
Research Article
Obstacle Avoidance Path Planning of a 4-DOF Weapon Arm
Based on Improved RRT (RRT-H) Algorithm

Kaifan Zou , Xiaorong Guan , Zhong Li, Huibin Li, Changlong Jiang, and Zihui Zhu

School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Correspondence should be addressed to Xiaorong Guan; gxr@njust.edu.cn

Received 10 October 2023; Revised 2 December 2023; Accepted 9 February 2024; Published 22 February 2024

Academic Editor: Rohit Salgotra

Copyright © 2024 Kaifan Zou et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

To improve soldiers’ combat capability, weapon arms have a good development prospect. However, due to special work scenarios
and tasks, new requirements are exerted on. Based on the fast-expanding random tree algorithm (RRT), path algorithm optimiza-
tion (RRT-H) is proposed for the path planning of weapon arms. Overall path optimization is achieved by reducing the local path
length with a closer path point planning to the obstacle. In a complex environment, the RRT-H algorithm can avoid local traps by
guiding the new path extension direction and exploring multiple different paths in the map. The superiority of this algorithm is
verified with 2D plane obstacle avoidance and pathfinding simulation experiments. Compared to RRT∗, RRT∗ smart, and
information RRT∗, the RRT-H can obtain high-quality calculation results in a shorter time. After setting degrees of freedom
(DOF) as that of variables, the algorithm is applied to the 4-DOF weapon arm, which confirms an effective reduction to the 4-DOF
weapon arm’s motion costs.

1. Introduction

As a kind of individual intelligent equipment, wearable
weapon arms gain much academic attention since they can
provide wearers with accurate striking ability and a fire cover,
while reducing soldiers’ training periods and training costs.
Compared with traditional manipulators (mechanical arms)
mainly used in manufacturing processes, wearable weapon
arms are equipped with lethal weapons and coordinate with
human beings in battlefield environments. A good path-
planning method can effectively improve man-manipulator
cooperation and, therefore, soldiers’ target tracking capacity
and self-protection. For a weapon arm, it requires the good
path planning to accurately avoid the human body, while
efficiently aiming and tracking the target. Weapon arm
researches are still at the initial stage, and there is no compre-
hensive theoretical support, so it is necessary to carry out
relevant researches in this field. Current algorithms for path
planning include artificial potential field method, ant colony
optimization, genetic algorithm, A-Star (A∗), probabilistic
roadmaps, and fast expanding random tree algorithm (usually
referred to as RRT) [1–8]. Not requiring a detailedmap to find
a path, the RRT algorithm has computing advantages over

other algorithms in the case of a multidimensional path solu-
tion of a manipulator. Yet, due to its random space explora-
tion, there may not be a unique final solution, and most
probably, they are not the optimal solutions [9]. In order to
overcome these path planning limitations, many researches
have improved RRT by optimizing various aspects such as the
path search processes, path results, and path smoothness. The
RRT∗ further repairs the path obtained by RRT, making
the final path closer to the optimal solution [10]. Informed
RRT∗ limits the new expansion points in the space where new
expansion points can optimize the existing path [11].
Islam et al. [12] presented RRT∗ Smart, which limits new
expansion points near the obstacles around the path, resulting
in a further optimized path than those by those obtained by
the former two algorithms. Burget et al. [13] introduced a
bidirectional extended random tree search algorithm, which
can better deal with the complex environment and improve
the search efficiency. Zhou et al. [14] used the Dubins curve
strategy to process the informed RRT∗ path and improved the
path generated by the RRT algorithm. All of these improved
RRT algorithms have been applied to many fields, manipula-
tor path planning being one prominent area. Cai et al. [15]
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proposed an improved rapidly exploring RRT for manipula-
tor path planning, taking the target point as the sampling
point with a certain probability. The algorithm improved
the directivity of path planning. To improve obstacle avoid-
ance, the step size can be changed according to the number of
obstacles in the surrounding environment [15]. Similarly, Ma
et al. [16] improved the advantage of RRT∗ in time and path,
optimizing RRT∗ for the manipulator. You et al. [17] pre-
served the initial tree, took it as the basis of pathfinding,
and applied it to 9-degrees of freedom (DOF) manipulator
pathfinding, with a much improved the obstacle avoidance
efficiency. Yang et al. [18] combined RRT with an improved
artificial potential field, provided avoid-rapidly exploring
random tree. This algorithm was applied to the path planning
of the forestry harvesting manipulator, which improved the
smoothness of the path and the calculation time [14].

As a peculiar subcategory in manipulators, path planning
of weapon arms requires a shorter calculation time and a
shorter path to reduce energy loss. To better adapting to
weapon arms, RRT algorithm efficiency needs tailor-made
improvements, with a further reduced calculation time and
optimized final path results. This paper provides an algo-
rithm optimization called RRT-H, which can be close to
the optimal solution in a shorter time. RRT∗, RRT∗ smart,
and informed RRT∗ are selected for comparison. The path
planning in 2D space is verified to prove that the RRT-H can
obtain a more efficient path in less time and less points. In
this algorithm verification operation, a 4-DOF weapon arm
ensures that it does not affect soldiers in space, so it can be
used as the main weapon arm structure. The 4-DOF weapon
arm’s path planning can effectively avoid obstacles along its
movement with a shorter Euclidean distance of the end of the
4-DOF weapon arm simulation model.

In this paper, Section 2 introduces RRT and its improved
algorithms, with RRT-H is introduced in more detail. Section 3
illustrates the performance of RRT∗, RRT∗ smart, in-formed
RRT∗, andRRT-H in threemaps, and the respective advantages
and disadvantages. Section 4 proposes a tailor-made escape
from local traps method is proposed, making up for a weakness
in RRT-H. Section 5 conducts a simulation model of a
4-DOF weapon arm. Based on the 4-DOF weapon arm’s
characteristics. Section 6 first designs a collision detection
model, and applies this 4-DOF weapon arm for the path
planning simulation. Concluding remarks are made in
Section 7.

2. RRT-Based Obstacle Avoidance Algorithms

This section introduces and analyzes RRT algorithms, with
RRT∗, informed RRT∗, and RRT∗ smart being follow-ups,
and the latter of which will be compared with optimized
RRT-H algorithm.

2.1. RRT Algorithm. RRT algorithm is a sampling process-
based search algorithm. Its random expansion process is
shown in Figure 1.

The expansion principle is as follows: Pstart and Pgoal are
the starting and ending points of the path. The point set T is
used to store points of the tree, and T’s first point is Pstart. The

algorithm randomly generates Prandom in the map. The point
closest to Prandom in T is marked as Pnear, which is Pnew is
generated between Prandom and Pnear. If there is no collision
between Pnew and Pnear, this Pnew will be added to T, and this
Pnear will be marked as Pparent to Pnear. When a generated
Pnew is close enough to Pgoal, the new path will take the Pnew
and Pgoal as the last two points, and Pgoal’s Pparent is the Pnew.
Starting from the Pgoal, the path is generated by finding each
point’s parent until the Pstart is found.

Despite the great advantages of higher dimension obsta-
cle avoidance, the path generated by the basic RRT algorithm
is usually tortuous, with the possible failure of an optimal
solution in the environment, a lengthened time, and unstable
results.

2.2. Improved RRT Algorithms. To overcome the abovemen-
tioned weaknesses, many studies [9–12, 13] are being con-
ducted to improve the RRT algorithm. RRT∗ is to add paths
and points to optimize the original RRT-generated path
(Figure 2).

After generating a new Pnew, Pparent, and Pnext will be
selected to reduce the path cost. The points around Pnew in
T are marked as potential Pparents. The path length of each
potential Pparent as parent to Pnew are calculated and used to
select the shortest Pparent as the best Pparent. Again, points
around Pnew in T are marked as potential Pnexts. By calculat-
ing the path length of each potential Pnext and comparing the
path of the potential Pnext with the original parent point, the
shortest path will be selected, and this Pnew will be updated as
the parent point to Pnext.

Begin

Input starting point as
Pstart Goal as Pgoal

Obstacle

Generating random
points as Prandom

Search the point
closest to Prandom in
T, marked as Pnear

Generating T
Add start point to T

Extend a certain
distance from Pnear
to Prandom, get Pnew

Pnew is in the
obstacle

In obstacle

Add Pnew to T Mark
Pnear as parent of Pnew 

Whether Pnew
is close to Pgoal

Out of obstacle

Add Pnew·parent to path
Pnew = Pnew·parent
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Pnew·parent= =Pstart?

Output path

End Add Pnew and Pgoal to path
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FIGURE 1: Random expansion process of RRT.
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Informed RRT∗ and RRT∗ smart further optimize the
RRT∗ algorithm, both intelligently selecting the Prandom
(Figure 3). Simulational result from informed RRT∗ is shown
in Figure 3(a). Informed RRT∗ algorithm immediately calcu-
lates the path cost as soon as it obtains the first path. Path
cost sum from subsequent Prandom –Pstart and from the sub-
sequent Prandom–Pgoal should not be higher than that of the
existing path. In this way, a space is obtained, and the gener-
ated points in the space can optimize the path. For RRT∗

smart, after obtaining the first path RRT∗ smart algorithm
simplifies the path. With reference to simplified results, it
then analyzes the obstacle position according to the simplifi-
cation results and generates a new Prandom near the obstacle.
RRT∗ smart simulation is shown in Figure 3(b). Both of them

further optimize RRTRRT∗ algorithm but increase the calcu-
lation cost and slow down the pathfinding speed.

To maintain the previous advantages and overcome dis-
advantages, once the first is found, it will be directly and
immediately optimized in RRT-H. It functions as if placing
a curve between obstacles; stretching the two ends of a line
will shorten the path within (Figure 4).

It takes three steps of optimization processes, and step
one is illustrated in Figure 5.

As is shown in Figure 5, the first step is to optimize the
existing path. Step 1 takes three consecutive points: Pi, Pi+ 1,
and Pi+ 2 in the existing path. Multiple points distributed
along the lines of Pi+ 1 and Pi+ 2, respectively, are marked
as PTs. PTs are connected with Pi to generate connection lines
LTs. According to the lengths of LTs, step one evenly distri-
butes point PCs on each LT. If any of PCs has no collision with
the obstacles, delete Pi+ 1 and the path between Pi,Pi+ 1, and
Pi+ 2, connect Pi and Pi+ 2 as the new path, mark Pi as a new
Pi+ 1, i = i+ 1. If there is a collision in PT (n), mark PT (n− 1)
as Pi + 1, i = i+ 1. The optimization operation goes on.
Reaching the Pgoal, the first step of optimization is over.

Then, starting from the Pgoal, the second round of path
optimization is carried out in the same way. The first two
steps lay a solid foundation for the third step, optimization.
The third step is shown in Figure 6.

As is shown in Figure 6, step three selects three consecu-
tive points Pi, Pi+ 1, and Pi+ 2 in the path, similar to that of
the first two optimization steps. The path of Pi+ 1 and Pi+ 2

generates multiple points PT, which are, respectively, con-
nected with Pi, and then the points PCs are evenly distributed
on LT. Collision detection is carried out for each PC. Assum-
ing that the first collision position is the PC (m) on LT (n),
and LT (n) is the path between PT(n) and Pi, enter PC (m) of
LT (n− 2) into the path set, and mark PC (m of LT(n− 2) as
Pi, PT (n) as Pi+ 1, then optimize Pi, Pi+ 1, and Pi+ 2 again.
Distribution gaps between detection points on the path make
it liable for sharp obstacles permeate in between, as is shown
in Figure 7, which gives misjudgment of “no collision.” In
this case, the optimization will fall into an endless loop, and
the distance between Pi and Pi+ 1 will be reduced close to 0.

The space where probabilities
generate Prandom

(a) (b)

FIGURE 3: Simulation results of (a) informed RRT∗ and (b) RRT∗

smart.

Pstart

Pgoal

Pgoal

Pstart

FIGURE 4: Schematic diagrams of RRT-H.

Pnew

Pnear

New parent
Old parent

New next point

: Potential parent point
: Potential next point
: New line
: Potential line

: Delete line

: New parent point
: New next point

FIGURE 2: The optimization process of RRT∗.
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In order to avoid this problem, the judgment points distri-
bution should be set as dense as possible. In order to avoid
the occurrence of extreme conditions when the density of
judgment points distribution is small enough, k is set as the
minimum distance permitted between Pi and Pi+ 1. If the
calculated distance between Pi and Pi+ 1 is less than k, then
i= i+ 1. Meanwhile, the path passes through the sharp parts
of the obstacle. An endless loop is thus avoided, and a new
path optimization starts, until getting the final optimal solu-
tion. The calculation time of the algorithm will increase with
the increase of PC density and the decrease of the k value. A
balanced distribution density of PC and a value of k are helpful
for the algorithm to achieve satisfactory results (Figure 7).

According to the obstacle avoidance strategy of weapon
arms in this paper (Section 5), there will be a certain fault
tolerance space between the edge of obstacles and the human
body. The method for jumping out of the endless loop will
not affect the obstacle avoidance effect if the distribution
density of points used for collision detection is reasonably
planned.

3. Comparison of Path Planning Effects

With referring to themaps used in other papers [19–22], three
kinds of maps are designed in this paper, which are C-shaped,
spiral-shaped, and fence-shaped, respectively. These maps in
this paper are only used to prove the algorithm’s superiority,
ignoring map complexity influences (Figure 8).
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FIGURE 5: Schematic diagrams of the first step optimization.
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FIGURE 6: The schematic diagram of the third step optimization.
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In this paper, the algorithms are compared in terms of
calculation time, number of Prandoms, and the generated path
length. Both RRT and RRT-H algorithm in this paper stop
the calculation after finding the path, while RRT∗, RRT∗

smart, and informed RRT∗ stop the calculation after reaching
2,000 steps. Figure 9 displays the results of the five algo-
rithms in the above three different environments.

As is shown in Figure 9, all algorithms can obtain a basic
path in a short time; the paths of RRT∗ smart and RRT-H are
shorter, that of RRT∗ and informed RRT∗ algorithms being
approximately longer. In the above three types of maps, the
first path obtained by informed RRT∗ is large. According to
the principle of informed RRT∗ algorithm, the optimization
space is planned according to the first path’s length. In the
above three maps, the optimization space covers almost the
entire map. Therefore, RRT∗ and informed RRT∗ would
show similar performances within 2,000 steps. Thus, the
informed RRT∗ algorithm does not have any obvious advan-
tage in the tortuous path planning.

The path cost of RRT∗, RRT-H, RRT∗ smart, and informed
RRT∗ vary with the number of Prandoms (Figure 10(a)). In order
to highlight the advantages of the informed RRT∗, new Pstart and
Pgoal are defined, and the path planning effect is shown in
Figure 10(b).

RRT-H algorithm does not need a new Prandom once it
finds a path. In the above simulation experiment, the RRT-H
algorithm can reach the last Prandom within 200 points with-
out any new Prandom. Also, the RRT-H algorithm has the
smallest Prandom number in the four algorithms. RRT-H
has a longer path than the other three before optimization,
while a shorter one after optimization.

Because the asymptotic optimality of the RRT∗, RRT∗

smart, and informed RRT∗, the longer the time consumed,
the better the result they have. The time consumption of
RRT∗ smart, informed RRT∗, and RRT-H here is compared
with that of informed RRT∗ algorithm, to show the relation-
ship between their respective path cost and time. Based on
RRT algo, the RRT-H algorithm has a high cost at the begin-
ning and gradually decreases with the three-step optimiza-
tion. After the optimization, it can quickly exceed the other
three ones and reaches a smaller path cost (Figure 11).

Adopting the common practice, each algorithm takes ten
groups of data for analysis. Of all four algorithms, the aver-
age path cost and time consumption are obtained from 10
experimental data groups and compared within the same

map. Then, RRT-H result histograms are compared with
the 2,000 steps results of the other three algorithms results.
RRT-H algorithm can optimize the path to a better result in a
shorter time compared with other algorithms (Figure 12).

4. A Tailor-Made Escape from Local Traps
by RRT-H

RRT∗, RRT∗ smart, and informedRRT∗ have the ability to avoid
local traps. In particular, the informed RRT∗ algorithm can
effectively jump out of local traps and obtain globally optimal
solutions. RRT∗ algorithm is not limited by local traps due to
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FIGURE 8: Shapes of the pathfinding maps.
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Prandoms, but it needs a large number of Prandom to complete path
comparison. RRT∗ smart is based on the paths found by RRT∗.
It is easier to fall into local traps, but there is still a certain
probability to jump out of local traps due to the probability
distribution of Prandoms out of optimization space. Because the
RRT-H algorithm directly optimizes the existing path, it is easy

to fall into the local traps, so it optimizes the Prandoms generating
method here (Figure 13).

As is shown in Figure 13, the points on the existing path
(before optimization) are entered into the path club. When a
new Prandom is generated, this Prandom will be filtered accord-
ing to the probability. The method searches a range near the
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Pnew. When the number of points in the path club is large,
the new Prandom is invalid, and it generates a new Prandom
again. The optimization effect of this method is shown in
Figure 14.

The algorithm will plan scattered multiple paths, which
improves the map exploration efficiency and avoids falling
into local traps to a certain extent.

Because RRT-H is easy to fall into local traps, the prob-
lem can be effectively avoided by this escape method in a
complex environment, which can provide a better path plan-
ning effect when applied to the weapon arm.

5. Path Planning Modeling of a 4-DOF
Weapon Arm

This 4-DOF weapon arm model is based on preliminary
researches in the Lab for Individual Equipment Technology,
Nanjing University of Science and Technology. According to
weapon arm requirements, 4-DOF is defined to provide the
weapon arm with an omnidirectional strike capability
(Figure 15).

As long as a target point is on the outside ballistic track,
the 4-DOF weapon arm can hit the target, regardless of the

position and posture of the weapon itself to which a weapon
arm is attached. Therefore, the weapon system at the end of
the 4-DOF weapon arm is regarded as a translational DOF,
and the 4-DOF weapon arm’s joints are regarded as rota-
tional DOF. When the end of a translational DOF coincides
with the target position, the position and posture of the
weapon arm are regarded as the achievable strike posture.
The arm can thus be regarded as a 5-DOF manipulator for
kinematics modeling. The 5-DOF manipulator model is only
used for the path planning algorithm here, and for other
situations, such as actual prototypes, it is a 4-DOF model.

In this paper, the weapon arm space posture is described
with the method of modified Denavit–Hartenberg (D–H)
parameters. The D–H coordinate modeling is shown in
Figure 16, and the D–H parameters are shown in Table 1.
Then, the kinematics simulation model of the 4-DOF
weapon arm is constructed and adopted for obstacle avoid-
ance path planning, together with the obstacle position
information.

6. RRT-H-based 4-DOF Weapon Arm Path
Planning Algorithm

In order to apply the RRT-H algorithm to the 4-DOF
weapon arm, algorithm variables are increased from 2 in
the 2D space to 5 in the weapon arm simulation model. A
collision detection model is set, aiming at the working con-
ditions of the 4-DOF weapon arm. Simulation results con-
firm that the algorithm can be applied to an efficient path
planning of the 4-DOF weapon arm.

6.1. Collision Detection of the 4-DOF Weapon Arm. With a
relative position stability of both the weapon arm and the

: Path club
: Prandom

: Point in T

Prandom
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FIGURE 13: The escaping method from local traps. ∗The Prandom in (a) is invalid, and the Prandom in (b) is added to T.
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FIGURE 14: The optimization effect for escaping from local traps.

FIGURE 15: A 4-DOF weapon arm model.
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human body, it is unnecessary to build a detailed human body
model as avoidance obstacles. The weapon arm is simplified as a
lever structure without volume, and the human body shape is
simplified as a bounding tree composed of multiple regular
cuboids. The whole obstacle avoidance issue thus is simplified
as a lever–cuboid collision detection. Considering the safety and
its volume ignorance in the weapon arm simplification, the
cuboid representing the human body is moderately extended a
certain distance larger than the actual human body. The collision
simplification method is shown in Figure 17.

Figure 18 is the schematic diagram of the collision
detection principle. The midpoint PO of each cuboid
face was taken as the starting point. Each face generates
a vector perpendicular to the face and pointing to the
outside of the cuboid. PCs on the manipulator are used
as collision detection points and are taken as the vectors
DSs’ starting points, with the direction PO–

PC. The dot
products PS of SS and DS are used to judge whether there
is a collision as follows:

P ¼ ∑6
i¼1

Si
! ⋅ Di

!

Si
! ⋅ Di

!�
�
�

�
�
�

; ð1Þ

col¼ ∑
m

j¼1
Pj; ð2Þ

where m is the number of points in PC. Only when col= 6m,
there is no collision between the weapon arm and the human
body in this posture.

TABLE 1: D–H parameters of 4-DOF weapon arm.

Link Theta d a Alpha (pi) Offset (pi) Joint type Ranges

L1 θ1 0.126 0 −0.5∗ −0.5∗ Rotary joint (−pi, pi)
L2 θ2 0 0 0.5∗ −0.5∗ Rotary joint (−pi, 0])
L3 θ3 0.386 0 0.5∗ 0.5∗ Rotary joint (−pi, pi)
L4 θ4 0.038 0 0.5∗ 0 Rotary joint (−pi, pi)
L5 0 1 0 −0.5∗ 0 Rectilinear motion joint (0–∞)
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FIGURE 16: D–H coordinate modeling of the 4-DOF weapon arm.
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FIGURE 17: Collision model simplification.
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6.2. Obstacle Avoidance Strategy of the 4-DOF Weapon Arm.
Given that the weapon arm is equipped with lethal weapons
at its end and that it coordinates with the human wearer, the
human body must be avoided, and its gun muzzle should
never point at the human body in its operation process.
Therefore, it is necessary to consider extending a certain
distance forward at the gun muzzle. Since the length of the
weapon arm in the model is short, 1m is taken in front of the
muzzle to add 10 points as PC to participate in the collision
detection in the path planning process (Figure 19).

The algorithm transforms the path from the folded state
to the target-directed state by setting the same target posi-
tion. The algorithm is applied to the path planning of a
wearable weapon arm system, and eight path plannings are
performed. The paths are then subjected to interpolation and
smoothing. The resulting path is shown in Figure 20.

As shown in Figure 20, the RRT algorithm has some
randomness in its computation results, while RRT-H is opti-
mized and has relatively more stable results. The average
cumulative angle changes of the 4-DOF in the path for
RRT are 181.28, 172.57, 212.57, and 140.38, respectively,
while for RRT-H, they are 88.38, 69.16, 92.00, and 93.89,
respectively. RRT-H exhibits significantly higher path quality
compared to the traditional RRT algorithm. The average
optimization degree for the 4-DOF is 51.24%, 59.92%,
56.72%, and 33.11%, respectively, resulting in an overall

optimization effect of 51.4%. The optimization effect is evi-
dent. In the workspace, the planning effects of the two path
planning algorithms for multi-DOF manipulators are shown
in Figure 21. It can be concluded that the RRT-H algorithm
is meaningful for obstacle avoidance planning in multi-DOF
robotic arms.

7. Conclusion

In this paper, a new RRT optimization algorithm (RRT-H) is
proposed. It has obvious advantages for the environment with
obstacles. RRT-H can effectively improve the pathfinding effi-
ciency and obstacle avoidance in the given three maps. It can
find the shortest obstacle avoidance path in a short time, and
can avoid the local traps by tailor-made method in a complex
environment. The algorithm is applied to a 4-DOF weapon
arm system, which can effectively reduce the path search
time and path length. The RRT-H algorithm in this paper
caters to the rapid reaction needs of weapon arms with their
better integration. Yet, due attention must be paid to the sim-
plicity of themaps in this paper. RRT-H algorithmmay process
meaningless computations within complex maps, owing to
numerous judgment points generated on the path. Increased
time cost becomes inevitable. In future studies, more complex
environmental information will be considered when generating
collision detection points. Improvements should be directed at

SS

Prove “Point is out of the obstacle”

Prove “Point is in the obstacle”

DS

PC

PO

FIGURE 18: Schematic diagram of the collision detection principle.

FIGURE 19: Extended lever and cuboid.
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FIGURE 20: Path results of RRT-H and RRT.

FIGURE 21: Simulation effects of RRT and RRT-H.
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RRT-H’s adaptability and computational efficiency for differ-
ent maps. Besides, RRT-H only considers the muzzle safety, so
further studies are called for to deal with issues like more
complex weapon arm characteristics and the ejecting process.
In further research, the algorithm will optimize the Prandoms
generation position and collision detection point distribution,
further improve the algorithm’s speed and the complex envi-
ronment adaptability.
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