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The variation of frequency is a significant indicator of the operation status of rotating machinery. Generally, the frequency is
extracted and tracked in real-time based on the vibration signal produced by the rotating machinery. However, various inter-
ferences generated from contact sampling and transmitting result in difficulty in obtaining the frequency correctly in real-time
from the vibration. To solve this problem, this paper presents an interpolated Kalman filter (IKF) based on the vibration and
surface noise signals for real-time frequency tracking. First, the cross-correlation operation is performed on the vibration and
surface noise signals sampled synchronously to enhance the energy concentration. After that, a frequency search procedure is
carried out to calculate the input of the tracking task. Finally, an IKF-based frequency lock procedure is applied to eliminate the
interferences and track the frequency in real time. Besides, a correction procedure is added to prevent the measurement process
from tracking the frequency incorrectly. The performance of the proposed method is verified by the experiments based on an
ARM-based test bench using standard signals and actual test signals.

1. Introduction

Rotating machinery, such as generators, motors, and engines,
plays a crucial role in modern industry and life [1-3]. For
example, hydraulic generators, thermal generators, wind tur-
bines, etc., convert various energy sources into the electrical
power, while motors and engines convert electrical and chem-
ical power into the mechanical energy, respectively, to drive
various devices [4, 5]. However, malfunction is unavoidable in
the operation of rotating machinery, and the failure of rotat-
ing machinery not only causes damage to these devices them-
selves but also causes large economic losses and casualties
[6, 7]. Meanwhile, with the continuous development of tech-
nology, higher reliability, stability, and safety of rotating
machinery are required for high-quality production and life.
Thus, it is of great significance to monitor the running status
of rotating machinery in real time to predict and diagnose
potential faults to ensure normal operation [8-10].

The fault diagnosis of rotating machinery usually takes the
time-domain, frequency-domain, and time—frequency domain

features extracted from the sampled device-produced signals
first, and then a classifier is adopted to achieve the classification
of faults occurred based on the features [11-13]. In [14], a flexi-
ble time—frequency analysis method is proposed to isolate and
identify multiple faults occurring in the different components of
rolling bearings. The authors in [15] proposed a residual gener-
ator based on Kalman filter (KF) to detect the faults in a linear
drive system affected by system noise. In [16], a decision tree and
deep neural network combined method is proposed to detect
and classify the faults in wind turbine generators through the
analysis of features in the stator current signals. Literature by
Li et al. [17] uses the back propagation neural network and
improved genetic algorithm to diagnose the complex fault of
marine generators.

Generally, the features are extracted from the surface vibra-
tion signals sourced by the rotation moves [18, 19], because lots
of research have confirmed that there are differences in the
vibration signals of faulty and nonfaulty rotating machinery
[20, 21]. These differences are specifically reflected in vibration
displacement, speed, frequency, and other aspects [22, 23].
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In [24], a variation Hilbert-Huang transform is proposed to
extract the time—frequency domain features of the vibration
signal for weak bearing fault diagnosis. Among the features,
frequency is the most important one as it can accurately reflect
the running state of rotating machinery [25]. For example, the
frequency of the engine vibration is a significant indicator for
the status assessment of a vehicle. Many techniques have been
applied to extract the frequency, e.g., wavelet transform (WT)
[26], Hilbert-Huang transform [27], empirical mode decom-
position [28], variational mode decomposition [29], FFT (fast
Fourier transform), short-term Fourier transform (STFT) [30],
etc. Among these, the FFT, which is a fast version of the DFT
(discrete Fourier transform), is widely used to deal with the
vibration signal to estimate the frequency in real time in virtue
of its low-computational burden and high efficiency [31]. In
[32], a rectangular-based DFT for frequency estimator is pro-
posed to track the power system frequency in a short observa-
tion window. To acquire the chatter frequency of machining
processes, a high anti-noise frequency estimator based on DFT
using zero padding technique is given in [33], which is named
SDFT. Unlike the power signals that can be sampled directly,
the vibration signal of rotating machinery is acquired contact
generally, which will be affected by various interferences, and
thus decreases the accuracy of frequency tracking. Thereby, the
surface noise is taken as an auxiliary for fault diagnosis, since
the surface noise is a production of the vibration [34, 35]. For
instance, in [36], the vibration noise of the transformer electro-
magnetic is analyzed and taken advantage of, to give assistance
to the main frequency components analysis. The author in [37]
made use of vibration and noise to detect and monitor the
cavitation in the kinetic pumps.

However, the mentioned methods suffer from poor accu-
racy and heavy computational burden, which may not be
suitable for real-time field frequency tracking under the com-
plex working conditions. To this end, an interpolated
Kalman filter (IKF) based on windowed FFT is proposed
in this paper to track the frequency of rotating machinery
efficiently and accurately. By using the KF, the proposed
method can track the abrupt changes in frequency and filter
out the strong interferences that exceed the main component
of the vibration signal. Together with the windowed FFT,
fine frequency estimation can be acquired with a lower com-
putation burden. Results of the practical applications are
provided to show that the proposed method can improve
the accuracy of frequency tracking significantly.

The contribution of this paper can be twofolded: (1) A
combined method using vibration and surface noise signals
for real-time frequency tracking of the rotating machinery
working under complex conditions is proposed; (2) A low-
cost ARM-based test bench is set up for real-time frequency-
tracking task using the vibration and surface noise signals.

The remainder of this paper is organized as follows: first, the
principle of measurement based on vibration signal and the test
bench setup is introduced, followed by the concept of the
improved method, and the calculation formulas including the
principles of KF are presented. Then, practical experiments that
can evaluate the performance of frequency-tracking method and
the test results are shown. Finally, the conclusion is drawn.
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2. Principle of Measurement

Generally, there is a direct relationship between the revolu-
tions per minute (RPM) of the rotating machinery and the
fundamental frequency (FF) of the vibrations. Therefore, the
vibration frequency of the motor can be used to reflect
the running state of the motor and the stability of the mechan-
ical structure. For the generators, e.g., hydroelectric generator,
thermal generator, wind turbine, etc., the vibration frequency
of the generator is proportional to the RPM, i.e., the faster the
speed is, the higher the vibration frequency is. The relation-
ship between the RPM and FF f;, of generators can be pre-
sented as follows:

120 -
RPM:—fO, (1)
a

where a means the pole logarithm of a generator. While for
the engine, the mathematical relationship between RPM and
FF of vibration signal could be represent as follows:

RPM = 60 - (fy/w) - (4/2). 2)

where o is the number of cylinders and 4 is the number of
strokes. It can be known that once w and A are fixed, the ratio
between RPM and FF settles down to be a constant. Then,
the problem of RPM can turn into the FF estimation of the
vibration signal.

Normally, the sampled vibration signal can be expressed
as follows:

[Ai(n)sin 2zf;(n)n + ¢;(n))] + &(n), (3)

x(n) =

Tt~

1

where i=1, 2, 3,..., I, I is the number of frequency compo-
nents; A;, f;, and ¢; are the amplitude, frequency, and phase
angle of the i-th harmonic, respectively, which are all time-
varying variables in the actual; £ is the interference compo-
nent produced by the structure of rotating equipment, and
transmission, as well as abnormality.

Generally, the amplitude of FF is the maxima in the
spectrum and the total error &, as well as the harmonics,
can be neglected for the FF measurement. To clearly demon-
strate this, Figure 1 shows the spectrum of the normal vibra-
tion signal acquired from a standard vibration exciter.

From Figure 1, it can be seen that there is only one peak
in the spectrum, which is easy to determine where the FF is.
Accordingly, the flowchart for tracking the frequency using
the vibration signal is given in Figure 2, which can be repre-
sented as follows:

(1) Acquire the vibration signal using transducers;

(2) Filter the high-frequency interference of the vibra-
tion signal with the condition circuit;

(3) Acquire the discrete vibration signal with ADC;

(4) Filter the discrete vibration signal using a digital
filter;
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FIGURE 1: Spectrum of the normal vibration signal.

=

v

Acquire the vibration signal

v

Filter the vibration signal with the condition circuit

v

Acquire the discrete vibration signal with ADC

v

Filter the discrete vibration signal using digital filter

v

Apply the FFT and analyze the spectrum

v

Calculate the frequency using the maxima in spectrum

v
Cw

FiGURe 2: Flowchart of the frequency tracking based on vibration
signal.

(5) Apply the FFT and search the maxima of the
spectrumy

(6) Calculate the frequency using the maxima in the
spectrum.

3. Materials and Methods

3.1. Problem Description. In this section, the problem of fre-
quency tracking in practice is described using the scenario of
an engine test of the automotive vehicle detection, which can
be seen as the harshest working condition due to the vibration
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FIGURE 3: Spectrum of the contaminated vibration signal.

signal cannot be sampled directly from the engine due to high
temperature and material of the engine, which makes the test
suffer from various interferences, e.g., strong background
noise, the vibration conduction from the test equipment.
Under ideal conditions, the FF of the sampled vibration signal
from the engine is obvious and easy to detect, as shown in
Figure 1. However, the spectrum of practical vibration signals
always suffers from the strong interferences produced by the
sensor issues, vibration transmission, etc., leading to that the
frequency cannot be accurately extracted from the collected
vibration signal. Figure 3 gives one typical problematic spec-
trum in a practical vibration signal, and we can see that the
true FF which should be the maxima has been overpassed by
the false spectral line, which can produce wrong frequency
estimations.

In Figure 4, the time—frequency analysis based on the
wavelet transform of the vibration data sampled from a vehi-
cle girder during the engine inspection is given. We can see
that there are two main frequency curves, the lower one
disconnects at the beginning of the test while the upper
one, which is actually the true frequency, disconnects in
the middle of the test, and this causes frequency-tracking
error and the frequency-tracking errors with no doubt. To
get more details, single frames of the spectrum correspond-
ing to time A, B, and C in Figure 4 are given in Figure 5. It is
seen that the true FF clearly shown in Figure 5(a) reduces to a
very low level at Time B, and it becomes prominent again at
Time C as shown in Figure 5(c). Meanwhile, the false one
performs always prominently and continuously during the
whole inspection. Thus, the main issues that could lead to
wrong frequency-tracking results can be summarized based
on the above analysis as follows:

(1) The energy of false FF overpasses the true one, as
shown in Figure 3;

(2) The energy of the true FF weakens to a very low level,
as shown in Figure 5(b);
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Therefore, getting rid of the influence of the false com-
ponent and locking the true frequency when it temporarily
disappears is the key problem of the frequency-tracking task.

3.2. Frequency Tracking Using Cross-Correlation and KF. To
solve the problems mentioned above in real-time frequency
tracking, the cross-correlation and KF techniques are employed.
The cross-correlation is based on the surface noise and vibration.
Because the surface noise is sourced from the vibration, some
similar features in the frequency domain can be found, and the
surface noise is not easily disturbed by the construction of a
rotating device, thereby the energy of true FF can be enhanced.
KF is an outstanding tool for correcting the process noise from
the measured signal, and it is adopted here to filter out the strong
interfering component, i.e., the false FF, which surpassed the true
one. With a suitable initial input value, there will be a statistically
optimal state estimation produced by the KF.

3.2.1. Cross-Correlation. Define that the acquired surface
noise is s(n), which can be presented as follows:

s(n) =

I

-

[Bi(n)sin (2zfy(n)n + &,(n))] + £(n), (4)

where [=1, 2, 3,..., L, L is the number of frequency compo-
nents; By, f, and J; are the amplitude, frequency, and phase
angle of, the /-th harmonic, respectively;  is the interference
component of the surface noise signal. Comparing s(n) with
the vibration signal x(n), under normal circumstances, some
same frequency components exist due to their relationship.
Then, the cross-correlation technique is applied to s(n) with
vibration signal x(n) as follows:

R(n) = x(n) X s(—n), (5)

where R(n) is the result of cross-correlation, and the length of
R(n) is fixed to 2N by zero-padding. Through this, the energy
of the component with the same frequency can be enhanced.

3.2.2. Kalman Filter. The application of KF in real-time fre-
quency tracking using the correlation coefficients of vibra-
tion and surface noise signal can be described generally by
the following procedure.

First, define the state vector as follows:

_[#
xn—[%], ©

where the first element f,, of the vector is the average fre-
quency during the time increment At, the second element Af,,
is the change rate of the frequency, and n represents the
discrete time. Accordingly, the Af, is assumed to vary ran-
domly in a small interval, which can be represented by a
variable u,, following the Gaussian distribution.

Second, construct the difference process equation and
measurement equation for real-time frequency tracking as
follows:

5

fn :fn—l +Afn—1 'At+un - At, (7)
Afy = Ay + uy, (8)

Yn :fn + Vs (9)

where y, is the optimal frequency calculated by the KF at
time #, and v,, represents a variable following the Gaussian
distribution.

Finally, rewrite the difference process equation and mea-
surement equation in matrix form as follows:

xn:Afn—l +env (10)
yf’l:Hf}’l +Vn» (11)
where
A 1 At G At
o 1 I T (12)
H=[1 0], e, = Gu,

It should be noted that the above process is set up on the
assumption that the noise e, obeys the Gaussian distribution
with zero mean value, and an initial input is needed as a
priori for the measurement.

3.2.3. Interpolated Kalman Filter for Real-Time Frequency
Tracking. With the adoption of the above technologies, for
most of the scenarios, the true frequency can be found and
tracked correctly in real time. However, in practice, under
complex working conditions, the sampled data may be
affected by even more strong interferences, resulting in diffi-
culty in identifying and predicting the true frequency, and
even the initial value is hard to obtain accurately, which can
change the outcome totally.

To this end, an IKF is proposed for real-time frequency
tracking in the practical conditions. The proposed IKF con-
sists of three procedures, frequency search procedure (FSP),
frequency lock procedure (FLP), and frequency correct pro-
cedure (FCP). In order to lower the computational burden,
the KF is simplified to a one-dimension equation with a
constant rate of change of the frequency as follows:

fn :fn—l +fmax - At, (13)

where f..x is the frequency threshold larger than the fre-
quency variation that can be produced by the device nor-
mally. Here, the bin number of spectral lines corresponding
to the frequency is utilized in consideration of the computa-
tional burden, and an interpolated FFT is adopted to restrain
the spectrum leakage and increase the accuracy level of fre-
quency estimation. The details of the three mentioned steps
are described as follows:

(1) The aim of FSP is to find the proper bin number
corresponding to the FF from the spectrum of the



cross-correlation coefficients of vibration and surface
noise signals. Here, a vector including four optional
bin numbers is selected to be the input of the step
which is presented as follows:

Xy-1 = [kln—l kzn—l k3n—1 k4n—1 Ak]T7
(14)

where k1, k2, k3, and k4 represent the positions of the
first four extremes with the largest amplitude in the
spectrum of the cross-correlation coefficients, Ak
means the positon variation corresponding to the
max rate of change of frequency.

By ignoring the effect of process error and measure-
ment error, Equations (10) and (11) are rewritten as
follows:

X, = |—AXn—1-|’ (15)
where the symbol “[]” means operation of rounding

up to an integer, and the matrix A is presented as
follows:

1 0 0 0 At
1 00 0 At

A=[1 0 0 0 At]. (16)
1 0 0 0 At
000 0 1

Accordingly, four proper alternative frequency com-
ponents are tracked by the KF, thereafter one proper
frequency is chosen by comparing the continuity and
stability of the spectrum amplitudes of four frequency
values and the ratio between the options according to
the characteristics of the device to be tested.

(2) FLP is used to eliminate the interferences and carry

out the right frequency after FSP. Once the main
frequency obtained from FSP is confirmed, it will
be selected as the input of FLP. Here, the function
which takes the measurement error into account is
transformed as follows:

kn = kn—l + kmax : At’ (17)

where k,_, is the input given by FSP, and ki, is the
max change of spectral position corresponding to fiax.
In order to improve the accuracy level of frequency
estimation using fewer samples, as fewer samples,
mean lower computational burden and higher time
resolution, a double-spectrum-line interpolation pro-
cedure based on a N-point trapezoid self-convolution
window (TSCW) is applied. The TSCW, which has
better interference suppression is used to truncate the
vibration sequence as follows:

Mathematical Problems in Engineering

2(n) = x(n) - wrrap(n), (18)

where the expression of TSCW is given as follows:

wTra—p(”) = wTra(m) X wTra(m) X X wTra(m)’

P

(19)

where p is the order of TSCW, wry,(m) is the discrete
time domain function of the trapezoid window, m =0, 1,
..., M—1, the p-th-order TSCW is padded with p—1
zeros in order to achieve a sequence of length L =pM.
With TSCW, the frequency estimation can be acquired
by:

f=(kn+a)-f/N, (20)

where a is the calibration coefficient calculated by:

a=CQ
C: [Cl C3 CS 67] 5 (21)
Q=[p p p pI"
where C is the coefficient vector whose values are
0.1154, 0.1817, 0.3414, and 4.735, respectively, and
p is a value calculated as follows:
km - ks
ky, + kg

p= , (22)

where k,, is the bin number of maxima in the range
[k,./2—1, k,/2+ 1] of the spectrum of the N-point
vibration signal, while k; is the position of the larger
one of the adjacent lines to k,,. It should be noted that
the surface noise is used only to determine the posi-
tion of the FF, while the refining of the estimation still
depends on the vibration signal.

(3) ECP is used to monitor the frequency-tracking process

and correct the frequency when bugs occur. In practice,
it is inevitable that bugs occur in frequency tracking
because of the diversity of measurements, e.g., the wrong
frequency is occasionally obtained from FSP, if the
wrong frequency component lasts for a while, the FLP
may lock this wrong frequency component. To solve
this problem, FCP based on amplitude comparison is
needed. The mechanism can be described as the contin-
uous count of the number of inconsistencies between the
amplitude of the locked frequency and the maximum
value of the spectrum will be recorded to determine
whether the locked frequency is wrong. The amplitude
difference is calculated as follows:

T = Amax — Ay, (23)

where Ay is the magnitude of the spectral line ky,, and
Apmax is the maxima of the spectrum of the vibration
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FiGure 6: Flowchart of frequency-tracking method based on cross-correlation and KF.

signal. Here are two thresholds, i.e., Ty and T, are given
and adopted to give assistance. T, is related to the ampli-
tude difference, while T, represents a time-related
threshold for the count limit. T is always set to 10%
of the maxima in the spectrum according to the practical
tests, ie., if T> T,y =0.1A. it can be considered that
there is an anomaly in the frequency-tracking task, then
the variable Z of the counting module will plus 1; other-
wise, Z will be reset to 0. T, here is determined by the
sampling frequency, the measurement gap, and the
requirement of specific applications.

The flowchart of the proposed IKF can be described
in Figure 6.

4. Results and Discussion

In order to evaluate the performance of the proposed method
in real-time frequency tracking, an ARM-based test bench
which can acquire the raw vibration and surface noise signals
and process the sampled data through different methods to
estimate the frequency, is set up. The working flow of the test
bench can be stated as the vibration and noise sensors
attached to a magnetic material are first absorbed by the tested
device directly, and the raw signals are synchronously trans-
ferred through the coaxial cable to avoid unwanted

LPC1786 LCD

DAQ |—>| Laptop ‘

FiGure 7: Diagram of the test bench setup.

Vibration sensor

Device to
be tested

Conditioning
circuit

Sound sensor

transmission noise. Second, the analog signals filtered by
the conditioning circuit are sampled through the internal
ADC of the processor LPC1768. Then, the conditioned raw
data are processed digitally for storing, filtering, and analyz-
ing. At last, the frequency-tracking result will be displayed on
the LCD. For the sake of convenience, the raw signals are
captured by a laptop simultaneously by a DAQ unit. The
schematic of the test bench setup is shown in Figure 7.

The implemented test signals include the standard vibra-
tion signal produced by the standard vibration exciter and
the other two kinds of vibration signals sampled from the
shaft of a diesel vehicle engine. The test bench consists of the
ARM processor LPC1768@100MHz, the acceleration sensor
MMA1220KEG, and a thin-film-Mic-based LM386 noise
acquisition module. To make comparisons, FFT without fil-
ter, FFT with normal KF, and the SDFT [33] are employed in
considerations of the limited performance of the test bench.
In addition, the WT-based frequency estimator is executed
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FiGure 8: Setup of the test bench for standard vibration signal measurement.

TasLE 1: Frequency measurement accuracy of signals generated by the standard vibration exciter (Hz).

Frequency FFT KF WT SDFT IKF Frequency FFT KF WT SDFT IKF

20 0 0 1.0E-1 1.0E-3 1.5E-3 20.2 0.2 0.2 8.0E-3 1.1E-3 2.3E-3
30 0 0 8.6E-2 3.2E-3 3.1E-3 30.3 0.3 0.3 1.7E-2 3.3E-3 4.4E-3
40 0 0 2.5E-1 2.9E-3 6.4E-3 40.7 0.7 0.7 3.7E-2 4.8E-3 7.2E-3
50 0 0 7.1E-2 6.7E-3 7.3E-3 52.3 0.3 0.3 6.5E-1 6.1E-3 7.9E-3
60 0 0 3.1E-1 8.3E-3 8.1E-3 61.3 0.7 1.3 4.6E-2 8.8E-3 9.2E-3
75 1 1 9.4E-2 7.9E-3 8.8E-3 75.3 0.7 1.3 2.2E-1 8.9E-3 9.9E-3
80 0 0 4.4E-1 7.1E-3 8.9E-3 80.3 0.3 0.3 7.0E-1 1.0E-3 1.1E-2
97 1 1 5.2E-1 8.8E-3 9.8E-3 97.7 0.3 1.7 8.3E-2 9.9E-3 1.1E-2
100 0 0 4.9E-1 9.6E-3 9.5E-3 102.7 0.7 0.7 5.3E-1 1.2E-2 1.2E-2
120 0 0 6.9E-1 9.9E-3 9.9E-3 122.3 0.3 0.3 7.5E-2 1.2E-2 1.2E-2

on the laptop because of the computational complexity. The
sampling frequency f; is set to 512 Hz, since the main frequency
of the engine under test is below 200 Hz. The FFT length N in
IKF, i3DFT, and SDFT is set to 128 to acquire more details of the
frequency variation, while the length of FFT without filter and
FFT with normal KF is 256 to enhance the frequency resolution.
Besides, the measurement gap D is fixed to 10 to supply a proper
time resolution. According to the requirement of the engine test,
T, is set to 20, corresponding to 400 ms approximately. The
order of TSCW adopted in IKF is 4.

4.1. Measurement of Standard Signal. The standard vibration
and surface noise signals of different frequency values are
generated by a platform consisting of a power amplifier
YMC LA-100 and a standard vibration exciter YMC VT-
150, then sampled and processed by the test bench, which is
shown in Figure 8. The absolute errors of frequency measured
by different methods are tabulated in Table 1, where the
results with a dark background indicate the minimum values
among the adopted methods under the same test condition.

According to the results given in Table 1, compared to
the traditional methods like FFT and WT, it can be known

that the IKF performs excellently in the measurement range.
The results of SDFT show the best on most of the test fre-
quency points. The reason can be interpreted as, the SDFT
has outstanding anti-noise ability while the superiority of the
windowed interpolation FFT adopted in IKF is the harmonic
suppression, and the main interference in this measurement
is the noise. Fortunately, the accuracy level of IKF can meet
the requirement of the frequency tracking for the RPM test,
and a better frequency estimator can be adopted in FLP if
necessary. Although, the results of FFT and KF listed on the
left side represent 0 absolute error on some integer test
points due to the synchronous sampling, their errors increase
dramatically when it is under asynchronous sampling, which
cannot meet the requirement of some applications with high-
accuracy measurement. For the WT, it suffers from the high
computational burden, and this may make it not the best
choice for real-time frequency tracking with the limited com-
puting power.

4.2. Frequency Tracking for a Signal with an Obvious FF.
Here, the vibration and noise signals are sampled in a vehicle
inspection and test station from the shaft of a nearly new
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vehicle whose engine and other parts are well working. The
time—frequency analysis of the vibration signal based on the
wavelet transform is shown in Figure 9.

In Figure 9, the darker the color, the stronger the energy,
and we can see that the frequency curve of the sampled signal
is clearly described by the background. From Figure 9, it can
be known that the engine testing is mainly divided into three
stages, i.e., idle phase, acceleration phase, and high-speed
phase. In the idle phase, the frequency keeps in the low range
steadily, in the acceleration phase, the frequency rises and
falls rapidly, and in the high-speed phase, the frequency
keeps in the higher range with slow change. Figure 10
demonstrates the analysis result of frequency tracked by
FFT, KF, WT, SDFT, and IKF.

Based on Figure 10, it is known that the frequency
change of the signal, as well as details of the variations, are
tracked clearly and accurately through IKF. Although the
other four methods could also track the frequency when
detecting the engine, there still exist some places where the
wrong result occurred, and this phenomenon is undesired in
the practical detection. The errors that occurred in Figure 10,
i.e,, Place A where the KF locked the wrong spectral line, WT
and SDFT suffered from the strong components, and Place B
where the FFT emerged as an error, are enlarged in Figure 11.

Figure 11(a) is the detail of the acceleration phase where
the Box A shows. From Figure 11(a), we can see that the FFT,
WT, SDFT, and IKF could estimate the frequency variations
correctly while the KF caught an error. Then, WT and SDFT
suffered from strong harmonics, which produced large fre-
quency errors. Furthermore, the IKF estimates the frequency
smoothly while the FFT and WT still fluctuate in some test
points. The reason can be interpreted as that the KF is vul-
nerable to being affected by a continuous frequency compo-
nent, which may lead to a series of measurement mistakes.
Figure 11(b) is the enlarged detail of Box B which is in the
high-speed phase. It is seen that the adopted methods could
give a ballpark estimation of the frequency except the FFT
which estimates the frequency wrongly for a very short dura-
tion with large hopping points. That means, although the
FFT is simple, it lacks the immunity to the unavoidable error
that may occur during the practical test.

In conclusion, the performance of the adopted five meth-
ods is eligible in most of the time when the frequency com-
ponent of the sampled signal is obvious. Unfortunately, FFT
WT, KF, and SDFT still cannot meet the requirement of the
frequency tracking in the scenario of a practical test because
of the unacceptable error that occurred in the measurement.
Another point that needs to be mentioned is that, even in an
ideal test environment, there will be unexpected interference.

4.3. Frequency Tracking for a Signal with Multifrequency.
Similarly, the signal is sampled in a vehicle inspection and
test station and it is acquired from the shaft of a truck that
has been in use for more than 6 years. The time—frequency
analysis based on the wavelet transform of the sampled
vibration and surface noise signals is shown in Figure 12.
According to Figure 12(a), it can be seen that, at the
beginning of the test, there are three main frequency com-
ponents, the FF, and two harmonics, and the consecutiveness
of these components is quite excellent. Subsequently, the
harmonics become weak and ambiguous, while the funda-
mental one becomes stronger and maintains the status until
the end. Correspondingly, we can see that, in Figure 12(b),
similar features can be found in the time—frequency analysis
of the surface noise, whereas the energy level is much lower
than the vibration. It should be highlighted that a subhar-
monic appears during the frequency ascent stage which
could affect the measurement. The results of frequency
tracking by FFT, KF, and IKF are represented in Figure 13.
From Figure 13, we can see that the proposed method
can track the frequency accurately during the whole test. The
KF tracked the wrong frequency component from the



10

T T T
80
—~ 704
N
T
[y
<
L
£
© 60
&)
50 E
T T T T T
5 10 15 20
Time (s)
—— FFT — WT
—— KF with FFT —— SDFT
—— IKF
(a)
FIGURE 11: Partially enlarged detail in
250 F T T T T , -
200 + Ay 7
Acceleration
phase
5 |11 1
T 150 | | |
S ‘
2 Idle phase |
g ! |
g 100 | ! ‘ |
3 M “m“’ e il kl"\‘ Ann‘
——— / il N Rl Wk "n.mw
[Harmonics,
50
R St i syt
Fundarfental i : A A
0 20 40 60 80 100 120
Time (s)
(a)

Mathematical Problems in Engineering

110 . . .

105 - E

N
=
> 100 -
Q
=
[
=}
5
S
[
95
90
T T T T T T T
35 40 45 50
Time (s)
—— FFT — WT
—— KF with FFT —— SDFT
—— IKF

(b)
Figure 10: (a) Box A and (b) Box B.

250 F T T T T T ]

200 —
N
T 150 - i
)
=
o
=}
o
£ 100 | i
&

N
50 E
1 1 i | — e T
0 20 40 60 80 100 120
Time (s)

(b)

FiGure 12: Time—frequency analysis of the sampled multifrequency signal: (a) vibration signal and (b) surface noise signal.

beginning, while the FFT can track the frequency in the high-
frequency range. However, the FFT failed to estimate the
correct frequency in the phase of rapid frequency change.
Focus on the curves in the dashed box, we can see that the
results of FFT, WT, and SDFT varied fiercely while the KF
was trapped in a wrong frequency component. Fortunately,
thanks to the domain position of the main component in the
high-frequency range, FFT, WT, and SDFT returned to the
right result, while KF tracked to the wrong component dur-
ing the whole test even with an outstanding FF component in

the high-frequency range because of the lack of the correc-
tion module.

The reason can be described as that, on account of strong
interferences, e.g., high energy background noise, all kinds of
harmonics whose intensity exceeds the fundamental wave,
etc., the spectrum became complex, making the FFT, WT,
and SDFT alternate between the right and the wrong spectral
lines, which resulted that the measurement result turned to be
chaotic. As for the KF, it encountered the same problem that
occurred in subsection 4.2. The reason is similarly described
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as the KF is easily affected by the complex interferences if the
surface noise and the correction module are lacking.

Based on the utilization results shown in Figures 10 and
13, it can be seen that the frequency of the given signals
calculated by IKF is tremendously keeping pace with the
variations of the simulated signal which shows the accuracy
of the proposed method, which means the proposed method
can solve the issue in practical real-time frequency tracking
perfectly.

5. Conclusions

As one of the most important indicators of the condition
monitoring and fault diagnosis of the rotating machinery,
frequency tracking suffers from various interferences in the
practical tests. In this paper, an IKF using cross-correlation
of the vibration and surface noise signals is proposed to track
the frequency variations. In order to enhance the energy
concentration of the FF, the cross-correlation technique is
employed by convolution of the synchronized sampled sur-
face vibration and noise signals. Meanwhile, the two-point
interpolated FFT based on TSCW is adopted to improve the
measurement accuracy and reduce the computational bur-
den. To evaluate the proposed method, an ARM-based
embedded test bench is set to acquire the surface vibration
and noise signals and then execute the proposed method to
estimate frequency in real time. According to the results, it is
known that the proposed method can improve the
frequency-tracking accuracy and perform perfectly under
simple or complex working conditions.
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