed, including an effi-
cient HS algorithm [63], an improved HS algorithm [64], multi-
objective binary differential evolution HS (MOBDEHS) [65],
and multiobjective HS algorithm [66]. A new version of the
multiobjective binary HS (MBHS) algorithm [66] is the
dynamic parameters tuning multiobjective harmony search
algorithm (DPTMOHS), which uses dynamically tuned
parameters to create nondominant solutions. The algorithm for
dynamically tuning the parameters has been designed based on
reference [60], and the Pseudocode of the proposed algorithm
(DPTMOHY) is shown in the coding done by MATLAB 2013a
software on a Core i7, 8 GB. Before delving into the detailed
explanation of the algorithm, it is necessary to present the
coding method of the problem, as shown in Table 2.

As depicted in Figure 3, a deal is selected from the harmony
memory (based on the elitism parameter) if a new random
number is less than the harmony memory consideration rate
(HMCR). Subsequently, at the next level, if a new random num-
ber is less than the pitch adjustment rate (PAR) (the mutation
parameter), a deal is randomly selected from the neighborhood
of the last deal position (with all deals sorted in ascending
order). If the algorithm does not enter the process of HMCR
and PAR, it utilizes a random mechanism, as shown in Figure 3.
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ForeachX; €[i=1,..,n]do
If rand () =< HMCR then

Select from memory of harmony
Ifrand () =< PAR then

Select the neighbouring deal of your choice.
End
Else
Ifrand ()>0.5
Randomly select a deal
Else
Do not select any deal
End
End
End

FiGure 3: Pseudocode of algorithm.

To handle the constraint mentioned in the model within
the algorithm, a pruning approach is employed for newly
generated solutions. In essence, if an infeasible solution is
generated, the algorithm promptly discards it.

4.2. Comparing Metric. There are various metrics for com-
paring approximate algorithms when accuracy is unmeasur-
able. In this research, we employ three metrics to compare the
three algorithms. These metrics include the rate of achieve-
ment of two objectives simultaneously. The relative achieved
spread (RAS), which measures the rate of achieving the two
best objectives simultaneously, the mean ideal distance (MID,
which quantifies the distance between Pareto solutions and
the best answer), and the spread of nondominated solutions
(SDS, indicating the range of nonexhaustive solutions) [67].
In Equations (18)—(20), Z;; and Z, are normalized using the
method described in literature [67], and n shows the number
of solutions in Pareto solutions.

n
> C,
MID = =2
n

(18)

C=y(Z-2)F + (Za-25)

(19)

(le - min{le’ Z25}> + <ZZS - min{lev ZZS})
min{Z, Z,} min{Z,, Z,}

(20)

5. Computational Tests

5.1. Generating Test Problems. To test and verify the algo-
rithms in the proposed model, we generate practical testing by
using 10 deals with 40 premium call options (Table 3). The
strategy misalignment of each candidate deal is randomly
generated from a uniform distribution (1, 5), as demonstrated
in Table 4. The cumulative probability distributions of NPV
are summarized in Table 5.

Mathematical Problems in Engineering

5.2. Comparing Results. To assess the performance of the
DPTMOHS algorithm, we utilize two series of test problems:
one for small size and another for medium size.

5.2.1. Small-Size Test Problem. For the small-sized problem,
new test problems were designed to evaluate the capability of
the DPTMOHS algorithm in finding Pareto solutions. Three
groups of problems, with sizes 8, 10, and 12 and each having
three levels of MNPV (with values of 50, 75, and 100), were
created. The results, based on quality metrics (the proportion
of Pareto solutions [68]), are presented for 1,000 iterations of
the algorithm in Table 6. The table illustrates that the DPTMOHS
algorithm can effectively find Pareto solutions, demonstrating the
efficacy of the proposed algorithm in identifying optimal points
for the problem (the data are provided in Table 7).

5.2.2. Medium-Size Test Problem. The algorithm of Nondo-
minated Sorting Genetic Algorithm II (NSGA-II) [69, 70]
and MBHS algorithm [66] are used for comparison with
the DPTMOHS algorithm. These algorithms need to adjust
their parameters (DPTMOHS does not need to parameter
tuning). In this paper, the NSGA-II (the maximum number of
iteration parameters is not considered because the termination
condition is determined based on the number of objective
evaluations) and MBHS (the harmony memory size (HMS)
parameter in the classic harmony search algorithm has been
omitted in this study. This omission is based on the
assumption that what is crucial for VCs is to generate a
range of dominant solutions rather than focusing on a single
solution. Furthermore, due to the utilization of dynamic
parameter tuning, the count of nondominated solutions
may fluctuate throughout the optimization process)
parameters [66] are tuned by the Taguchi method for
tuning parameters [60]. The tables are selected for standard
orthogonal array L4 (4%) and Lo (3°) experiments, in which
three repetitions are performed (the data are provided in
Tables 8 and 9). The levels of experiments were conducted
using the Taguchi method, and their results were obtained
based on the signal-to-noise (S/N) ratio. Then, the best-tuned
parameters of the algorithm were calculated using Minitab 17
software [60]. Tables 10 and 11 show the best parameters of
the MBHS and NSGA-II algorithms.

After determining the parameters for both the MBHS
and NSGA-II algorithms, their performance will be assessed
against that of the DPTMOHS algorithm, utilizing RAS,
MID, and SDS metrics (see Table 12).

To determine whether there exists a statistically significant
difference in the performance of the algorithms (Table 12), we
employ the Kruskal-Wallis test (Figure 4) [67] and a paired t-
test (Table 13) [68] with a confidence interval of 0.95.

The results of the Kruskal-Wallis test indicate no significant
difference in the SDS index (P-value =0.321). However, there
are notable distinctions in the RAS (P-value = 0.0001) and MID
(P-value = 0.0002) indices. Subsequent paired ¢-test results dem-
onstrate that the MID of the DPTMOHS algorithm outper-
forms that of NSGA-IL. Conversely, the RAS of the NSGA-II
algorithm surpasses that of the DPTMOHS algorithm.

As outlined, the probability of failure for any VC deal is
very high. Therefore, we propose a new approach for the first



Mathematical Problems in Engineering 11
TasLE 3: Estimation of startup cash flow.
. ) Cash flow
Startup Probability function Parameters ) ) )
Zero year  First year ~ Second year ~ Third year ~ Fourth year  Fifth year
. Worst case 0.66 0.75 0.8 0.83 0.85
Deal 1 Uniform =30
Best case 3 12 20 30 42
. Worst case 0.5 1.52 1.75 14 1.2
Deal 2 Uniform -35
Best case 2 10.5 28 35 42
. Worst case 2 2 2 1.8 2
Deal 3 Uniform =50
Best case 8 18 32 45 72
1 . . 7.4
Deal 4 Uniform Worst case 80 0 5.15 533 35
Best case 18 26 48 48 185
1 7 .67 . 1.2
Deal 5 Uniform Worst case 75 5 3.6 3.06
Best case 60 63 60 50.3 432
. .87 14 1.1 1
Deal 6 Uniform Worst case _50 0.3 0.875 6
Best case 3 14 35 42 49
Deal 7 Uniform Worst case _30 0.66 0.75 0.8 0.83 0.85
Best case 3 12 20 30 42
Worst 1.3 1.5 1.6 1.5 1.71
Deal 8 Uniform Ofst case —40
Best case 12 24 40 54 84
Worst 3 3.25 3.2 2.3 5.2
Deal 9 Uniform Ofst case -95
Best case 18 52 80 84 259
Worst 10 5.25 2.94 1.71 1.02
Deal 10 Uniform Ofst case —-94
Best case 920 48 73.5 61.8 50.4
TABLE 4: Strategy misalignment of each candidate.
Deal 1 Deal 2 Deal 3 Deal 4 Deal 5 Deal 6 Deal 7 Deal 8 Deal 9 Deal 10
Strategy misalignment 5 2 2 1 4 3 2 1 2 4

objective of portfolio selection, which involves replacing the
right tail of the probability function. This involves a utility func-
tion based on the probability of the right tail of PDNPV relative
to the probability of negative PDNPV (see Equation (21)).

kon Ty

ng El t; @;i,(MNPV)atj, +
koo fMNey o
2 ZI/ (@i (MNPV — h) 'Zjiu)f(ll.l.h o }X> (h) dh
=1i=1 —o0

k n T
> 2 2 Djiu(MNPV)a;, +

j=li=1t=1
L 0 LLLseeees Xk.nj.Tj;
_Zl _il (‘pjm(o -h) ')(jm)f(l e j> (h) dh
Jj=li= —00
(21)

To facilitate a comparison between the two approaches,
we have designed 20 test problems (refer to Table 14). After
implementing the DPTMOHS algorithm for each of these
test problems, the efficiency of each approach is assessed
through the proposed stress test, known as the deal failure
rate. In this test, we assume that the NPV of each selected
deal in the portfolio fails randomly (using Monte Carlo

simulation). The failure is determined by selecting from
the negative area of the NPV distribution function for
each deal.

To assess whether there is a significant difference between
the two approaches, the Paired Wilcoxon Rank test (in this test,
there is no assumption of normal data distribution) is employed
with a confidence interval of 0.95 (P-value =0.00001) [67]. The
results show a significant difference between the two methods,
as illustrated in Table 9.

5.3. Discussion. As pointed out earlier, both the value of a
business’s cash flows and the contractual terms have a sig-
nificant impact on the benefit to an investor when consider-
ing a startup. In this research, we illustrate how to evaluate
a combination of specific contractual terms. Utilizing RO
theory, decision trees, and PDNPV, we propose a practical
formulation for valuing call options, liquidity preferences,
and participant rights in VC contracts. We then present a
practical mathematical model for selecting a combination of
a deal portfolio based on the right tail of PDNPV and strategy
alignment. To solve the model, we compare the performance
of NSGA-II, DPTMOHS, and MBHS algorithms. The results
of statistical hypothesis tests indicate no significant difference
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TasLE 6: The percentage of finding Pareto solutions in algorithms.

Size MNPV Exact algorithm* (%) DPTMOHS algorithm (%)
8 50 100 100
8 75 100 100
8 100 100 100
10 50 100 100
10 75 100 100
10 100 100 100
12 50 100 100
12 75 100 100
12 100 100 66

*This algorithm solves the problem by counting the entire feasible space.

TasLE 7: The Pareto solution of algorithms MOBDEHS for five iterations.

Solutions Deal 1 Deal 2 Deal 3 Deal 4 Deal 5 Deal 6 Deal 7 Deal 8 Deal 9 Deal 10 Deal 11 Deal 12 Objective 1 Objective 2
0 0 0 0 0 1 1 1 0.073353 2

1 0 0 0 0 1 1 1 0.11078383 2.75
1 1 0 0 0 1 1 1 1 0.137424105 32
1 0 1 0 1 1 0 1 0.145801031 3.8
1 1 0 1 1 1 0 0 0.153424909 4.4
0 0 0 0 0 1 1 1 0.051881 2
) 1 0 0 0 0 1 1 1 0.08084466 2.75
1 0 0 0 1 1 1 1 0.100283076 3.2
1 0 1 0 1 1 0 1 0.109298719 3.8
0 0 0 0 0 1 0 1 0.021 2
0 1 1 0 0 0 0 0 0.0399 2.5
3 0 0 0 1 1 0 0 0 0.0401 2.8333
0 0 0 1 0 1 1 0 0.040931 3
1 1 0 0 0 1 1 0 0.06071436 35
1 1 0 0 1 1 0 0 0.07017149 4.25
0 0 0 0 0 1 0 1 1 1 0.11150892 2
4 1 0 0 0 0 1 0 1 1 1 0.14675165 2.6
1 0 0 1 0 1 0 0 1 1 0.154373822 32
0 0 0 0 0 1 0 1 1 1 0.06389883 2
5 1 0 0 0 0 1 0 1 1 1 0.091650821 2.6
1 0 0 0 1 1 0 1 0 1 0.100513936 32
1 0 1 0 1 1 0 1 0 0 0.109298719 3.8
0 0 0 0 0 1 0 1 1 1 0.04275226 2
1 0 0 0 0 1 0 1 1 1 0.062626546 2.6
6 1 0 0 0 1 1 0 1 0 1 0.071408062 32
1 0 1 0 1 1 0 1 0 0 0.080257478 3.8
1 1 0 1 1 1 0 0 0 0 0.088969144 4.4
0 0 0 0 0 0 1 1 0 1 1 0 0.11936526 2
7 1 0 0 0 0 1 0 1 1 1 0 0 0.14675165 2.6
1 1 0 1 0 1 0 0 0 1 0 0 0.153449543 3.8
0 0 0 0 0 1 1 1 0 0 1 0 0.09078712 2
1 0 0 0 0 1 0 1 1 1 0 0 0.091650821 2.6
§ 1 0 0 0 0 0 0 1 0 1 1 0 0.09976591 2.75
1 1 0 0 0 0 1 1 0 0 1 0 0.117723069 32
0 0 0 0 0 1 1 1 0 0 1 0 0.06229335 2
1 0 0 0 0 1 0 1 1 1 0 0 0.062626546 2.6
? 1 0 0 0 0 0 0 1 1 0 1 0 0.07148536 2.75
1 1 0 0 0 0 1 1 0 0 1 0 0.089625689 3.2
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TasLE 8: Taguchi levels for MBHS.
Parameter Level 1 Level 2 Level 3 Level 4
HMCR 0.7 0.9 0.95 0.99
PAR 0.1 0.3 0.4 0.5
TasLE 9: Taguchi levels for NSGA-II.
Parameter Level 1 Level 2 Level 3
nPoP 20 30 40
Pcrossover 0.6 0.7 0.8
Pmutation 0.2 0.3 0.4
TasLE 10: The best level of MBHS algorithm.

Parameter HMCR PAR
Best level 0.95 0.4
Taste 11: The best level of NSGA-II algorithm.

Parameter nPoP (population size) Pcrossover (crossover percentage) Pmutation (mutation percentage)

Best level 20 0.7 0.4
TasLe 12: Comparing the performance of NSGA-II, DPTMOHS, and MBHS algorithms.
. Budgets NSGA-II DPTMOHS MBHS

Test number Size MNPV

B-E MID SDS RAS MID SDS RAS MID SDS RAS
1 30 150-200 25 0.417 0.062 0.646 0.428 0.080 0.688 0.495 0.086 0.796
2 30 150-200 50 0.641 0.029 0.896 0.440 0.068 0.650 0.514 0.077 0.882
3 30 150-200 75 0.358 0.087 0.453 0.437 0.070 0.615 0.557 0.076 0.645
4 30 150-200 100 0.452 0.084 0.674 0.458 0.088 0.687 0.424 0.144 0.706
5 30 150-200 125 0.458 0.065 0.669 0.537 0.208 0.463 0.587 0.115 1.011
6 30 300—400 25 0.593 0.042 0.872 0.385 0.067 0.508 0.633 0.125 1.095
7 30 300—400 50 0.626 0.041 0.933 0.390 0.073 0.524 0.631 0.124 1.106
8 30 300—400 75 0.482 0.100 0.775 0.460 0.079 0.683 0.621 0.132 0.965
9 30 300—400 100 0.618 0.039 0.920 0.620 0.035 1.032 0.625 0.148 1.069
10 30 300—400 125 0.472 0.103 0.804 0.380 0.074 0.532 0.625 0.148 0.983
11 40 150-200 25 0.390 0.091 0.573 0.317 0.079 0.388 0.178 0.033 0.161
12 40 150-200 50 0.421 0.075 0.577 0.423 0.088 0.646 0.360 0.099 0.269
13 40 150-200 75 0.501 0.040 0.658 0.354 0.075 0.487 0.380 0.097 0.544
14 40 150-200 100 0.457 0.044 0.588 0.302 0.089 0.378 0.336 0.118 0.476
15 40 150-200 125 0.419 0.089 0.682 0.290 0.033 0.319 0.446 0.120 0.768
16 40 300-400 25 0.434 0.063 0.720 0.315 0.059 0.382 0.292 0.054 0.322
17 40 300—400 50 0.418 0.055 0.536 0.337 0.077 0.423 0.449 0.058 0.615
18 40 300—400 75 0.464 0.120 0.830 0.324 0.081 0.437 0.583 0.045 0.848
19 40 300—400 100 0.472 0.092 0.739 0.322 0.082 0.441 0.450 0.059 0.626
20 40 300—400 125 0.434 0.107 0.634 0.313 0.078 0.437 0.453 0.043 0.469
21 50 150-200 25 0.308 0.115 0.433 0.262 0.077 0.304 0.387 0.099 0.379
22 50 150-200 50 0.521 0.077 0.873 0.227 0.075 0.222 0.528 0.143 1.115
23 50 150-200 75 0.352 0.261 0.731 0.194 0.103 0.209 0.461 0.141 0.851
24 50 150-200 100 0.380 0.051 0.437 0.275 0.300 0.508 0.479 0.113 0.731
25 50 150-200 125 0.492 0.154 0.899 0.143 0.021 0.140 0.433 0.081 0.550
26 50 300—400 25 0.261 0.064 0.328 0.271 0.048 0.288 0.407 0.074 0.507
27 50 300—400 50 0.486 0.133 0.949 0.362 0.047 0.451 0.395 0.031 0.479
28 50 300400 75 0.521 0.252 1.141 0.361 0.129 0.512 0.368 0.041 0.476
29 50 300—400 100 0.673 0.103 1.607 0.343 0.064 0.451 0.415 0.034 0.506
30 50 300—400 125 0.468 0.183 1.099 0.318 0.058 0.348 0.447 0.101 0.631
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Boxplot of NSGA-II (MID), DPTMOHS (MID_1), MBHS (MID_2) Boxplot of NSGA-II (SDS), DPTMOHS (SDS_1), MBHS (SDS_2)
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Ficure 4: Boxplot of the RAS, MID, SDS indicators (Kruskal-Wallis test) for three algorithm.
TasLE 13: Paired f-test results to compare DPTMOHS and NSGA-IIL.
Indicator Test results Interpretation
Paired T for MID — MID_1
N Mean StDev SE mean
MID 30 0.4664 0.0952 0.0174
MID_1 30 0.3528 0.0977 0.0178
MID Difference 30 0.1135 0.1082 0.0197 Null hypothesis is rejected
95% CI for mean difference: (0.0731, 0.1539)
T-test of mean difference =0 (vs.#0): T-value =5.75 P-value = 0.00
Paired T for SDS —SDS_1
N Mean StDev SE mean
SDS 30 0.0941 0.0568 0.0104
SDS_1 30 0.0835 0.0522 0.0095
SDS Difterence 30 0.0106 0.0782 0.0143 Null hypothesis is not rejected
95% CI for mean difference: (—1.0186, 0.0398)
T-test of mean difference =0 (vs.#0): T-value =0.74 P-value =0.463
Paired T for RAS—RAS 1
N Mean StDev SE mean
RAS 30 0.7558 0.2520 0.0460
RAS_1 30 04717 0.1797 0.0325
RAS Difference 30 0.1135 0.1082 0.0197 Null hypothesis is rejected

95% CI for mean difference: (0.1724, 0.3958)
T-test of mean difference =0 (vs.#0): T-value=5.2 P-value =0.00
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TasLE 14: Comparison of right-tail and utility function approach.
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Test problems Number of variables MNPV E B Right tail probability Utility function
1 40 25 150 200 52.69 66.03
2 40 25 300 400 58,54 96.60
3 40 50 150 200 59.02 57.34
4 40 50 300 400 63.92 85.25
8 40 100 300 400 99.82 94.30
9 40 125 150 200 53.08 81.31
10 40 125 300 400 53.63 95.56
11 50 25 150 200 54,09 79.48
12 50 25 300 400 73.01 73.18
13 50 50 150 200 69.31 79.71
14 50 50 300 400 55.88 108.34
15 50 75 150 200 69.85 80.43
16 50 75 300 400 83.99 148.61
17 50 100 150 200 55.00 74.17
18 50 100 300 400 87.21 133.07
19 50 125 150 200 63.90 74.38
20 50 125 300 400 39.65 65.44
Mean 64.35 87.42

in the SDS index (P-value=0.321). However, the RAS (P-
value =0.0001) and MID (P-value=0.0002) indexes show
distinctions. According to the results of the paired t-test,
the MID of the DPTMOHS algorithm is superior to that of
NSGA-II, while the RAS of NSGA-II surpasses that of the
DPTMOHS algorithm.

The proposed approach can be beneficial for VCs aiming
to choose investees with potentially higher returns, given cer-
tain probability conditions [32]. Furthermore, we introduce a
utility function that is more robust in the right tail of the
PDNPV approach for portfolio selection optimization. All
these methods prove highly useful for VC decision-making
and for private equity investors.

6. Conclusion

VCs employ various quantitative and qualitative models for
deal valuation and portfolio selection. This study introduces
a novel framework for valuing and selecting deals, incorpo-
rating a combination of contractual terms, such as call
options, liquidity preferences, and participant rights, within
VC portfolios. VCs aim to select investee portfolios that not
only yield the highest possible returns but also align with the
strategic goals of their portfolio. Thus, we have proposed a

multiobjective mathematical model that considers both
financial and nonfinancial dimensions in VC portfolio selec-
tion. In this context, we utilize a numerical integrated method
where the NPV of each deal is stochastic, determining the
probability of the right tail side of the stochastic NPV portfo-
lio. Given the NP-hard computational complexity of the
model, we employ the DPTMOHS algorithm—a metaheur-
istic based on harmony search—to address and solve the
proposed multiobjective model, followed by a thorough
assessment of the algorithm’s performance. Furthermore,
we introduce a new robust utility function tailored for VC
firms. This function demonstrates superior resilience com-
pared to the right tail side of the NPV probability function
approach when dealing with default. The proposed func-
tion empowers VC decision-makers to make more informed
and resilient decisions in the face of potential failures. We
encourage future researchers to explore exact algorithms to
discover the best and optimum Pareto solutions. Further-
more, the integration of various types of contractual terms
would significantly contribute to the advancement of this
field. Moreover, we propose the development of bi-level
mathematical models for deal selection, incorporating diver-
sification indices across various investment stages and geo-
graphical locations.
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Appendix
N
&(MNPV) = Pr{Sy>MNPV} = Pr{ < Y npv,.) >MNPV},
i=1
= Pr{npv, >MNPV} + Pr{npv, + npv,>MNPV N npv, <MNPV}
+ Pr{npv, + npv, + npv3;>MNPV N npv, + npv, <MNPV}
+ - +Pr{npv, + npv2 + -+ + npvy >MNPV N npv; + npv, + - + npvy_; <MNPV}
@(MNPV) = {1 - F,,, (MNPV)}
+ / Pr{npv,>MNPV - npv, N npv; <MNPV|npv, = h} f., (h) dh
+ / Pr{npvs>MNPV - S, NS, <MNPV|S, = h} f; (h) dh + ---
- Al
n / Pr{npvy_, > MNPV — Sy_; 1 Sy_ <MNPV|Sy_, = h} fs. (k) dh (A.1)

MNPV
@(MNPV) = {1 - Eyp, (MNPV) } + / Pr{npv,>MNPV - h} f,.. (h) dh

J =00

MNPV
@(MNPV) = {1 - F,,,, (MNPV)} + /

oo

TNP
+ e +/ {1 Fopvy (MNPV — 1)} fo () dh

-0

={1-F,, (MNPV)} + Z R
PV1
i=1. -
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