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As a kind of thermal control device, fluid loop systems must operate with the demands of high safety, high reliability, and long life.
In order to accurately assess the health status of fluid loop systems, a hierarchical multi-information fusion (HMIF) method is
proposed in this paper. Considering that fluid loop systems generally have distinct structural hierarchies, the health evaluation
process in this method is divided into three levels, which are the indicator level, the component level, and the system level. In the
evaluation process, the health indices are, respectively, constructed to quantify the health status at the three levels. At the indicator
level, One-Class support vector machine algorithm is used to obtain the distribution space of each state monitoring indicator under
a normal state. The indicator-level health indices are evaluated by calculating the ratio of the data located in the distribution space
to the overall data. At the component level, a fuzzy theory is used to calculate the health indices of the component level. Health
indices at the indicator level are first converted to membership degree by membership degree function. Then, the evaluation fusion
strategy is used to deduce the membership degree of the component level. The health indices at the component level are obtained
from the mapping relationship between the membership degree and the health index. At the system level, an adaptive weight
adjustment strategy is proposed to fuze all component-level health indices. Taking a practical fluid loop system as an example,
health indices at the three levels evaluated by the HMIF method are compared with the actual status. The results indicate that the
proposed method can correctly judge the health state of the system and provide a reference for the maintenance and fault diagnosis
of fluid loop systems.

1. Introduction

Fluid loop systems are important devices in the active ther-
mal control field. Because of their strong heat regulation
capacity and flexible thermal management, fluid loop sys-
tems are widely used in the establishment of a constant tem-
perature environment and temperature control in industry,
spacecraft, military, and other important fields [1]. Their
long-term and good performance operation is crucial to
the success of engineering tasks and even the safety of per-
sonnel. Therefore, to ensure the normal and stable operation
of fluid loop systems has been widely concerned by scholars.

During the operation of fluid loop systems, if the fault
is not detected and repaired in a timely manner, it may lead
to catastrophic accidents. It is important to detect early

symptoms of faults in order to avoid serious consequences.
Breakdown maintenance is a type of reactive measure that
cannot avoid the occurrence of faults and the significant
negative effects caused by faults. Time-based maintenance
cannot accurately assess the system status, which often waste
manpower and material resources. In order to solve the
above problems, condition-based maintenance (CBM) has
been developed. It monitors and evaluates the health status
of the system and adopts corresponding maintenance strate-
gies after finding abnormalities. Therefore, in view of the
operating characteristics of the fluid loop system, only the
CBM is suitable for its operation and maintenance [2–5].

Health-status assessment is one of the key technologies of
CBM. It is of great significance to accurately assess the health
status of the system. There are two main ways to evaluate
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health status. One is to evaluate the health degree of the
system [6]. The running state of a complex system is divided
into several degrees to describe the multivalued state of the
system. The health degree of the system is evaluated by ana-
lyzing the monitoring data in the process of running state.
This kind of health status assessment method research is
relatively mature, but there is no unified standard for health
status classification. The other is to quantify the health status
contained in the state data by extracting the corresponding
feature. This feature is defined as a health index. In this way,
the health status of the system can be quantitatively charac-
terized [7]. If the health index of the fluid loop system can be
evaluated correctly, the degradation information of system
performance can be intuitively evaluated. To a certain extent,
the health index can be transformed into a failure rate, which
is convenient for accurate maintenance decision-making.

At present, health index evaluation methods can be
divided into three kinds from different driving sources,
namely, model-driven methods, knowledge-driven methods,
and data-driven methods. Model-driven methods are a kind
of physical model designed by relevant experts, who deeply
study the principle of system degradation in the process of
long-term work. Such as the Mahalanobis distance method
[8, 9], fusion weight calculation method [10], Euclidean dis-
tance method [11], fuzzy theory method [12–14], and so on.
However, since the model-driven methods require prior
knowledge to determine the weights and model parameters
as well as the idealized assumptions of the model, it is diffi-
cult to adapt to various complex factors during the operation
of the system. This leads to a poor practical effect of the
method. Knowledge-driven methods evaluate the health sta-
tus through knowledge acquisition and knowledge represen-
tation. Due to the limitation of knowledge and experience,
these methods are difficult to implement. The knowledge
representation also faces the problem of knowledge normal-
ization [15]. Data-driven methods are the most popular at
present. These methods make full use of the advantages of
machine learning and artificial intelligence. The application
of linear regression, support vector machine (SVM) [16–18],
support vector data description [19–21], neural network,
and deep learning theory [22–24] has strongly promoted
the development of health index evaluation research.

Fluid loop systems are composed of many different types
of components, and each component has multiple monitor-
ing objects. As a result, the same health evaluation method
may have great differences in the evaluation effect for differ-
ent components. Some scholars have proposed integrated
methods to solve such problems. Wei et al. [25] built a
deep well thermal environment evaluation model by inte-
grating the analytic hierarchy process and fuzzy theory and
evaluated 21 working faces of a gold mine. Ye et al. [26]
established a safety evaluation index system for underground
ventilation systems in uranium mines based on AHP and
fuzzy comprehensive assessment. To help mine management
assess the risk of scaring mining in extremely hot and humid
environments, Shu et al. [27] proposed a multi-indicator hierar-
chical model. The entropy weighting method was used to
determine the index weights and derive the multi-index

measure evaluation matrix. Some applications have demon-
strated that these integrated methods are capable of assessing
the health of complex systems.

In this paper, a health assessment method of a fluid loop
system based on hierarchical multi-information fusion (HMIF)
is proposed. This method divides the health assessment pro-
cess into three levels: indicator level, component level, and
system level. First, the One-Class SVM algorithm is used to
obtain the health index of indicator-level data in the fluid loop
system. Then, the fuzzy theory method is applied to deal with
the uncertainty between different indicators in each compo-
nent to obtain the component-level health index. Finally, an
adaptively variable weight strategy is designed to estimate the
system-level health index by fuzing the component-level
health index. The method proposed in this paper can quanti-
tatively estimate the health state of fluid loop systems. It is
beneficial to provide a reliable reference for the health main-
tenance of the system.

This paper is organized as follows: In Section 2, the
architecture of the HMIF method is generally described.
The theoretical background and algorithms of the key tech-
niques involved in the method are discussed in detail. In
Section 3, the process of evaluating the health status of a
practical fluid loop system using the HMIF method is pro-
vided and analyzed. Finally, the conclusion of this work is
given in Section 4.

2. Health State Assessment Method for Fluid
Loop Systems

Fluid loop systems are complex coupled systems. As shown
in Figure 1, they are generally composed of pump, valve, filter,
compensator, and other components. Each component is con-
nected by a large number of pipes to form a system loop. In
order to collect the monitoring data of components during
operation, many sensors are installed in the system. Because
of the different monitored objects, the monitoring data have
diverse manifestations, such as continuous dynamic curves
and step switches. Moreover, with the change in the working
condition of systems, the monitoring data, such as speed,
pressure, and flow rate, may change in different ranges and
exhibit various statistical characteristics.With the help of data
processing, indicators contained in the monitoring data are
extracted. Due to the diversity of monitoring data, it is diffi-
cult to formulate a unified standard to evaluate the health
indices utilizing indicators. In addition, there is a complicated
relationship between components and indicators. It leads to
information redundancy and conflict in the health indices
evaluation of components. The health status of systems is
evaluated by fuzing the health indices of all components
that this system contains. The health status of components
has different effects on the system’s performance. Therefore, it
is necessary to design an appropriate assessment strategy for
the health status assessment of the system.

Health indices are obtained by analyzing a variety of
monitoring data during the system operation. These health
indices provide meaningful information for maintaining the
operation of fluid loop systems with long life and good
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performance. Therefore, it is necessary to make a compre-
hensive evaluation for the system. The application flowchart
of the hierarchical multi-information fusion method pro-
posed in this paper is shown in Figure 2. In view of the
distinct structural characteristics of the fluid loop system,
the health status assessment process is divided into three
levels: indicator level, component level, and system level.
At the indicator level, moving average and moving standard
deviation processing are used to reduce the random error
interference of monitoring data and extract status indicators
contained in the monitoring data. In order to solve the prob-
lem that it is difficult to establish a unified standard to judge
the health status because of the differences between the indi-
cators, this paper constructs the data distribution spacemodel
under a normal state for each indicator. The essence of the
health status assessment problem is pattern recognition. As
one of the important pattern recognition algorithms, One-
Class SVM has the ability of inhomogeneous data separation
in high-dimensional space. Therefore, this paper chooses this
algorithm to build the evaluation model. The algorithm out-
puts binary evaluation results, and then the quantitative

evaluation results of health status are obtained by counting
the number of positive labels. At the component level, some
traditional evaluation methods are not applicable due to the
uncertainty of multiple indicators in the evaluation of the
health status of a certain component. The fuzzy evaluation
method, which fuzes the redundant information and compro-
mises the conflicting information, is used to reduce the impact
of uncertainty in the health status assessment of components.
For the system, the health status of each component has a
different influence on the performance of the system. More-
over, the changes of the health index of a single component
have little impact on the system-level health status evaluation
if some fixed weights are given. Therefore, an adaptive weight
method is designed to integrate the health status of all com-
ponents, which is used to conduct a comprehensive health
evaluation of the whole system and provide decision-making
support for maintenance personnel.

2.1. Health Status Assessment for Indicator Level

2.1.1. One-Class SVM. One-Class SVM based on statistical
theory is a typical kernel analysis approach. Its idea is to
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define a maximum interval classifier in the feature space. The
classifier is used to separate the data with different distribu-
tions as much as possible. One-Class SVM transforms the
interval maximization problem into a convex quadratic pro-
graming problem and solves it by an optimal method. Sup-
pose that there are samples xið1≤ i≤ lÞ from the same
distribution, where l is the number of samples. The sample
data are mapped to high-dimensional feature space F by
nonlinear mapping φ. Then, a compact spatial region D
containing as much sample data as possible is found in F
and separated from the heterogeneous data at the largest
interval. ω is set to determine the size of the compact space
D. The optimization problem can be expressed by the qua-
dratic program, as shown in Equation (1).

min
ω2F;ξi2Rn;ρ2R

:
1
2

ωk k2 þ 1
vl

∑
l

i¼1
ξi − ρ

subject to ω;φ xið Þh i ≥ ρ − ξi; ξi ≥ 0;
ð1Þ

where ξi is the slack variable, which allows some samples to
be on the side that violates the constraint; ρ is the boundary
threshold; v is tradeoff parameter, which determines the vol-
ume of the region and the tradeoff of the number of samples
that the region contains, and its value ranges from 0 to 1. If ω
and ρ can be found, the decision function f ðxÞ¼ sgnðhω;
φðxÞi− ρÞ will be positive for most samples.

The Lagrange function is constructed to solve the opti-
mization problem.

L ω; ξ; ρ; α; γð Þ ¼ 1
2

ωk k2 þ 1
vl

∑
l

i¼1
ξi − ρ − ∑

l

i¼1
αi ω;φ xið Þh ið

− ρþ ξiÞ − ∑
l

i¼1
ςiξi; αi ≥ 0; ςi ≥ 0;

ð2Þ

where αi and ςi is the Lagrange coefficient.
By taking the partial derivation of Equation (2) to ω, ξi,

and ρ, and making the partial derivative equal to 0, the
Equations (3) and (4) can be obtained.

ω¼ ∑
l

i¼1
αiφ xið Þ; ð3Þ

0 ≤ αi ≤
1
vl
; ∑

l

i¼1
αi ¼ 1: ð4Þ

Equations (3) and (4) are introduced into Equation (1),
and the kernel function Kðxi; xjÞ¼ hφðxiÞ;φðxjÞi is intro-
duced at the same time. As a result, Equation (5) is obtained.

min
α

:
1
2

∑
l

i;j¼1
αiαjK xi; xj

À Á

subject to 0 ≤ αi ≤
1
vl
; ∑

l

i¼1
αi ¼ 1:

ð5Þ

Equation (5) is a quadratic programing problem, which
can be solved by standard QP routines. The sample xi corre-
sponding to αi>0 is called support vector, and the dataset
composed of support vectors is denoted as SV. The distribu-
tion of all target samples in feature space completely depends
on this dataset. The decision function is defined as follows:

 f xð Þ ¼ ∑
xi2SV

αiK xi; xð Þ − ρ; ð6Þ

when f ðxÞ>0, x is determined to come from the source
distribution, i.e., belongs to the distribution region D deter-
mined by the target sample. When f ðxÞ<0, x is determined
not to belong to the source distribution and is located outside
the distribution region D. According to the positive and
negative results of the decision function, it is judged whether
the new samples belong to the distribution of target samples.

The decision function f ðxÞ>0 of the nonsupport vector
set, which lies in the distribution region D, is denoted as
NSV. The support vector set of f ðxÞ¼ 0 is called the margin
support vector set and is denoted as MSV. The support vec-
tor set of f ðxÞ<0 is called the nonmargin support vector set
and is denoted as NMSV. The parameter v is the upper
bound of the nonmargin support vector and the lower bound
of the margin support vector. When training the same sam-
ple set X, adjusting this parameter can change the samples
contained in NSV, MSV, and NMSV. The smaller v, the
more samples contained in NSV, and the fewer samples
contained in NMSV.

2.1.2. Indicator-Level Health Status Assessment Process. For
indicator-level health status evaluation, the distribution
space is constructed by the indicators in a normal state.
Therefore, the state evaluation process is simplified as the
problem of judging anomalies in a normal state without
obtaining abnormal samples in advance. One-Class SVM is
an effective way to solve this problem. In Figure 3, the two
types of data samples are represented by the green dot and
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ρ/||ω||
O

D
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FIGURE 3: The geometric description of One-Class support vector
machines.
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the red dot, W is a classification line; additionally, ρ=kωjj is
the furthest distance from W. The optimal distribution
region D is the part separated by W away from the center
of the hypersphere. According to the foregoing information,
it can be concluded that W is the optimal classification
hyperplane.

The procedures of health status classification are as
follows:

(1) Data preprocessing. The moving average feature
sequence and moving standard deviation (moving
STD) feature sequence of the input sample data are
calculated. Then, the two sets of sequences are nor-
malized. The effect of moving average and moving
STD is to smooth data fluctuations and thus reflect
the overall trend of the data. Normalization proces-
sing can effectively prevent the characteristics of large
value regions from suppressing the characteristics of
small value regions and can also reduce the computa-
tional complexity and improve the computational
accuracy.

(2) Finding the maximum interval classifier. Moving
averages and moving standard deviation sequences
are used as training sets. One-Class SVM algorithm is
used to find the maximum interval classifier in fea-
ture space, which is established by training data.

(3) Health assessment. The moving average and the mov-
ing STD sequence of the data to be evaluated are
calculated and normalized utilizing the same param-
eters as those used in the training data normalization.
These sequences are fed into the maximum interval
classifier and wait to be evaluated.

(4) Calculating the health index. The number of points of
sequences is counted which is located in the optimal
distribution space. The ratio of these points to the
total sequence length is considered the health index.

With the above procedures, the quantitative description
of indicator-level health status is realized.

2.2. Health Status Assessment for Component Level. Fuzzy
evaluation availably deals with various fuzzy and uncertain
information and makes the evaluation results more stable
and reliable. In the component-level health status assessment
process, information redundancy and information conflict
are unavoidable. The fuzzy evaluation is used to reduce the
information redundancy and eliminate the information con-
flict, which is produced at the indicator-level health status

assessment, and to provide the component-level health status
assessment.

2.2.1. Defining Fuzzy Sets. To represent the health state at the
component level, five degrees are defined as the assessment
fuzzy sets. They are healthy, degradation, severe degradation,
hazard, and severe hazard, respectively. Denote the fuzzy sets
as H¼fh1; h2; h3; h4; h5g. The description of component
health status and evaluation results of the corresponding
degrees is shown in Table 1.

2.2.2. Constructing Membership Functions and Fuzzifying
Health Indices. There are many types of membership func-
tions, such as triangular, trapezoidal, and normal. Because of
the advantage of easy algebraic operation of the triangular
membership function, it is used for fuzzy evaluation. The
distribution of triangular membership functions is shown
in Figure 4.

The membership functions of health indices correspond-
ing to different health degrees in a fuzzy set are shown in
Table 2. The domain fu1; u2; u3; u4; u5g in the membership
function is generally determined based on expert experience.

According to the selected membership functions, the
membership degrees of indicator-level health indices to
each health degree can be calculated. That is, the indicator-
level health indices are fuzzified. After that, the membership
degrees are constructed into a fuzzy evaluation matrix.

2.2.3. Making Fuzzy Rules. Fuzzy rules are established based
on past expert experience. For example, the health degrees of
two indicators are h3 and h4 in the past experience. The
health degree of the component corresponding to these
two indicators is h4. Then, the fuzzy rule Rule1ðh3; h4; h4Þ
is obtained based on the above experience. Such experience
can build a fuzzy rule base, as shown in Figure 5. If expert

TABLE 1: Set of comments for component health condition assessment.

Degree State Status description

h1 Healthy The operating condition of the components is normal
h2 Degradation The health state of component is degraded
h3 Severe degradation The component has potential accidents
h4 Hazard The component has been damaged
h5 Severe hazard The component has been damaged to stop working
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experience is made available effectively, the obtained rules
can fill the whole fuzzy rule base.

2.2.4. Fuzzy Logical Inference. To implement fuzzy logical
inference, the relation generation process, and the inference
synthesis process need to be done. In the component-level
health assessment process, membership degrees of health
indices at the indicator-level are taken as the inputs of fuzzy
logical inference. The outputs of fuzzy logical inference are
the membership degrees of component health states. The
processing of making fuzzy rules is to establish the relation-
ship between inputs and outputs. The inference synthesis
process is to use some approaches to reasonably infer the
fuzzy output of the new input by using the previously defined
fuzzy rules. After the relation generation process and infer-
ence synthesis process are determined, fuzzy logical infer-
ence can be carried out.

The Mamdani inference synthesis algorithm [28] is wide-
spread acceptance and has the advantage of intuitiveness,
suitability for human input, and ease of interpretability. To
achieve the inference synthesis process, the Mamdani

inference synthesis algorithm is used. The formula for calcu-
lating the fusion membership degree of the Mamdani infer-
ence synthesis algorithm is shown in Equation (7):

U∗ ¼ ∪
n

j¼1
S∗ ∘ Rj

À Á
; ð7Þ

where S∗ is the fuzzy subset of the degree of membership; Rj
is the implication relation that is the corresponding fuzzy
rule; ° represents the inference synthesis algorithm. In the
actual calculation process, only the activated fuzzy rules are
logically reasoned.

2.2.5. Defuzzification of Membership Degrees. The fuzed
health indices are obtained by defuzzifying the membership
degrees, which are the outputs of the inference synthesis
process. Defuzzification can be achieved in a number of
ways, such as the gravity center method, equal area method,
and extreme value method. This paper intends to adopt the
center of gravity method to achieve defuzzification.

H ¼ ∑r
i¼1AiHi

∑r
i¼1Ai

; ð8Þ

where Ai is the membership degree corresponding to the
inputs; Hi is the health index corresponding to the fuzzy
health degree.

2.3. Health Status Assessment for System Level. Faulty com-
ponents and healthy components have different effects on
the health status evaluation of fluid loop systems. To objec-
tively determine the weight of the health state of the compo-
nents relative to the health state of fluid loop systems, the
CRiteria importance through intercriteria correlation (CRITIC)
weighting method is studied. The CRITIC weighting method
is an objective weight determination method proposed by
Diakoulaki et al. [29], which is suitable for the processing of

TABLE 2: Membership functions corresponding to different levels.

Degree Membership function Degree Membership function

h1
Ah1ðxÞ¼

0; x 2 ð0; u4Þ
x − u4
u5 − u4

; x 2 ½u4; u5Þ
1; x 2 ½u5; þ1Þ

8>><
>>:

h2
Ah2ðxÞ¼

0; x 2 ð0; u3Þ&½u5; þ1Þ
x − u3
u4 − u3

; x 2 ½u3; u4Þ

1 −
x − u4
u5 − u4

; x 2 ½u4; u5Þ

8>>><
>>>:

h3
Ah3ðxÞ¼

0; x 2 ð0; u2Þ&½u4; þ1Þ
x − u2
u3 − u2

; x 2 ½u2; u3Þ

1 −
x − u3
u4 − u3

; x 2 ½u3; u4Þ

8>>><
>>>:

h4
Ah4ðxÞ¼

0; x 2 ð0; u1Þ&½u3; þ1Þ
x − u1
u2 − u1

; x 2 ½u1; u2Þ

1 −
x − u2
u3 − u2

; x 2 ½u2; u3Þ

8>>><
>>>:

h5
Ah5ðxÞ¼

1; x 2 ð0; u1Þ
1 −

x − u1
u2 − u1

; x 2 ½u1; u2Þ
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FIGURE 5: Schematic representation of the fuzzy rule base.
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multi-index objective weights. The algorithm evaluates the
information content of a single index and measures the
difference in the information content of different indexes.
The large difference of one index among all indices implies
that the more information the index stores and the more
weight it has. Therefore, this paper refers to the idea of the
objective weighting method of CRITIC and designs a strategy
for adaptive weight adjustment. According to the number
of faulty components, the weight of faulty components is
adaptively increased, and the weight of healthy components
is decreased. The method is described as follows:

(1) The number of faulty components is counted and
denoted as n. The health indices of all faulty compo-
nents are denoted as ½mf 1;mf 2;…;mfn�:

(2) The remaining healthy components are considered
as a whole. The health indices of all healthy compo-
nents are averaged and denoted as mh .

(3) Calculating the weights adaptively as k¼ 1=ð1þ 2nÞ.
This weight value is automatically adjusted with the
number of faulty components.

(4) Calculating the system-level health index m¼
∑n

i¼1mfi ⋅ 2kþmh ⋅ k.

The above strategy is used to fuze all health indices at the
component level and infers the system-level health index.
The comprehensive health assessment of fluid loop systems
is carried out to provide decision support for maintenance
personnel.

3. Experimental Verification

The proposed HMIF method is validated on an experimental
fluid loop system. The structure of the fluid loop system is
shown in Figure 6. The system is mainly composed of the

external loop subsystem and the internal loop subsystem.
The external loop subsystem is used to absorb heat from
the system, and the inner loop subsystem is used to dissipate
heat. The external loop subsystem and the internal loop sub-
system are coupled by the liquid-level compensator and the
heat exchanger. The main functional components of the system
include pump, temperature control valve, radiator, condenser,
etc. Many kinds of sensors are configured on components to
collect the monitoring data during system operation. The data
to be collected are mainly expressed as continuous variables,
such as temperature, speed, pressure, flow rate, liquid level
height, and so on, which are shown in Table 3. A diversity of
trends is implied in the collected data, such as slow change,
fast change, and step change. The failure of the external loop
pump of the system is used as an analysis case to verify the
effectiveness of the health assessment method. In reality, the
impeller of the external loop pump is broken.

3.1. Evaluation of Indicator-Level Health Index. For the exter-
nal loop pump component, the main monitoring data are
motor temperature and pump speed. When the pump is
abnormal, these two kinds of monitoring data will change
greatly compared with the normal operation state. The varia-
tion forms of these two types of data are the most complex
among all monitored data, and their curves are also the most
representative. They were sampled once every minute for
4,000min. The curves of the data are shown in Figure 7.
Figure 7(a) shows the curves of motor temperature monitor-
ing value when the external loop pump is in a normal state
and an abnormal state. The blue dotted line represents the
temperature of the motor in a normal state, and the orange
solid line represents the temperature of the motor in an
abnormal state. From Figure 7(a), it can be observed that
the temperature in the abnormal state is always lower than
that in the normal state. About 1,000min later, the motor
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FIGURE 6: Structure of the experimental fluid loop system.
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temperature in the abnormal state is even lower than 0°C.
Figure 7(b) shows the pump speed of the external loop pump.
The pump speed in the abnormal state has remained at 0 rpm
after approximately 1,250min.

Before calculating the feature distribution space, it is
necessary to perform preprocessing on the data to eliminate
the interference of random noise. The window function with
the appropriate window length is selected to intercept the
original data, and the mean and standard deviation of the
intercepted data are calculated. Let the window function
move to obtain a series of means and standard deviations.
Two indicator sequences, i.e., moving average and moving
STD, are obtained by preprocessing the original data of
motor temperature and pump speed. These sequences are
taken as the training set to construct the optimal distribution
space, as shown in Figure 8. The dark red line in the figure
represents the hyperplane. The pink area is the optimal nor-
mal distribution area. The other regions represent the poten-
tial anomaly distribution space.

The abnormal monitoring data are treated in the same
way that normal data are processed. Then, the processed data
are entered into the health assessment feature space, and the
assessment results are shown in Figure 9. In Figure 9, the

purple triangle points represent the detected abnormal indi-
cators. The larger the number of samples in the normal area
is, the higher the health degree of the sample is. When eval-
uating health status, it is necessary to calculate the ratio of the
amount of indicators in the normal area to the total amount
of indicators. That is, the probability of the data to be evalu-
ated is in a healthy state. The probability is considered the
health index. The total length of the two indicator sequences
is 3,980. Among them, the number located in the health state
distribution space of the two indicator sequences are 856 and
179, respectively. Therefore, the health index of motor tem-
perature is 21.5, and the health index of pump speed is 4.5.

Other indicators of the experimental fluid loop system
are processed according to the above health status assess-
ment procedures. The evaluation results are consistent with
the actual situation. The experimental results show that the
health status assessment method is effective at the indicator
level.

3.2. Evaluation of Component-Level Health Index. The fuzzy
inference is utilized to fuze the health indies of the motor
temperature indicator and the pump speed indicator. Mem-
bership functions and fuzzy rules also need to be

TABLE 3: Collected data.

Id Component Monitoring data Units Trends

C1 Pump
Motor temperature °C Slow change

Pump speed r/min Fast change

C2 Filter Pressure difference kPa Step change

C3 Heat exchanger Liquid temperature °C Slow change

C4 Latching valve
Pressure difference kPa Step change
Angle displacement rad Fast change

C5 Controller
Flow rate L/min Fast change
Liquid level mm Slow change

C6 Condenser Liquid temperature °C Slow change

C7 Liquid level compensator
Outlet temperature °C Slow change

Liquid level mm Slow change

C8 Temperature control valve Angle displacement rad Fast change
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FIGURE 7: Curves of the indicators in the normal and abnormal states: (a) curves of the external loop temperature control value; (b) curves of
the external loop pump speed value.
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predetermined. The health state of components is divided
into five degrees: healthy, degradation, severe degradation,
hazard, and severe hazard, and represented as a set H¼fh1;
h2; h3; h4; h5g. Therefore, the range of the health index of the
components is uniformly divided into five intervals. These
five intervals correspond to the domain of different member-
ship functions. The membership functions of the five degrees
are shown in Table 4, and the fuzzy rule base formulated
based on expert experience is shown in Figure 10.

The health degree of the indicator level is mapped through
the membership function set. The membership fuzzy subset
of the motor temperature index after fuzzy mapping is A¼
½0:425; 0:575; 0; 0; 0�, and the membership fuzzy subset of the
pump speed indicator after fuzzy mapping is B¼ ½1; 0; 0; 0; 0�.
According to the Mamdani algorithm, the fuzzy matrix of
both is shown in Equation (9). Combined with fuzzy rules,
the health degree corresponding to the fuzzy membership

degree at the non-zero position in the fuzzy matrix is h5, and
the fusion membership is 0.575. That is, the health status of
the pump is a severe hazard. Finally, the health index of the
external loop pump is solved to be 18.5 by substituting the
fuzed membership degree into the membership function cor-
responding to h5.

S∗ ¼ A ∧ B¼

0:425; 0; 0; 0; 0

0:575; 0; 0; 0; 0

0; 0; 0; 0; 0

0; 0; 0; 0; 0

0; 0; 0; 0; 0

0
BBBBBB@

1
CCCCCCA
: ð9Þ

The remaining components in the experimental fluid
loop system are treated according to the above health status
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FIGURE 8: Feature space of two indicators: (a) feature space of motor temperature; (b) feature space of pump speed.
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FIGURE 9: Evaluation results of two indicators: (a) evaluation result of motor temperature; (b) evaluation results of pump speed.
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assessment procedures. Except for the failure of the external
loop pump, the rest of the components are in a healthy state.
Experimental results show that the health assessment
method is effective at a component level.

3.3. Evaluation of the System-Level Health Index. After the
above calculation process, the health indices of all components
are obtained as ½18:5; 87:2; 82:4; 90:0; 87:6; 86:5; 88:5; 90:0�.
According to the calculation rules of the adaptive weight algo-
rithm, the mean value of the health indices of healthy compo-
nents is mh ¼ 87:5, and the weight is k¼ 1=3. The health
index of the system level is calculated as m¼ 41:5.

The health index of the experimental evaluation indicates
that the fluid loop system is in hazard. The result is consis-
tent with the expert evaluation conclusion. The experimental
results show that the proposed health assessment method is
effective for system-level assessment.

4. Discussion

There are differences in the likelihood and severity of differ-
ent failures in fluid loop systems. The risk index matrix

(RIM) has been evaluated by the research and development
institution of fluid loop systems based on a large amount of
expertise to meet the health status assessment requirements.
The severity of the fault represents the degree of damage to
the entire fluid loop system if the fault occurs. There are four
levels of severity, with the first level being the most severe
and the fourth level being the slightest. The likelihood of
occurrence indicates the frequency of failure, which is cate-
gorized into five levels. Level A indicates frequent occur-
rence, and level E indicates rare occurrence. The RIM is
formulated by the likelihood of failure occurrence and the
severity of the failure, as shown in Table 5. The fault risk
evaluation index can comprehensively reflect the health state
of fluid loop systems. The risk index in the range of 0 and 14
is defined as severe hazard, the range of 15 and 16 as hazard,
the range of 17 and 18 as severe degradation, and the range of
19 and 20 as degradation. Therefore, the health state of fluid
loop systems can also be analyzed according to the likelihood
of fault occurrence and the severity of the failure.

The HMIF health status assessment method and RIM are
used to evaluate the health status of 14 sets of monitoring
samples of the experimental fluid loop system. The evalua-
tion results are shown in Table 6. Compared with the evalu-
ation results based on RIM, there are only two differences in
the evaluation results of the HMIF method, namely, S6 and
S10. The S6 sample was evaluated as degradation by the RIM
method, while it was evaluated as a severe hazard by the
HMIF method. The S10 sample was evaluated as the severe

TABLE 4: Membership functions for component-level evaluation process.

Degree Membership function Degree Membership function

h1
Ah1ðxÞ¼

0; x 2 ð0; 70Þ
x − 70
20

; x 2 ½70; 90Þ
1; x 2 ½90; 100�

8>><
>>:

h2
Ah2ðxÞ¼

0; x 2 ð0; 50Þ&½90; 100�
x − 50
20

; x 2 ½50; 70Þ
90 − x
20

; x 2 ½70; 90Þ

8>>><
>>>:

h3
Ah3ðxÞ¼

0; x 2 ð0; 30Þ&½70; 100�
x − 30
20

; x 2 ½30; 50Þ
70 − x
20

; x 2 ½50; 70Þ

8>>><
>>>:

h4
Ah4ðxÞ¼

0; x 2 ð0; 10Þ&½50; 100�
x − 10
20

; x 2 ½10; 30Þ
50 − x
20

; x 2 ½30; 50Þ

8>>><
>>>:

h5
Ah5ðxÞ¼

1; x 2 ð0; 10Þ
30 − x
20

; x 2 ½10; 30Þ
0; x 2 ½30; 100�
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>>:
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FIGURE 10: Fuzzy rule base.

TABLE 5: Risk index matrix.

Ⅰ Ⅱ Ⅲ Ⅳ

A 1 3 7 13
B 2 5 9 16
C 4 6 11 18
D 8 10 14 19
E 12 15 17 20
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degradation by the RIM method, while it was evaluated as
the hazard by the HMIF method. After analysis, the evalua-
tion results of the proposed method are very close to the
results based on a large number of expert experiences, which
verifies the feasibility of the HMIF method. In addition, the
HMIF method also obtains the health degree and health
index of each component in the fluid loop system, which
shows that themethod can reflect the health state of the whole
system more scientifically and reasonably. In the absence of
expert experience, the HMIF method proposed in this paper
can accurately and reliably evaluate the health status of fluid
loop systems.

5. Conclusions

In this paper, the HMIF method for health status assessment
is constructed in view of fluid loop systems for long life and
good performance requirements. The health index is defined
to quantitatively evaluate the health state of fluid loop sys-
tems. The health assessment process of fluid loop systems in
this method is divided into three levels, which are indicator
level, component level, and system level. At the indicator
level, One-Class SVM algorithm is used to obtain the distribu-
tion space under a normal state of indicators. The indicator-
level health indices are evaluated by counting the number of
indicators located in the health-state distribution space. At the
component level, a health index evaluation process, which is
based on fuzzy theory and expert experience, is proposed. At
the system level, an adaptive weight adjustment strategy is
proposed to fuze all component-level health indices. Finally,
the HMIF method is verified by the health assessment of a
practical fluid loop system. It can be concluded that the pro-
posed method rightly evaluates the health status of the fluid
loop system and provides a reference for system maintenance.
However, a lot of prior knowledge is needed to construct the
fuzzy rule base in the fuzzy evaluation of the component-level
health state assessment. It brings inconvenience to the imple-
mentation of the method. The future work aims at further
research to improve the application limitations caused by
insufficient prior knowledge.
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