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Malaria is a complex disease with many factors influencing the transmission dynamics, including age. This research analyzes the
transmission dynamics of malaria by developing an age-structured mathematical model using the classical integer order and
Atangana—Baleanu—Caputo fractional operators. The analysis of the model focused on several important aspects. The existence and
uniqueness of solutions of fractional order were explored based on some fixed-point theorems,such as Banach and Krasnoselski.
The Positivity and boundedness of the solutions were also investigated. Furthermore, through mathematical analysis techniques,
we analyzed different types of stability results, and the results showed that the disease-free equilibrium point of the model is proved
to be both locally and globally asymptotically stable if the basic reproduction number is less than one, whereas the endemic
equilibrium point of the model is both locally and globally asymptotically stable if the basic reproduction number is greater than
one. The findings from the sensitivity analysis revealed that the most sensitive parameters, essential for controlling or eliminating
malaria are mosquito biting rate, density-dependent natural mortality rate, clinical recovery rate, and recruitment rate for
mosquitoes. Numerical simulations are also performed to examine the behavior of the model for different values of the
fractional-order alpha,and the result revealed that as the value a reduces from 1, the spread of the endemic grows slower. By
incorporating these findings, this research helps to clarify the dynamics of malaria and provides information on how to create
efficient control measures.

1. Introduction

Malaria, originally known as the Latin word “bad air” in
ancient Roman times, is still a major life-threatening disease
that happens to be vector-borne, and is one of the most
deadly infectious diseases worldwide [1]. It hurts people’s
health as well as economic development in many developing
nations, especially in sub-Saharan Africa [2]. It is endemic in
over 85 countries by the World Health Organization (WHO)
[3]. By biting a person, an adult female infected with Anoph-
eles mosquito transmits the Plasmodium parasite [4].

At least five species of Plasmodium parasites commonly cause
human malaria: P. falciparum, P. vivax, P. ovale, P. malariae,
and P. knowlesi [5]. Of these, two species—P. falciparum and
P. vivax—pose the greatest threat. P. falciparum is responsible

for the majority of infections worldwide and is the dominant
species in sub-Saharan Africa [6]. While P. vivax, of the five
malaria parasites, has the widest geographic distribution because
it can survive at lower temperatures within a mosquito than
the other four parasites that infect humans, it can also cause
extremely severe malaria in children [7]. P. falciparum and
P. vivax are the most dominant malaria parasites in Ethiopia,
accounting for 60% and 40% of malaria cases, respectively [8].

The data released by the WHO indicate that there were
about 247-million cases and 619,000 deaths in 2021 [1]. Approx-
imately, 96% of the confirmed deaths were from the African
region, 76% were children under 5 years of age, and 32% of
pregnant women were exposed to malaria infection. This makes
malaria one of the most serious health challenges. The
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mathematical modeling of infectious diseases has proved to play
an important role in understanding the insights of the transmis-
sion dynamics and appropriate control strategies [9]. Several
mathematical models and many scientific efforts have been
made to reduce the impact of malaria on humans. Ross [10]
was the first to develop a mathematical model for studying the
dynamics of human malaria infection.

According to Ross [10], if the mosquito population can be
reduced to below a certain threshold, then malaria can be
eradicated. Following the Ross model, several models were
carried out by various researchers by taking into account a
variety of parameters. For instance, Macdonald [11] made
some modifications to Rose’s model and concluded that reduc-
ing the number of mosquitoes is not enough to eradicate or
mitigate the burden of malaria in areas of intense transmission.

Numerous mathematical models relating to malaria have
been developed as a result of an increased understanding
of the biology and epidemiology of the disease, mostly by
expanding the two fundamental models created by Ross [10]
and Macdonald [11]. The models included a number of fea-
tures to increase their biological realism and forecast the dis-
ease’s prevalence. The main factors considered in the models
were human population migration and visitation [12], human
age structure [13], an age-structured model of malaria trans-
mission with acquired immunity [14], etc.

As far as the researchers are aware, all these models employ
integer-order derivatives in their differential equations. Frac-
tional calculus, a branch of applied mathematics that extends
integer calculus to noninteger orders, has found numerous
applications in diverse fields such as engineering, control net-
works, physical systems, and mathematical modeling [15-20].

In recent years, researchers have been developing math-
ematical models using fractional-order differential equations
(FODEs) in a wide range of fields like physics, thermody-
namics, viscoelasticity, electrical theory, mechatronics, med-
icine, chemistry, chaos theory, finance, and economics ([21]
and other references cited within). The main reasons given
for using fractional derivative models are that time-fractional
operators enable memory effects (i.e., the response of a sys-
tem is a function of its history), while space-fractional opera-
tors enable nonlocal and scale effects [22]. Furthermore,
fractional-order operators enlarge the region of stability
and capture the memory dynamics and genetic properties
that exist in both biological and engineering systems [23].
It can also provide a better fit for real data for the different
disease models [24, 25].

Many researchers make use of fractional-order derivatives
to model real-life world problems, but few of them are com-
monly used, including Riemann—Liouville [26], Caputo [27],
Caputo and Fabrizio (CF) [28], and Atangana and Baleanu
(AB) [29]. All these definitions of the fractional derivatives
have their advantages and disadvantages. For example, Riemann-
Liouville and Caputo operators are called fractional deriva-
tives with singular kernels [30]. They have the disadvantage
that their kernel has a singularity at the endpoint of the
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interval. Two new nonsingular fractional derivatives with
an exponential function and a Mittag—Leffler function kernel,
respectively, were developed by Caputo and Fabrizio (CF)
[28] and Atangana and Baleanu (AB) [29] to address this
issue. The CF with an exponential kernel is limited in its
ability to describe phenomena of nonexponential charac-
ters, such as anomalous relaxation, because solutions due
to an exponential kernel exhibit an exponential decline
comparable to the conventional integer order model [31].
Atangana and Baleanu (AB) [29] defined two fractional
derivatives in the Caputo and Riemann-Liouville senses
based on the generalized stretched Mittag—Leffler function
to address this shortcoming.

In the setting of fractional calculus, the Mittag—Leffler
function serves as a generalization of the exponential func-
tion. Its key benefit lies in its nonlocal and nonsingular
behavior. The ABC fractional operators also offer a more
comprehensive definition of the crossover property in the
epidemic models. Thus, researchers have determined that
the ABC fractional operator stands as the most suitable
choice for simulating real-world occurrences, such as pan-
demic diseases [32]. Further exploration of this operator’s
applicability to models can be found in [33-36]. Building
on this understanding, scholars have employed this operator
to create numerous mathematical models. The outcomes of
these simulations have resoundingly demonstrated the appli-
cability and effectiveness of the ABC operator.

Motivated by and inspired from the above discussions,
this paper analyzes a mathematical model of age-structured
malaria disease dynamics and transmission, including chil-
dren, adults, and pregnant women, using both classical (inte-
ger) order and AB fractional order operators in the Caputo
sense. This model extends the integer malaria disease trans-
mission model of Azu-Tungmah et al. [37] to a fractional-
order model, incorporating an exposed mosquito class.

The paper is organized as follows: Section 2 presents the
formulation of the mathematical model. Section 3 describes
an integer-order mathematical model analysis of malaria.
Section 4 presents a mathematical model analysis for the
fractional order of malaria disease transmission. Numerical
simulation results are presented in Section 5, Section 6 con-
tains discussion, and Section 7 contains conclusions.

2. Model Formulation

This model is an extension of the integer-order model of
malaria transmission dynamics proposed by Tungmah et al.
[37], along with the addition of the exposed class to mosqui-
toes. The fractional derivative is defined as the Atangana-
Baleanu fractional order derivative in the Caputo sense. The
model is formulated as follows: with human and mosquito
subgroups. The human subgroup is further divided into four
compartments: susceptible (Sy(t)), infectious under 5 years
(I;(t)), infectious over 5 years (I (¢)), and infectious pregnant
women (Ip(£)).
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FiGure 1: Flowchart for the malaria transmission dynamics.

At a per capita recruitment rate (Zy), individuals enter
the human population through the susceptible (Sy(#)) com-
partment. When human malaria infection occurs, persons
under the age of five transition to compartment (I;(t)), those
above the age of five who are not pregnant move to the
compartment (I, (#)), and those who are pregnant move to
the compartment (Ip(¢)). Clinical treatment is administered
to those in the infectious compartments (I;(¢)), (I5(t)), and
(Ip(t)) at the rates of A}, A, and Ap before they return to the
(Sg()) compartment for reinfection.

Also, at the rates (d;), (dy), and (dp), respectively, infec-
tious people can die from sickness and leave the human
population. When a child turns 5-year old, they can join
the infected compartment of the infectious over five com-
partments at the rate (&), and they can join the infected
pregnant women compartment at the rate of £ when they
turn 5 and are also infectious over 5 years. It is anticipated
that infectious pregnant women cannot enter the infectious
beyond the 5-year compartment since the majority of infec-
tious pregnant women receives clinical treatment before giv-
ing birth. Also, the mortality rate (Ny) of humans in each
compartment is dependent on the population density.

Thus, the total human population Ny (¢) = Sy (¢) + I;(t) +
I, (t) + Ip(t). The mosquito population is divided into three
compartments: susceptible mosquitoes (Sy;(¢)), exposed mos-
quitoes (Ey(t)), and infected mosquitoes (Iy(¢)).Hence, the
total mosquito population Ny;(t) = Sy (t) + En () + Iy (£).

TasLE 1: The state variables for the Model 1.

State variables Description

Su(t) Number of susceptible humans at time ¢
I(t) Number of infectious infants at time ¢

I (¢) Number of infectious adults at time ¢

Ip(1) Number of infectious pregnant women at time ¢
Sm(t) Number of susceptible mosquitoes at time ¢
En (1) Number of exposed mosquitoes at time ¢

I (1) Number of infectious mosquitoes at time ¢
Ny(t) The total human population at time ¢

Ny (1) Total mosquito population at time ¢

In Figure 1, the dotted arrows depict the interaction and
transmission of disease between humans and mosquitoes,
while the solid arrows depict the passage of individuals
from one compartment to another.

3. Formulation of an Integer-Order
Compartmental Malaria Model

The model’s state variables are presented in Table 1, and its
parameters are outlined in Table 2. Building upon these
variables and parameters, we extend the classical integer
model of Tungmabh et al. [37] by incorporating an exposed
mosquito class. The extended model is as follows:
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TaBLE 2: Variable of model.

Variables Description Dimension

Zy Recruitment for the human population Humans X Time_—1
Z\ Recruitment for the mosquitoe population Time —1

Hu Density-dependent natural mortality rate for humans Time —1

U Density-dependent natural mortality rate for adult female Anopheles mosquitoes Time —1

dy Per capita disease-induced mortality rate for people under 5 years Time —1

da Per capita disease-induced mortality rate for people over 5 years Time —1

dp Per capita disease-induced mortality rate for pregnant women Time —1

Ar The clinical recovery rate for people under 5 years Time —1

Ap The clinical recovery rate for people over 5 years Time —1

Ap The clinical recovery rate for pregnant women Time —1

¢ Number of bites on people under 5 years per female mosquito per unit time Time —1

ba Number of bites on people over 5 years per female mosquito per unit time. Time —1

¢p Number of bites on pregnant women per female mosquito per unit time. Time —1

O Fraction of bites that successfully infect humans Time_—1

O Fraction of bites that successfully infect mosquitoes Time —1

Pu Rate of progression from S to Ey; compartment Time —1

am Rate of progression from Ey; to Iy compartment Time —1

¢ Rate of progression from I; to I, compartment Humans X Time_—1
Q Rate of progression from I, to I compartment Humans X Time_—1

Su(t) = Zy + Al + Aply + Aplp = (g + ap + ap + py) Sy,
L(t) = aSu — (A1 + py + di + @)1,
I(t) = apSu + ¢l — (ug + dy + Ap + Q)14
I(t) = apSy + QI — (uu + dp + Ap)Ip,
Sm(t) = Zy = (an + pv)Sma
Ey(t) = amSu = (#m + Bm) Ens
Ly(t) = PmEm — il

(1)

with initial conditions Si(0) = Syyo, ;(0) =Ty, I5(0) =14,
Ip(0) = Ipo, Sm(0) = Smo» Em(0) = Eno, and Iyy(0) = Iy

Applying the definitions of the force of infections as
indicated in the Addawe and Lope [38] model, the force of
infections for infants, adults, and pregnant women are as
follows:

~ D10vulv ~ Dp\Ouulu
=y = ,a

_ @PHMHIM
Ny A Ny '

Ny

ar P (2)

The force of infection for mosquitoes is as follows:

(@101 + DpIp + Dplp)Opy
Ny ’

(3)

ay =

4. The Integer-Order Model Analysis

This section presents the key characteristics of the model
system of Equation (1), including the existence and unique-
ness of solutions, positivity of solutions, bounds, basic repro-
duction number, equilibria with their stability analysis, and
sensitivity analysis.

4.1. Existence and Uniqueness of Solutions, Positivity of Solutions,
and Boundedness of Model Solutions. The mathematical well-
posedness of a model relies on key elements like the existence
and uniqueness of solutions, the positivity of solutions and
boundedness. These elements ensure the model is physically
meaningful, epidemiologically sound, and generates accurate
and dependable forecasts.

Theorem 1 (existence and uniqueness of solutions). If Sy,
I, Inos Ipgs Smo» Entor and Ly are positive, then there exists a
unique solution (S (t), I;(¢), Ix (), Ip(t), Sm(£), En(2), Iyt (t))
to system (1) in R’., for all t > 0.

Proof. To demonstrate the existence of a solution for system
(1), we first rewrite the system in the form:

X' =F(X),

where X = (Sy(t), T(t). Tn(6). Tp(t), Su(t), Eu(t),
Iy (1)) € R, and F(X) is given by
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Note that, since F,(X), F,(X),..., F;(X) are all C', the
existence of at least one solution for system (1) is guaranteed.
Moreover, we obtain:

IF(X) = FOG)I, <LIX, = Xall,, where X,, X, € Ry, with
L=max{B,.B,.....B,}, where B,=|@:2atZuutmly |

Zy
pulls By=llap+ay+ap+pull, By =py+dy+Ax + 82,

By =py+dp+Ap, Bs= ||(ZIII+@AIA;fPIP)ﬂH9HM + pm||s Bs =
i+ Py Br = -
Thus, the function F is locally Lipschitzian in X(t).
Consequently, it then follows through the Cauchy—
Lipschitz theorem [39] that system (1) has a unique local
solution. 0

\

Theorem 2 (nonnegativity of model solutions). If the initial
data Sy, i Ino> Ipg» Smo» Eno and Ly are nonnegative, the
solution (Sy(t), Ii(t), Is(t), Ip(t), Sm(t), Em(t), Lu(t)) to
system Equation (1) is nonnegative for all time t > 0.

Proof. The purpose of this subsection is to demonstrate how
all solutions of the model Equation (1) remain nonnegative if
their initial data are nonnegative.

To prove this, from the first Equation in (1), we get

Su(t) + g(t)Su =/ (1), where f(£) = Zy + Aily + ApIy +
Aplp and g(t) — (g[+¢A+gPH)/4H6MHIM + sy

Thus, the general solution to the first Equation in (1) is as
follows:

Sua(t) = e_/ st / te/ O £ ML) + AT () + Anlo(8))ds + Sy (0) | (5)

Therefore, the positivity of the solutions I;(¢), I (), and
Ip(t) for all >0, allows us to guarantee the positivity of
Sy (t). Now, we confirm that I;(¢) given in system (1) is
nonnegative for all £ > 0. Suppose that the positivity does not
hold, therefore there must be a t,>0 such that () =0,
I'(t,) <0, and I;(¢)>0 for all t €0, t;), because the initial
condition Iyy>0.Thus, I;(¢) must be negative for some t,.
However, in the interval [0, t,) the function I;(t) is positive,
and at f,, I/(t) is nonpositive. Thus, from the second
equation of model (1), it follows that for t,,

f(ty) = 20uhlb) s 1) 2, (©

H

This contradicts that Ij(#;) <0. Hence, we must have
I;(t)>0, for all t>0.

Similarly, it can be shown that I, (¢)>0 and I(¢) >0 for
all £>0. Hence, we concluded that the nonnegativity of the
solutions I;(t), I (¢), and Ip(t) for all £ > 0, allows us to guar-
antee the nonnegative of Sy (¢).

The fifth equation in Equation (1) can be rewritten as
follows:

dsii"t(t) + h(t)Sy(t) = Zyy, where

(DiL(t) + DAL A(t) + Dplp(t) ) upbun
Zy

h(t) = e ()



As a result, Sy(t) = e_f;h(s)ds(ZHff)ef:Jh(s)dsds +Sm(0))
>0, since exponential functions are always nonnegative. It
can also be shown that Ey;(#) >0 and I;(t) > 0 are nonneg-
ative for all #,>0. This completes the proof of Theorem 2.[J

Theorem 3 (boundedness of model solutions). All solutions
(St I In, Ip, Svi Eni. Iyy) €R%. - of  the  malaria  model
Equation (1) are bounded, meaning that

(i) if Nu(t) =Sy ( )+ Ii(t) + In(t) + Ip(t), then Lim,
SupNy () < ”—H

(il) if Nyp(t) =Sm(t) + Ep(t) + Iy (), then Lim,_ .
SupNy (1) SZ—H

Proof. The human population and the mosquito population
are the two segments of model Equation (1). Ny (¢) = Sy () +
Li(t) + Io(t) + Ip(t) represents the total human population.
Using the first four equations in the model and differentiating
both sides of Ny;(#) about time, we obtain

dNg(t)

dt = ZH - ,LlHNH - (dIII + dZIA + dep). (8)
This implies,
dNy(t
% <Zy - puNy. 9)
t
Therefore,
Z 7
Ny(t) <=H 4+ <NH0——H>e‘”Ht. (10)
HH HH

So, as t—00, the human population Ny approaches i—g,
and

Nult) = Su(®) + 50+ a0 + () < (1)

At t =0, Equation (11) yields N;(0) >0 and Ny (0) < iﬂ
Hence, the bounded region of the system (1) for the
human population is, therefore,given by:

z
Qy= {(SH,II,IA,IP) ERLOLSSy+ L +14+1p S”—H}
H

(12)

Using the last three equations in model (1), differentiat-
ing both sides of Ny;(#) with respect to time, and solving, we
obtain:

=wm+mm+mms?u (13)

Nu(t)
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Now, if t=0, Equation (13) implies Ny(0)>0 and
Ny (0) <24,

Thus, the bounded region of the system (1) for the mos-
quito population is given by:

3 ZM
M

(14)

Hence, the biologically feasible region of the model sys-
tem (1) is given by:

where

Z
‘QH: {(SH’II’IA’IP) ER‘_}’_OSSH‘FII—‘FIA—FIP S'u—H},
H

(16)

and

Zy
Y

(17)

Within this region, the model is epidemiologically and
mathematically well-posed, ensuring a unique, positive, and
bounded solution in R7,. 0

4.2. Basic Reproduction Number and Equilibria with Their
Stability Analysis. The disease-free equilibrium (DFE) of
model system (1) occurs when there is an absence of malaria
in the population, characterized mathematically by I; =1, =
Iy =Ey =1 =0. To determine the DFE point, we set the
right-hand side of each equation in system (1) equal to zero,
leading to

Zy V/
Eoz(—OOO il 0,0). (18)
Hu Hm

The epidemiological concept of the basic reproduction
number, denoted by %, [40], is a key indicator of a disease’s
transmissibility. It represents the average number of second-
ary infections caused by a single infected individual in a
susceptible population. If R, is less than one, then the dis-
ease cannot invade the population and the infection will
eventually die out. The time it takes for this to happen gen-
erally depends on how much smaller %, is from one. If % is
greater than one, then an invasion is possible and the infec-
tion can spread through the population. Generally, the larger
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the value of %, the more severe and potentially widespread
the epidemic will be [41].

Ry

Theorem 4. The basic reproduction number of the model
Equation (1) is given by

OumOvubuPrlv (

A A3 0% + ALAD% + A1A,D% + A QD \Dp

+A30100¢ + Q201Dpp ) (19)

=p(FV7) =

where p represents the spectral radius (the dominant eigen-
value in magnitude) of p(FV™1).

Proof. We determine the basic reproduction number, denoted
by Ry, for system (1) using the next-generation matrix
approach, as described by van den Driessche and Watmough
[13]. The calculation of %, begins with rewriting the infective
classes of the model equations in the form:

X'(t) = F(t,X(¢)) —v(t,X(1)), (20)

where,

F (1, X(t) =

v(t,X(t) =

X(t) = (Ilv Iy, Ip, Eyp, IM)T,

HuiOvin
Ny

PP aOnu
Ny

HuDpOyin ,
— Sy
Ny HiM

(D111 + Dl + Dplp)Onm S
Ny
0
(¢ + Ay + py + d)
I = (uyg + da + A + Q)1
QI = (uy +dp + Ap)Ip

Stlv

M (21)

—(m + Pum)Em
PmEm — pnilm
0
0
-1 __
FV— = 0

—A,A;M — A;Ng — DP

A1 AYAs (i + )i Za

Thus, we obtain

F = Jacobian of & at DFE

0 0 0 0 %Z_H_

Nu  pu

O Z

0 0 0 o ZabvuZu

Nu  pm
_ Ovig Zy |
0 0 0 o 2ot Zu

Nu  pu

D10um v Dabuv 2y Drbum Zm 0
Nu  pm Nu  pum Nu  pm
Lo 0 0 0 o ]
(22)
and

A4, 0 0 0 0

¢ -A, 0 0 0
V =Jacobianof vatDFE= | 0 D -A; O 0o |,

0 0 0 -A, 0

0 0 0 Ay -As
(23)

where

Ay = (p+ A+ uy +dp), Ay = (uyg +da +Ap +2), A;
= (pu +dp +Ap), Ay = (un + Pu), As = im

A A A,
0

(24)
Thus,
—AF  —-F 7
0 0 —_—
AAs  As
-AG -G
0 0 _—
A5 As
o o Al -H (25)
AAs  As
~AN-DP P .
AyA; Az '
0 0 0 0. |
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The eigenvalues of FV~! are 1, =1, =1; =0 and

Y (A2A3@§ + AL ASDR + A ADR + A\Q0D O )

e +A3@1@A¢ + Q@I@p¢ (26)
- Ay Ay As (s + PrdHiiZa
\
Thus,
|
ALAs % + AL AR + ALA,B% + A Q0D
o p(FV_l) - 9HM9MH/4HZMﬁM< +A;8,80¢ + Q0 Dpdp (27)
’ Ay Ay As(png + Pu)HinZu

\

This completes the proof of the theorem. [0  eigenvalues have negative real parts, the equilibrium is stable.

Conversely, if any eigenvalue has a nonnegative real part, the
Theorem 5. The disease free equilibrium point of system (1)is ~ equilibrium is unstable.
locally asymptotically stable if Ry<1 and unstable if Ry> 1. The Jacobian matrix of the model Equation (1) evaluated
at DFE is:
Proof. To determine the stability of the DFE, we calculate the
eigenvalues of the Jacobian matrix at that equilibrium. If all

[ —py Aq Ay Ap 0 0 _<@I+@A+@P)9MH_
—A, 0 0 0 0 D10nm
0 ¢ -A, 0 0 0 OaOrn
o 0 0 ~A, 0 0 DpOnm
J(Ey) = HD10um Zm HDaOum L HnDpOum Zm
0 _ Y - —————— —uy 0 0
Zu  Mm Zy M Zy  pu
o HunOumZu  plabuvZv G Zn g 0
Zu My Zy  pum Z Y
0 0 0 0 0 Pum “Hm -

(28)

\
By inspection, it is easy to see that two eigenvalues of  remaining eigenvalues are obtained from the following 5x
Equation (28) are A, = —uy and As = —py;, while the 5 matrix:

-A 0 0 0 D10y |
¢ -4, 0 0 D 4OMu
u@i0um Zv HuaBa0um Zv #uDpOum Zm
e o DM B) 0
Zy Hm Zy Hm Zy MM
L 0 0 0 Pum —Hm
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Using the elementary matrix row operations in matrix

Equation (29), we obtain

A1 Q0 ) O + AL A DpOyy + 2010ynd

@10mu
A1D\Ovn + 2D10\in
Ay

]* (Eo) - 0 0 _A3 0

where
b =-Ay=—(p+ A +pug +dp), (31)
Ay =—A; = —(ug +ds +As +2), (32)
Ay =—Ay = —(pun + dp + Ap), (33)
de = —Ay = —pun(1 - RY). (34)
A7 = —As = —py. (35)

Consequently, the eigenvalues of matrix Equation (28),
A Ay, A3, Ay, A5, Ay, are all negative. Ag is negative if Ry<1
and positive if Ry > 1.Thus, the malaria model Equation (1) is
locally asymptotically stable at the DFE if Ry < 1 and unstable
if Ry>1. O

4.3. Global Asymptotic Stability of Disease-Free Equilibrium.
Chavez et al. [42] technique is used in model Equation (1) to
establish global asymptotic stability at the DFE point. The
process can be summed up as follows: the proposed model
Equation (1) is divided into the two subsystems specified by:

dXx

% rxx). 36)
dXx

dtz G(XI’XZ) (37)

The number of uninfected and infected people are repre-
sented in the system (1) by the variables X; and X,, respectively,
where X; = (Sy. Sy) € R% and X, = (I, I, Ip, Epp, Iyy) € RS
E° stands for the DFE point and is defined as E° = (X, 0).

The two conditions listed below must be met for there to
be global stability at the disease-free equilibrium point.

(1) It Xm = F(X,,0), then X, is globally asymptotically
stable

(2) G(X1,X3) =AX,
for (X;,X;) € Q.

-G(X,.X,), where G(X;,X,)>0

AlA,
(nt + Pr)RG

Pm
_AS

\
At the second condition, A =Dy G(X,,0) is a Metzler

matrix that is the off-diagonal entries are nonnegative and £

is the feasible region. Then, the following statement holds.

Lemma 1. If Ry <1, then the equilibrium point E° = (X, 0) of
the system (1) is globally asymptotically stable, provided that
conditions 1 and 2 hold.

Theorem 6. For the system (1), the DFE (E,) is globally
asymptotically stable (GAS) if Ry<1.

Proof. Let X; = (Sy, Sm) € R2 and X, = (In, It, Ip, Eyp, Iy) €
R>.. We group system (1) into:
d; =F(X;,0),%; X —G(X,,X,), where:

dSy
— =Zy — uuS
dx H ~ HHOH,
1 _px0)={ ¢ (38)
dr dSv 7
dt — 4&H My,
and
dx
d—t2 =G(X1,X,)
Ol
Hu21Ovn MSH _ AL
Zy
DaOnul
waH + oI — Ay,
Zy
Onim
HuleOvilvi g or _ AL
Zy
(Gily + Daly ‘;@PIP),UHSMHHM — (g + B B
H
PmEm = imlm
(39)
Now, Xy = (Si, Sim) = (f: i‘“ ) is the disease-free equi-

librium point of the reduced system (38); we show that X, is
a globally stable equilibrium in Q.
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To do this, we solve Equation (38); solving the first

Equation in (38); gives
—Zn _ Zu\ —ut . Z
Sy =21+ (S —32)e™* which converges to 2%

t — o0.

Next, by solving the second Equation in (38), we get

as

=~ 0 0
G(X1, X;) = AX, - G(X, X,) =

Dipt1Onm Z_M HuD aOum Z_M HuDpOum Z_M

Mathematical Problems in Engineering

Sm :% + (Som — %)e"” which approaches % as
t — Q.

Thus, these asymptotic dynamics are independent of ini-
tial conditions in €. Hence, the convergence of solutions of
Equation (38) is global in €.

Zy Hm Zy

Hm Zyy Hm

Next,
0 0 210mu I
0 0 @AGMH IA
—A; 0 DpOnn Ip
—(pm + Put) 0 Em

0 0 0 Pm —Hm I
D10\l
B0hilys — WSH’
H
Oyvul
Orlyilys ~IOANI
H
- DpOyul
BpOpily — WSH’ ’
H
[/ ZN! Dpl Smb
210umli + GaOumla + Dpbunle - CA R A_; el tssSuBens
H

where A is the Jacobian of G(X;, X,) taken to (I}, I, Ip, Ey,
Iy) and evaluated at (X;, 0),which is an M-matrix that is the

G(leXZ) =

C})Q)E))C})C})
AA}?A/\

Thus, if the human population is at an equilibrium
level, it follows that G(X;,X,) >0 for (X;,X,) €D, since
D10yl Z% St> Daynly Z;%W St> DpOvnlv =
%SH’ and @10umly + DpOumla + DoOumlp >
(QIII+GAIA+QPIP)/4HSM6HM‘

H
Thus, by Lemma 1, the DFE E, is globally asymptotically
stable for Ry<1. 0

@10\ul,
@0rins _ Hu21Yvn M ¢
D nOvi v —
DpOnmlv —

D10uml; + DaOumla + DpOumlp —

0
(40)

off-diagonal entries are nonnegative and £ is the feasible
region. R
Note that G(Xl, Xz) :AXZ - G(Xl, Xz), where

Zy H’
D abvmlm
Zy
/"H@PBMHIM S . (41)

—Sy.

Zy

(QIII + @AIA + @plp)ﬂHSMeHM
Zy

Su.

0

\
4.4. Endemic Equilibrium and Its Stability. In the scenario
where malaria permeates the population (I;>0, I, >0, I >0,
Eyi>0, and Iy >0), model (1) accommodates an equilib-
rium point aptly coined the malaria endemic equilibrium
point, denoted by E* = (Si1. I}, I+ Iy, Si1. Exps Iip)-

The Endemic Equilibrium point of model system (1),
denoted by E* = (S§y, I, I} I, Sis» Exr, Iy)» is obtained by
solving the following system of equations:
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D1+ 05+ Oyl
Zug + MIF + ApIL + Apl — <( I A - p)HuOMH M+ﬂH>SE=0»
H
O Ly
HuDrOvmly St — ALY =0,
Zy
4Ol .
DOy Ly 42
TP MH M PZI:AH Mt + QI — Al =0, )
5 O+ O O S
Zy
O + DpIx + Dol )y Sii0, )
(G0} + AA+Z p I3 )HESy M _ (s + P By = O,
H
PumEy — imly = 0.
\
Thus, the Endemic Equilibrium point of the model sys-
tem (1) is E* = (S5, I}, I; .I;, Siy» Exp. Iiy)» where
|
. Zyg(Ripn (pina + Pri) Zig + Zng AsOrtrPr)
T Ry (AspnOvinBrZan + PruZu(im + Pr))
I — (DaAy + ¢21)0un (m + Pr)ZuZu(RG = 1)
A AARS(AsZyOvinPu + s (Prt + Pu)Zu)
I = (unt + Pr) (A1 A Dp + (DA + ¢2))) PrunZZu (RG = 1)
’ A Ay ARG (AsZyOriPr + bt (line + Pri) Zn) ’ (43)

~ Zm(AsZyOvuPy + b + Pr)Zn)

i (R (it + Bu) Zus + ZnAsOnuaPur)
__ ﬂMZMZH(R(Z) - 1)

Ly

 Ripuni(unt + Bw) Zas + ZyrAsOniuaPrt
PruZnZyy (R - 1)

This implies that the only scenario where the force of
infections is positive at the endemic equilibrium point is
one where Ry>1. Thus, we have proved the following
theorem.

Theorem 7. The malaria model (1) has a unique endemic
equilibrium in a region £, if Ry>1.

Theorem 8 (see [43]). (Krasovkil-LaSalle Theorem (Exten-
sion of Lyapunov’s Theorem)). Consider the autonomous
system x' =F(x), where x* is an equilibrium point, i.e.,
F(x*)=0.

Suppose there exists a continuously differentiable function
L:R™ — R that is positive definite on the entire space, radially
unbounded, and that satisfies:

L'(x) <0 and Vx € R".

Define the invariant set @ = {x € R"|L'(x) =0}. If Q con-
tains only the equilibrium x*,then x* is globally stable.

 Ripuni(Bw + Bu)Zi + ZniAsOnuP

\
Theorem 9. The endemic equilibrium E* = (Siy, I}, I;, Iy, Sty
E}, Ii) of the model system (1) is globally asymptotically
stable in £ if Ry> 1.

Proof. This section deals with the global stability of model
system (1) in the domain Q. To do this, we define the Lya-
punov Function as follows:
L<SH5 II’ IA» IP? SM’ EM» IM)

1 . " . #

:E((SH = St) + (= If) + (Ia = I}) + (Ie - I}))?
1 . " .
+ 2 ((Sm = S30) + (Bw = Byg) + (Iv = 1))
(44)

Let L:R’, — R. Then, Lis continuously differentiable
function and also,
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(1) L(Si. IF I 15 Sipe Exgs i) =0,

(i) L(S. IF I5 I3, Sty  Efy T2 >0 for all (S, IF, I I,
Sits Exts Iip) # (Su Ity Iy, Ip, Sy Ent, It), and caleu-
lating the time derivative of L along the trajectories
of system (1), we obtain:

Mathematical Problems in Engineering

— = (Nu = (S + If + I3 + I3))(Zu = uulNu

dt
— (dil + oIy + dyIp)) + (Ny — (Siy + Eng

+ Iy) (Zm = paNu)-
(46)

dL . .
== ((Su—=S) + I - IF) + (I, - I) From the first four equations of system (42), that is,
[(dSy dl; dl, dlp
A 3 ) (e e e & Sy — St
dSy  dEy  dly
Ey — Ef Iy - I} — .
(45)
|
) D1+ 0\ +0 Ovul .
Zuw + MIF + ALLL + Apl} — (( I A e p)HuOyvn MJrﬂH)S*HO,
H
Ovuly
”H@IZMH MS*H _AIII* — 0,
0 }II* (47)
DpOyuly .
HHEP M M PZ:H Mg 4 QI — Ayl = 0.
\
We get, dL Zy — (di I + &I+ d I
# E:(NH_ - (IIﬂZA PP))(ZH_/‘HNH
H
— E B £ Z
S;I + Iik + Ij-; + I* — ZH (dlll + dzlA + deP) . (48) - (dIII + dZIA + dep)) + (NM - 'MM> (ZM - /"MNM>
Hu M
(51)
Once again, from the last three equations in (42), that is, % < (NH _ fTH> (Zut — uuNy) + (NM - _M> (Znt = uiNw).
H
(BIF + BuL% + Dol urSt O . (52)
Zy - 7 — Sy =0,
H 2 2
dL (Zy = puNu)* | (Zu = #vNw) >
D} + DpI; + Dplp ) Sy6 —S—( + . (53)
@il AAZHPP)”HMHM—(uMJrﬂM)E;A:o, dt Hi Hna
PrEy — puly = 0. Thus, we have that % =0 if and only if Zy; = uy Ny and
(49) Zy = Ny hold. The largest closed and bounded invariant
set in {(Sg. Ir. Ia. Ip, Sat. Ent. Iy) € R, 29k =0} is the single-
ton {E*}, where E* is the endemic equilibrium point. As a
We obtain, result, when Ry>1 in the region £2, the unique equilibrium
point E* is globally asymptotically stable, according to the
7 LaSalle invariance principle. This completes the proof of the
Sy + By + Iy =Ny -2, (50)  theorem. O
Hm

Now substituting Equations (48) and (50) into Equation (46),
we have

4.5. Sensitivity Analysis. This section examines the sensitivity
analysis of a mathematical model of malaria with age-
structure to different parameters and their impact on the
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TasLe 3: The sensitivity indices for R, of the reproduction number
of the model (1).

Parameter Value Source Sensitivity index
Zy 414521 [37] —0.49929
VA% 134267979835 [37] 0.49928
Hy 0.016 [37] 0.47322
Hm 0.058176 [37] —1.09840
D, 0.020605 [37] —0.00903
Dy 0.19113 [37] —0.227690
Dy 0.49273 (37] —0.00014
Ay 0.11855 [37] —0.05197
Ap 0.14348 [37] —0.17090
Ap 0.14154 [37] —0.000040
O\ 0.00016937 [37] 0.49929
Oum 0.00454 (37] 0.49930
b 033575 [37] 0.17693
ba 0.98982 [37] 0.82142
¢p 0.012704 [37] 0.000022
¢ 0.10743 [37] 0.00621
Q 0.016744 [37] —0.01980
B 0.2328 Estimated 0.09982

system dynamics. By analyzing age-specific parameters, vector-
related parameters, intervention parameters, and long-term
outcome parameters, we better understand the factors that
affect malaria transmission and develop targeted strategies
for controlling and eliminating the disease. The normalized
sensitivity index of a variable to a parameter is the ratio of the
relative change in the variable to the relative change in the
parameter [44].
That is the formula

OR u
Ry 0
=—X—, 54
Tu ou RO ( )

gives the sensitivity index R, in relation to a parameter, let’s
say u.

The sensitivity index with negative signs indicates that
for an increase in the corresponding parameters, there is a
decrease in the value of the reproduction number and vice
versa. Table 3 shows that the density-dependent natural
mortality rate for adult female Anopheles mosquito’s iy
has got highest sensitivity index of —1.0984. This means
that decreasing the density-dependent natural mortality
rate for adult female Anopheles mosquito’s by 10% would
increase R, by 10.884%. The second highest index 0.82142 is
that of the number of bites on people over 5 years per female
mosquito per unit of time ¢,.That is increasing ¢, by 10%
will increase Ry by 8.2142%. The parameters Zy, Oy, and
Oum have sensitivity index of 0.49928, 049929, and 0.4993,
respectively. By lowering these parameters by 10%, R, is
reduced by 4.9928%, 4.9929%, and 4.993%, respectively.

13

5. Fractional-Order Malaria Model

In this section, we review some fundamental definitions from
fractional calculus, as well as a few well-known theorems that
will be used throughout the paper.

Definition 1 (see [27]). The gamma function of y>0 is
defined as follows:

I'y)= /ZCXV‘le‘xdx. (55)

Definition 2 (see [26]). Let a, f>0. The function Ea,/;(z) is
defined by

gk
Ea,ﬂ(Z) = kgom . (56)

Note that the following relations hold as a result of the
definition provided in Equation (56):

(i) Ea,l(z) :Ea(x> :Zkoiof(#):rl)’ a>0,
(ii) Eq 5(2) =3 (Ea, p-a(2) = 7507)-

Definition 3 (see [29]). Atangana—Baleanu fractional deriva-
tive in the Caputo sense.

Let f € C'(a,b),b>a,a €0, 1]. The Atangana—Baleanu
fractional derivative of f of order « in Caputo sense with base
point a is defined as follows:

we0if(0) =t 5 (el T a7

where B(a) is the normalization function given by B(a) =
1 - &+, characterized by B(0)=B(1)=1.

Definition 4 (see [29]). The fractional integral associateof the
fractional derivative of Atangana—Baleanu is defined as fol-
lows:

(1-a) a

1 ! a-1
S O+ g [ (€= 0 @
(58)

ASRIEf(8) =

Theorem 10. Let f : [a, b] — R be a bounded and continuous

function then the following results hold as in [29],

B DEf ()] < gy IF (D), where
[F(0)]-
Further, the Atangana—Baleanu derivative fulfill the

Lipschitz condition [29].

[ F (Ol = maxe<<p
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I 4*GDEf (1)

= BEDEA S LA = A,

(59)

where 0<a <1 is the order of fractional derivative.

Theorem 11 (see [29]). The Laplace transform of the Atangana—
Baleanu fractional derivative in Caputo sense is given as

L{APGDEf(£)}(s)

Mathematical Problems in Engineering
B(a
I { (@)

o] (‘“(1—@

B(a)(s"F(s) - s*'f(0))

s“(1-a)+a

(t - x)“>f,(x)dx} )

,$>0.

The ABC fractional derivative of the model Equation (1) is
given as follows:

(21 + Da + Do) puOyulnSu

ABEDISy(t) = Zyy 4 Al + ApI oy + Aplp — 7 HuSu,
H
@100l
ABCDAT, (1) _ Hu¥1Ymu MSH ~ AL,
Zy
D aOn ]
ABEDEIL (t) = WSH + @6 — Ay,
H
Oyl
ABSD?Ip(t) :wSH + Q1 — Aslp, (61)
H
iy + D41 el Sy
ABCDag, () = 7y, _( 1 + 94 A‘; plp) i SnmOum — laSur.
H
Ol + d,1 el NV
ABCDOE (1) :( Ui + 94 A;‘ plp) i SvOam — (s + Pr)Ens
H
ABE DM (t) = BB — piilns
\
With Sy;(0) >0, I;(0) >0, I, (0) >0, Ip(0) >0, S\:(0) >0,  Proof. From model (61), we get

Ep(0)>0 and

Iv(0) >0, (62)

where ABSD¢ is the Atangana—Baleanu Caputo fractional
derivative of order a.

Lemma 2. (Generalized Mean Value Theorem see [45]).
Supposing that g(t) € Cla,b] and AB{D¢g(t) € Cla,b] for
O<a<l, then g(t)=g(k)+ 5 ABEDIg(7)(t — k), with
0<t<t,Vtela,b).

Remark 1. Suppose that g(t) € C[0, b] and “B{D¢g(t) € Cla,
b] for 0<a <1 from Lemma 2 one candeduce that

(i) if ABSD?g(t)>0 and V€ (0,b], then thefunction
g(t) is non-decreasing and

(ii) if AB§D¢g(t) <0 and Vt € (0,b], then the function
g(t) is non-increasing.

Theorem 12. For V(t>0), the solutions of a system in
Equation (61) with a positive initial conditions are positive.

ABSDESy (t) s, —0 = Zu + Atl + Aply + Aplp>0,

D10nul
ABCDaII(mII . _WSH >0,
H
D10l
ABED LA ()7, o _WSH +¢L >0,
H
DpOyul;
ABC D] L), 0_%}?’““‘45 QI >0,

ABGDESM (1) |SM:0 =Zn>0,

(@101 + Dpls + Dolp) 1 Smbum >0
Zy -

ABSDE Iy ()], —0 = PuBn 2 0.

A D Eya (1) gy =0 =

(63)

As a result, the feasible region provided by £2 is positivity
invariant for model (61), which is inferred from Lemma 2 and
remark 1. As a result, the solution remains inside 2. 0

Theorem 13. The biologically feasible region Q2 = Qy X Q2 C
R’, is positively invariant with respect to the initial conditions
in R_ for the system (61).

Proof. Adding the first four equations of system (61), we
obtain the total human population:
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ABSDENy (t)= Zy — uuNy — (i + dyly + d,lp)
< Zy — puNu(t).
(64)

Similarly, adding the last three equations in system (61),
we obtain the total mosquito population:

ABSDENy (1) = Zy — pivNwi (). (65)

Applying the Laplace transform to Equation (65), we get:
L{APGDENu (1) Hs) < L{Z — puNu(t)}(s). (66)

Using Theorem 11, we have:
a P so-1
B(a)(s [NH(E)]OE))G Ny(0)) <ZH +s = N:)(J(:zl’ where Nj;(0)
represents the initial value of the total human population.

Therefore,

s* !Ny (0)B(a)
g{NH(t)}(S) < (B( )S'l +ﬂH(Sa(1 _ (X) + a))
gt ( (1-a)+a )
s \B@F (- 7))
(67)
Therefore,
LNa(D}(9) < —
(B(a) + (1 — @) \s" + gt
Zu(l - a) Ny (0)B(a) @1
+( (@) +pu(l—a)  Bla) + puu(l - a)) S+ B
(68)

Applying the inverse Laplace transform on both sides of
Equation (68), we get:

ZHat“
Zy(1 - a) NH(O)B(a) i
+<B(a)+ﬂH(l—a) B(a)+ﬂH(1 _a)>Ea,l( kt )7

(69)

where k= %. From Mitage—Leffler property E, 4(z)

LBy poa(2) - ) we get

15
a 1 a
aa+1( —kt ) _W (Ea,l(_kt ) - 1) (70)
Thus, Zy(1-a) Nit(0)B()
NH( ) ﬁ (E (_kta) - 1) + (B(a)iﬂH(l—a) +B(G)H+ﬂH(l—a>)
w1 (—kt*) =2 since E,; (—kt*) - 0 as t — oo.

Therefore, the epidemiologically feasible region for the
human population is as follows:

Z
‘QH: {(SH,II,IA,IP) GRL}FOSSH+II+IA+IP SﬂH}
H

(71)

Similarly, it can be shown that the feasible region for the
mosquito population is as follows:

3 Zy
M

(72)

This establishes that the biologically feasible region Q=
0y X2y C R, is positively invariant with respect to initial
conditions in R’, for the system (61). O

5.1. Existence and Uniqueness Solutions of the Fractional
Malaria Model. This section demonstrates the existence
and uniqueness of solutions for the fractional ABC malaria
model in Equation (1), employing fixed point theory. To
facilitate this analysis, we reformulate Equation (61) into
the equivalent form:

APSDE S (t) = Fy(t. Su(t)),
ABSDIIL (1) = Fy(t, I (1)),
APEDYIA(t) = Fa(t, Ix(1)),
APTDEIp(t) = Fy(t, Ip(t)), (73)
ABTDESM(t) = Fs(t, Su(t)),
ABGDIEn(t) = Fe(t, En(1)),
APEDE I (1) = Fr(t, Iu(1)).
with initial conditions Si(0) = Siyo, 11(0) = Itg, 15(0) = I0,

Ip(0) = Ipo, Sm(0) = Eyo» and Iy (0) = o

Note that

= Smo> Em(0)
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OIS
Fy(t,Su(t)) = Zy + Afly + Aplx + Aplp — 01+ 0a + ip)ﬂH MM S
H
Ovnl
Fy(t.I(t) = wsH - Ay,
Zy
Onul
F3(t,15(1)) = @SH + ol — Ayl
H
DpOynl
Byt Tp(0) = M0, 4 Q1 - Asl, 74
H
1 I I Smb
Fa(t, Sy (t)) = Zpg — (D111 + Daly 'ZQP p) M SMOum — isiSuns
H
I* I I Smb
Fo(t, Ey(t)) = (Gi1* + Daly ;H@P p)HESMOnM (s + g Ent
Fy(t. In(1)) = BuEnt = pnal-
\
Using Laplace transformation on both sides of the first . a a t aml
equation in Equation (73), we get: “B(ar) [8(®)](s) (1) = B(a)I'(a) /0g< )t —7)*dr
(80)

Z[A5DESu(1)](s) = ZLIF\ (t. Su(t))](s). s>0, (75)

And according to Theorem 11, we have

B(a)(s*Z[Su (1) (s) = s“~'Su(0))

=Z[g()](s).  (76)

s*(1-a)+a
where g(t) = F, (¢, Sy(t)), which is equivalent,
ZIa(0)(5) = §8u(0) + o5 LIBONS) + s LI
(77)

Applying the inverse Laplace transform on both sides of
Equation (78), we get the follwing equation:

a

o)+ 2 s 10010 )
(79

l-a

B(a)

Su(t) =Su(0) +

Now, the last term in Equation (79) can be written as
follows:

7 0o b =

where F(s) =z =55 [ '] and G(s) = Z[g(1)](s).
Thus, using the convolutlon theorem Equation (79)
yields the following equation:

Z7HF(5)G()}E),  (79)

Therefore, using Equation (80), Equation (78) takes the
following form:

l-a
5 P (6:8u(0)

Su(t) - Su(0) =

(81)

Similarly, Equations (2)—(7) in Equation (73) can be writ-
ten as follows:

() = 10) =10 + 5 [ g0t a,
Ix(t) —IA(0)=;(_—a;’F3(t In(t)) B(a)"l’_ a)/ 9(2)(t — 7)™ dr,
zp(t)—Ip(O)sz(_—a;la(t.zp(t)Hm/ ()t = 7).

T Fs(tSu(0) + m/;g(,)(t e,

Eu(t) = Ex(0) = 5 Folt.E(0) + s [ glo)(e = o)t

() = 1a(0) = 5 Byt T(1)) + m/;g(f)(t o),
(52)

Now let’s redefine system (73) in a more general form as
follows:

ABGDEg(t) = f(t, g(t)), g(0) = gy >0, (83)
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where

g(t) = (Su(t), [1(t), Iy (1), Ip(t), Sm(t), Ene(2), (1)),
(84)

9o = (St0+ Ti0+ Ino» Ipo Svios Enmo- Into)- (85)

and,

f(t. (1) = (Fi(t, g(1)), Bx(t, g(1)), Fs(£, (1)), Fa(t, 9(1)),
Fs(t,9(1)), Fs(t, g(1)), F5(t, g(t)))-
(86)

Note that for fractional analysis of the Malaria model
(83), let us define Banach space ] =RXRXRXRXRXRX
R,R=0, 7] under the norm defined by:

|M|| = S, Ir. I, Ip, Spps En It = tfél[g‘f] Su(t) + Tp(t)

+1a(8) + Ip(t) + Su(t) + En(8) + I (1)
(87)

The following theorem will be utilized for our primary
finding.

Theorem 14 (see [46]). Let N be a convex, closed, and non-
empty subset of a Banach space B. Suppose that F and G are
mappings from N into N, satisfying the following conditions:

(i) Fu+GveEN for all u, v € N.
(ii) F is continuous and compact.
(iii) G is a contraction mapping.

Then, the operator equation FE + GE = ¢ has at least one
solution in N.

Now, if we set Sy (t) = g(t) and F,(t,Sy(t)) =f(t, g(¢)),
and applying Equation (81), then Equation (83) can be
expressed as follows:

9(t) = g(0) + (1 - a)/B(a).f(t, g(1))

+a/B(a).I(a) / ;f(r, dON(t - )tdr. ()

We now investigate two hypotheses based on Lipschitzian
and a few growth condition assumptions to demonstrate the
existence and uniqueness of solutions of fractional malaria
model Equation (83).

A,: There are two constants, a and b, such that

[f(t.9(1))| < alg(t)] + b, t € [0, 1]. (89)

A,: There exists constant Ly, for every g,,g, € R, such
that
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|f(t.91) = f(t. 92)| < Lutlgy = g2l (90)
te|o,1]. (91)

Let us define two operators F and G from Equations (83)
and (88) as follows:

Fg=g(0) + IB(%;)’f(t, g(t)), and
(04 t (92)
G = prai@ / f(z, g(2)) (£ - ) \d.

0

Theorem 15. If A; and A, holds, then Equation (83) has at
least one solution which means that consider system (1) has
one solution if

(1-a)

B(a)

Ly<1. (93)

Proof. To show that F is a contraction, let g, € B, where B=
{g€J:llg|| <r,r>0} is a closed convex set. Using the defi-
nition of F in Equation (92), we get:

Fg— Fgy| = ]g(m ()
l-a (94)
- (gl O+ st m») '
l—-a
|[Fg — Fg,| =——|f(t,g(t)) = f(t. g,(t))]
B(a) (95)

<1__O‘L| ~ g
_B((Z) Mg~ g1l

Thus, F is a contraction.

To show that G is relatively compact, we have to show
that G is bounded and continuous. For this, we proceed as
follows: it is obvious that G is continuous as F is continuous,
also for g €], we have

a
Gyl = max -2
11l = mex Bray @)

/ (2. g(0))(t - ) Ndz|  (96)

0

t€[0.7]

1Goll < 7zt s / [f(eg)le - (97)

1G4l SW[“H‘W (98)

Hence, Equation (98) shows that G is bounded. Let
t;>1t, €0, 7], such that
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16016 - Gatel = |t [ et = =de = (Gt [ togto - e )

IGg(t;) - Gg(t,)]
~ B(a)[(a) /0((t1 )" = (fp = 7)*T)f(z. g(r))dr ).
(100)
IGg(t)) - Gg(t,)|
*B@l(@ [i= 0 = (- ) (e e
(101)
Ga(t) - Ga(t) < T e i (0g)

B(a)I'(a)

As t; approaches t,, the right hand side of Equation (102)
tends to zero. Since G is continuous, |Gg(t;) — Gg(t,)| also
approaches 0 as t; approaches £,.

Therefore, G is bounded and continuous, which implies
that it is also uniformly continuous and bounded. By the
Arzela—Ascoli theorem, G is relatively compact and completely
continuous. Invoking Theorem 14, we conclude that the integral
Equation (82) has at least one solution, and consequently, the
system itself has at least one solution.

l1-a

(6,0 = i)l = 5

Additionally, after some algebraic simplification, we can
employ the Lipschitz condition and the ideas of triangular
inequality given in Equation (105).

lw(g: () = gz(f))|\<max (a) SI£(t.g1(6) = £(t. g>(0)

-+ max

e ) £(r.,(2))lde].

(106)

0(f -0 f(z,8(7)) -

Thus, we eventually have:

tll

lw(g,(t) —w(gx (1)l < (;(;a(; + W)LM”& - &l
(107)

where o = (375 —I—WHF(@)LM.

Therefore, the operator y becomes a contraction if con-
dition Equation (107) holds on C(J,R”). Consequently, the
Banach fixed point theorem ensures that system (103) pos-
sesses a unique solution. O

B(a) (f(£.9,(1)) = f(t, 2(1))) +a/B(0!)T(0!)/;(f(T» 8:(7)) — f(r.8,(1)))(t - )" dz|.
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‘. (99)

\
To address the question of uniqueness, we provide the
following result. 0

Theorem 16 (uniqueness). The model given by Equation (83)
has a unique solution provided that the following conditions

satisfy

Sy il S (103)
“\Flo) T F@r@) ™M
under Assumption 2.
Proof. To prove Theorem 16, let us assume that ] = [0, T] and

consider the operator y: C(J,R”) = C(J, R7).
Thus, using Equation (88) we have

w(g(t)) =g(0) + (1 — a)/B(a)f(r. g(1))
+a/B(a).I(a) / ;f(f, g(0))(t - 7)"dz.
(104)

Let g;,9, € C(J,R”) and 7 € [0, t]. Then, we have

(105)

\
5.2. Numerical Iterative Scheme and Simulations. We use the
method revised in [47], which combines the two-step Lagrange
polynomial and the fundamental theorem of fractional calcu-
lus, to approximate the Atangana—Baleanu fractional integral.
To obtain an iterative strategy, apply the aforementioned tech-
nique to the system (88).

Att=t,,; and n=0,1,2, -, we have

oltye1) = 900) =570 0,)
+ S [ g @) 01 - oo
1—-a
= e (e 9(8)
+ 23 [ (e g(0) (s — 1),

B(a)['(a) S0/,

i

(108)

With the help of interpolation polynomial, we approxi-
mate the function f(z, g(z)) over [t;, t;,,].
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g(t)) (= t) - f(tiiy, g(tio1)) (= 1) Using Equation (109) Equation (108) takes the form:
1 h .

a%n:gmH35§<%gw»+ « (ﬁfwﬂm”[“@—mnwﬂ—ﬂwwr

(110)
tiv1
_ f(tl—l Z(tl—l))/ (T t)(thrl —T) )dT
ti
\
Solving the integrals involved in Equation (110), we
obtain the following approximate solution, which represents:
|
M(( +1-i)n—i+2+4a)—(n—i)(n—i+2+2a)),
attn) =0l6) + S s £ N0
a Q) i=o “ftici. g Natl Na .
————((n+1-1 —(n=-i)*n-i+1+a))
Bl (1= = (= )
(111)

Hence, we have the following recursive formulas for the
proposed malaria model Equation (61):

hef (8, g(t:))

(n+1-i)(n—i+24+a)-(n-i)*(n—i+2+2a))

l-a o B(a)[ ()
SH(tn+1) = g(tO) + TFl(tn’ g(tn)) + o
(@ B@&| gt e e i1
e (e 1= (= )= 4 14 )
(112)
- Yo W(( +1-i)*(n—i+2+a)—(n-i)*(n-i+2+2a))
II(tn+1) g(to) + B FZ(tm g(tn)> + o Z
(a) B(a)i:() haf(tl (ll)) n _i(zl_n_ian_i a
—B(a)() (n+1-D)* =(n=-i)*(n-i+1+a))
(113)

Bf (1 9(1)
B 1_::2 a I ( ) ( )
Taltur) = g(to) + B S| _hf(te1.g(t)

B

(n+1-i)*n—i+2+a)—(n-i)*(n—i+2+2a)

(n+1-)* —(n-i)*(n-i+1+a))

(114)
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o o %((nﬂ—i)a(n—i+z+a)—(n—i)a(n—i+z+za))
Ip(t,s1) g(to)+B( )F4(tn,g(tn))+B(a)i:0 _h“f(t-_,g(ti_l))((nﬂ 1 ) ,
B(a)I'(a)
(115)
- oy W(( +1-i)*mn—-i+2+a)—-(n-i)*(n—i+2+2a))
Svi(tnin) g(t0)+B( )Fs(tn,g(t,,))Jr%gO Wty gt ))((n+l—i)““—(n—i)"(n—i+1+a)) ,
a)l(a)
(116)
L ., W(( +1-i)(n—i+2+a)-(n-i)*(n-i+2+2a))
Eni(ty41) 9(t0)+B aFe(tmg(tn))"‘Lz ;
(@ B@ S| W g(e) (e e e i1 4
p T (1= (== i1 +)
(117)
w Yo h{;'gf(g;’lg((;i)))((nJrl—i)"(n—i+2+a)—(n—i)”(n—i+2+2a))
In(ts1) g(t0)+B( >F7(tnvg(tn))+mi§0 hef(tiy. g(tiy))

6. Results and Discussion

This section presents the findings of the proposed classical (inte-
ger-order) malaria model (1) and the numerical solutions of the
fractional malaria model (61). This model, encompassing human
and mosquito subgroups, is formulated as follows: the human
subgroup is divided into four compartments: susceptible
(Su(t)) individuals, infectious individuals under 5 years (I;(¢))
of old, infectious individuals over 5 years (I,(t)) of old, and
infectious pregnant women (Ip(#)).The mosquito population is
divided into three compartments: susceptible mosquitoes
(Sm(t)), exposed mosquitoes (Ey;(t)), and infected mosquitoes
(Iyt(t)). This study utilizes the Atangana—Baleanu fractional dif-
ferential operator in the Caputo sense for the numerical solution.

The analysis of the proposed model includes the following:

(i) Evaluation of the existence and uniqueness of
solutions

(ii) Stability analysis
(iii) Numerical simulations.

Sensitivity analysis revealed that the density-dependent
natural mortality rate for adult female Anopheles mosquitoes

- a)’F(a)

(n+1-i)** —(m-i)*(n-i+1+a))

(118)

\
(u,,) has the highest negative sensitivity index, at —1.0984,
among other parameters. This means that decreasing this
mortality rate by 10% would lead to a 10.884% increase in
Ro. The highest positive sensitivity index, 0.82142, belongs
to the number of bites on people over 5 years per female mos-
quito per unit of time (¢, ). This indicates that increasing ¢, by
10% would lead to an 8.2142% increase in R,. Subsequently, the
parameters Zy;, 0y, and Oy exhibit sensitivity indices of
0.49928, 0.49929, and 0.4993, respectively. This observation
aligns with Tungmah et al. [37], who found that lowering these
parameters by 10% results in corresponding reductions of %,
by 4.9928%, 4.9929%, and 4.993%, respectively.

To gain a deeper understanding of the fractional model’s
Equation (61) dynamics across various scenarios and param-
eter combinations, numerical simulations were performed.
Using the values of the proposed parameters given in Table 3,
the numerical solutions of the fractional malaria model
Equation (61) for different values of the fractional order
a=0.6,0.7,0.8,0.9, 1 are displayed in Figures 2. These solu-
tions were generated using Equation (110) with a setp size of
h=0.005. The figures demonstrate that different values of
fractional orders have a significant impact on the system’s
dynamics. They also indicate that as a approaches 1, the
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Total number of suspected humans

Time (years)
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a=09 — a=0.6
— a=0.8

FiGure 2: Total number of suspected humans for different values
of a.

Total number of infected humans

Time (years)

--- a=1 — a=0.7
— a=09 — a=0.6
a=0.8

FiGURe 3: Total number of infected infants for different values
of a.

approximate solutions converges toward the classical (or
integer) order solution.

The graph of the susceptible human populations over
time for the fractional malaria model (61) is depicted in
Figures 2-8.This population increases mildly until indivi-
duals become infected with the disease and transition to
other compartments within the fractional model system (61).
Figures 3-5, respectively, represent the behavior of infected
infants, infected adults, and infected women populations over
time with different fractional values. Figures 6— 8, in turn,
represent the behavior of susceptible mosquito populations,
exposed mosquitoes, and infected mosquitoes, respectively,
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FIGURE 4: Total number of infected adult humans for different values
of a.
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FiGure 5: Total number of infected pregnant women for different
values of a.

over time for different fractional order values of the proposed
fractional malaria model Equation (61). Figure 3 reveals a sur-
prising pattern: during years 1-3, with increasing @, the num-
ber of infected infants declines. However, after year 3, a distinct
shift occurs; the number of infected infants exhibits a direct
positive correlation with a. In simpler terms, as a increases
beyond year 3, the number of infected infants also rises. In
contrast, Figure 4 shows infected adults increasing with a in
the first year, followed by a decrease as a continues to rise.
Figure 5 shows that the population of infected pregnant women
oscillates as the values of the fractional order a vary, exhibiting
a sinusoidal pattern. Figures 6-8 share similar structures
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Total number of suspected mosquitoes

Time (years)

— a=1 a=0.7
— a=09 — a=0.6
— a=0.8

FiGure 6: Total number of suspected mosquitoes for different values
of a.

x1010

Total number of exposed mosquitoes

Time (years)

— a=1 — a=0.7
a=0.9 a=0.6
— a=0.8

Figure 7: Total number of exposed mosquitoes for different values
of a.

between years 1 and 2. However, as fractional order a increases
in these years, the values of both exposed and infected mosqui-
toes rise, as shown in Figures 7 and 8, respectively. Conversely,
Figure 6 shows a decline in suspected mosquitoes. Beyond year
2, further increases in « lead to differing trends: suspected
mosquitoes decrease (Figure 6), exposed mosquitoes increase
(Figure 7), and infected mosquitoes continue to rise (Figure 8).

7. Conclusions

This research analyzed the disease transmission dynamics
of malaria by developing an age-structured mathematical
model using the classical integer order and Atangana—Balea-
nu—Caputo fractional operators sense. The analysis of the
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FiGure 8: Total number of infected mosquitoes for different values
of a.

model focused on several important aspects. The existence
and uniqueness of solutions of fractional order model were
investigated based on some fixed point theorems such as
Banach and Krasnoselski, providing a solid foundation for
the subsequent analysis. Positivity and boundedness of the
solutions were also investigated, ensuring the practicality and
reliability of the model.

Furthermore, the model’s equilibria were discovered, and
the results showed that the disease-free and endemic equi-
librium points are found to be locally and globally asymptot-
ically stable for Ry <1 and R > 1, respectively. The sensitivity
analysis revealed that the most sensitive parameters essential
for controlling or eliminating malaria are mosquito biting
rate, density-dependent natural mortality rate, clinical recov-
ery rate, and recruitment rate for mosquitoes. These findings
align with [37], highlighting the importance of targeting
these parameters for effective control measures.

For numerical simulations, the combination of two-step
Lagrange polynomial and fundamental theorem of fractional
calculus and the Toufik—Atangana numerical method were
employed. Several simulations were performed on the model,
yielding various graphical results that aligned with the theo-
retical results.

Future work can expand this model by incorporating
additional factors, such as environmental variables, socioeco-
nomiic factors, and vector behavior, to gain a deeper under-
standing of the complex interactions influencing malaria
transmission dynamics. Real data from Jimma, Ethiopia, could
be used for calibration and validation, allowing for a compari-
son of results obtained using both Caputo and ABC fractional
operators.
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