
Research Article
Total Face Irregularity Strength of Certain Graphs

D. Ahima Emilet ,1 Daniel Paul ,2 R. Jayagopal ,3 and Micheal Arockiaraj 4

1Department of Mathematics, Hindustan Institute of Technology and Science, Chennai 603103, India
2Department of Mathematics, Sri Sairam Institute of Technology, Chennai 600044, India
3School of Advanced Sciences, Vellore Institute of Technology, Chennai 600127, India
4Department of Mathematics, Loyola College, Chennai 600034, India

Correspondence should be addressed to Micheal Arockiaraj; marockiaraj@gmail.com

Received 1 September 2023; Revised 11 January 2024; Accepted 18 January 2024; Published 8 February 2024

Academic Editor: Zhao Li

Copyright© 2024 D. Ahima Emilet et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The edge k-labeling ψ of G is defined by a mapping from EðGÞ : to a set of integers f1; 2;…; kg:, where the integer weight assigned
to the vertex x2VðGÞ: is given as wψ ðxÞ : ¼∑ψðxyÞ :, such that the sum is taken over every vertex of y2VðGÞ: that is adjacent to x
and the integer weights of adjacent vertices must be distinct for all vertices with x ≠ y. An irregular assignment of G using atmost k
labels which is considered to be a minimum k is defined as irregularity strength of a graph G and can be denoted as sðGÞ:. There are
also further works on familiar irregular assignments, such as edge irregular labelings, vertex irregular total labelings, edge irregular
total labelings, and face irregular entire k-labelings of plane graphs. A plane graph can be defined as a graph that is embedded in the
plane in which no two lines will be intersected. In a plane graph the number of regions present are called faces and we denote it as F.
The concept of total face irregularity strength is defined by the motivation of irregular networks and entire irregular face k-labeling.
In our paper, we have obtained a minimum bound for the total face irregularity strength of two-connected plane graphs like cycle-
of-ladder, C-necklace graph, P-necklace graph, sibling tree, and triangular graph.

1. Introduction

Graph theory is an interesting topic of research in combina-
torics. Graph-based models are a powerful and indispensable
tool for solving practical issues. In general, new algorithms
that are appropriate for graph structures have been explored
as a result of the development of contemporary theoretical
issues such as labeling in graph theory. At present the utili-
zation of computers is increasing in human life and our
future is entirely becoming computer oriented. Most of the
applications use graphs as their underlying structures, say for
example, Google search engines are primarily based on the
concept of shortest paths in the graph theory. As a result,
graph theory has grown to be an enormous field of study in
mathematics.

The concept of graph labeling was established in the
middle of 1960’s. Graph labeling can be defined as the assign-
ment of integer labels (values) to the links and/or nodes of a
graph. One important motive in graph labeling is to fulfill
some conditions that are imposed on the graph. In general, a
lot of graph labeling problems started off in connection with

some real-time applications such as the exam scheduling and
tournament scheduling problems in sports. In recent times,
graphs with a defined set of labels (integers) allocated to the
vertices, edges, or both based on certain given conditions are
being explored. These graphs are termed as labeled graphs.
Labeled graphs are studied as an important concept in graph
theory because of their innumerable applications. These
labeled graphs are also of interest in their own way because
of their theoretical mathematical properties of the underly-
ing graphs. Research works on the labeling of graphs are
being encouraged in several domains such as human inquiry,
including resolution of conflicts in psychology, cybernetic
systems, and energy shortages. Mathematical labeling of var-
ious graphs has resulted in rather complex domains of appli-
cation, such as the theory of coding problems, such as the
development of excellent radar position codes, missile navi-
gation codes, and convolution signals. There are numerous
theoretical applications for labeled graphs in combinatorial
number theory, group theory, and in linear algebra [1]. In
general, the graph labeling problem can be described as fol-
lows: for a given graph, find the optimal way of labeling the
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vertices/edges or both with distinct integers or k-tuples of
integers subject to certain objectives. Many fascinating appli-
cations for graph labeling are found in Bloom and Golomb’s
[2, 3] papers.

We consider the vertex set and edge set of a finite, simple,
and undirected graph G. An irregular assignment of G
maybe defined as the labeling of edges of G with a set of
positive integer such that the total (sum) of the labels that are
incident with some vertex is distinct for every vertex. Char-
trand et al. [4] introduced this concept. They discovered that
for any graph, the irregularity strength sðGÞ:, which is the
lowest possible value k for which G constitutes an irregular
assignment with label at most k, is extremely difficult to find.
In recent times, motivated by this particular concept, many
researchers are having specific interest for these types of
irregular labeling and have found the irregularity strength
for some graphs [5–10]. Shabbir et al. [11] have proved their
exact values of the strength of total vertex (edge) irregulari-
ties of a randomly convex unions of (3,6)-fullerene graphs. In
2022, Bača et al. [12] investigated the irregular labelings with
respect to face of plane graphs and have found a new graph
characteristic which can be termed as face irregularity
strength of a few types ðα; β; γÞ:. Also, Tilukay et al. [13] have
estimated the bounds of total face irregularity strength tfsðGÞ :

and have proved that the lower bound is sharp for G isomor-
phic to a cycle, a book with m polygonal pages, or a wheel.
Further, Jamil and Mughal [14] have studied tfs of general-
ized plane grid graphs Gn

m and wheel graphs Wn under a
graph k-labeling of type ðα; β; γÞ : where α; β2 0; 1. Since a
total labeling is defined for both edges and vertices, it is
difficult to find the lower bounds for certain higher dimen-
sions of graphs.

In our paper, we have obtained a lower bound for the
tfsðGÞ : of two-connected plane graphs like cycle-of-ladder, C-
necklace graph CN½Cm; Ci

m� :, P-necklace graph PN½Pm; Ci
m� :,

sibling tree, as well as a lower bound for tfsðGÞ : is obtained for
triangular graph.

2. Preliminaries

The concept of irregularity strengths and a recent publica-
tion on entire coloring of plane graphs [15] served as the
inspiration for Bača’s et al. [16] study of face irregular
entire k-labeling of plane graphs in 2015. In the sections
below, for a graph G we denote the number of cycles of
length d as nd .

In the year 2016, Packiam [17] has defined the concept of
total face irregularity strength. The following theorems give the
lower bound for total face irregularity strength of a plane graph.

Theorem 1 [17]. Let G¼ðV ; E; FÞ: be a plane graph with
miri-sided faces where ri<riþ1 and 1≤ i≤ s. Then tfsðGÞ : ≥
⌈ 2r1þjFj−1

2rs
⌉.

Theorem 2 [17]. Let G¼ðV ; E; FÞ : be a two-connected plane
graph with miri-sided faces where ri ≤ riþ1 and 1≤ i≤ s. Then
tfsðGÞ : ≥maxi ⌈

2riþmi−1
2ri

⌉:

We now propose the following theorem:

Theorem 3. Let G be a two-connected plane graph and d be
the girth in G. Then tfsðGÞ: ≥ ⌈ 2dþnd−1

2d ⌉.

Proof. Let tfsðGÞ : ¼ k. Clearly, 2dk≥ 2dþ nd − 1. Therefore,
k≥ ⌈ 2dþnd−1

2d ⌉: □

Remark 1. Theorem 3 implies that it is not always necessary
to consider all the cycles induced by the plane graph faces.

3. Main Results

3.1. Cycle-of-Ladder. In this section, the tfsðGÞ : is obtained for
cycle-of-ladder (Figure 1) where its graph theoretical defini-
tion given in [18, 19].

Lemma 1. Let G be the CLð2k; rÞ:, where r
1
¼ r

2
¼…¼ r

k
¼ r

are considered as the rungs of equal length and d be a girth in
G. Then tfsðGÞ : ≥ ⌈ ndþ7

8 ⌉.

Proof. In G, the shortest cycle length is 4. Hence, d¼ 4. By
Theorem 3, tfsðGÞ : ≥ ⌈ 2dþnd−1

2d ⌉. Therefore, tfsðGÞ : ≥ ⌈ ndþ7
8 ⌉. □
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FIGURE 1: Total face irregularity strength of cycle-of-ladder.
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Remark 2. Algorithm 1 holds good for CLð2k; r
1
; r

2
;…; r

k
Þ :,

k≥ 3.

3.2. C-Necklace Graph, CN½C
m
; C

i

m
� :. In this section, we

obtain the tfsðGÞ : of C-necklace graph, CN½C
m
; C

i

m
� :, 1≤

i≤m.

Definition 1 [20]. Let us consider C
m
to be a cycle with m

vertices which is called the inner cycle and for 1≤ i≤m; let
C

i

m
be a cycle onm vertices called the outer cycle. The result-

ing graph is called C-necklace graph that is obtained by
attaching any one vertex of C

i

m
to the corresponding i

th

vertex of the cycle C
m
, 1≤ i≤m and we denote it by

CN½C
m
; C

i

m
� :. It has m

2
vertices and mðmþ 1Þ : edges.

Input: Cycle-of-ladder, CLð2k; rÞ:, k≥ 3.

Algorithm: Begin labeling the 4-cycles in the ladders L
1
; L

2
;…; L

k
as follows.

Step 1: The labels of the bottom rung R1
1, the two parallel sides perpendicular to the bottom rung and the top rung R1

2 constitute a 8-
tuple divided as 3-tuple representing the labels of the bottom rung followed by 2-tuple representing the labels of the parallel edges
followed by 3-tuple representing the labels of the top rung of the respective 4-cycle.

Step 2: We sequentially label the 4-cycles in each ladder, beginning from the bottom rung of L
1
, go up the ladder till all vertices and

edges in L
1
are labeled, and repeat the same with L

2
;…; L

k
in the same order.

Step 3: We list the labels of the first 4-cycles as

s
1
¼ð 1 1 1

zffl}|ffl{
1 1
z}|{

1 1 1
zffl}|ffl{

Þ:;

and the next eight 4-cycles as follows
s
2
¼ ð1 1 1 1 2 1 1 1Þ

s
3
¼ ð1 1 1 2 2 1 1 1Þ

s
4
¼ ð1 1 1 2 2 1 1 2Þ

s
5
¼ ð1 1 2 2 2 1 1 2Þ

s
6
¼ ð1 1 2 2 2 1 2 2Þ

s
7
¼ ð1 2 2 2 2 1 2 2Þ

s
8
¼ ð1 2 2 2 2 2 2 2Þ

s
9
¼ ð2 2 2 2 2 2 2 2Þ:

Step 4: If the number of 4-cycles in L
1
∪ L

2
∪… ∪ L

k
is more than 9, continue labeling the subsequent cycles as s

2
þ 1; s

3
þ 1;…; s

9
þ

1, where s
i
þ 1 is the 8-tuple obtained from si by adding 1 to each bit, 2≤ i≤ 9.

Step 5: Repeat this procedure by adding 2; 3;… to each si, 2≤ i≤ 9, till all the cycles are labeled.

Step 6: By our labeling, we get consecutive labels for each of the faces enclosed by these 4-cycles. Let q denote the greatest of these face
labels. Finally, we label the edge of the C

s
which are not yet labeled using the already used labels to arrive at a face label greater than q.

Output: tfsðCLð2k; rÞ: ¼ ⌈ ndþ7
8 ⌉.

Proof of correctness: CLð2k; rÞ : has kðr− 1Þ: number of 4-cycles. Then for every set of eight 4-cycles beginning from the second,
considered sequentially from bottom to top and in the clockwise direction, the label is incremented by 1, beginning from 2. Hence the

number of labels used is ⌈ kðr−1Þ−1
8 ⌉þ 1¼ ⌈

n
d
þ7

8 ⌉.

ALGORITHM 1: Total face irregularity strength of cycle-of-ladder.

Input: C-necklace graph, CN½C
m
; C

i

m
� :, 1≤ i≤m.

Algorithm:

Step 1: Assign labels to the vertices and the edges of the inner cycle C
m
with label 1 such that 2m is the weight of the inner face.

Step 2: Begin labeling the unlabeled vertices and edges of C
1

m
;C

2

m
;…;C

i

m
, 1≤ i≤m, as follows:

(i) Since one vertex of C
i

m
is identified with the i

th
vertex of C

m
, it is already labeled with label 1.

(ii) The remaining unlabeledm− 1 vertices andm edges in each outer cycles C
i

m
, 1≤ i≤m receive labels ðd 1

1
; d

1

2
;…; d

1

2m−1
Þ: in such a

way that the hamming distance ∑2m−1
j¼1 jd iþ1

j
− d

i

j
j: ¼ 1. Thus the weight of each of the m outer faces varies from 2mþ 1 to 3m as

shown in Figure 2.

Output: tfsðCN½C
m
; C

i

m
�Þ ¼ 1þ ⌈m−1

2m ⌉:

ALGORITHM 2: Total face irregularity strength of C-necklace graph.
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Proof of correctness: Let G be a C-necklace graph,
CN½C

m
; C

i

m
� :, 1≤ i≤m. Let ðu

1
; u

2
;…; u

m
Þ : and ðe

1
; e

2
;…;

e
m
Þ : be the vertices and edges of the inner cycle. Then by our

labeling Algorithm 2, the weight of that face is 2m. Further, if
ðu

1
; u

2
;…; u

m−1
Þ : and ðe

1
; e

2
;…; e

m
Þ : are the vertices and

edges of the outer cycles, respectively, then the weights of
C

1

m
;C

2

m
;…;C

i

m
, 1≤ i≤m, varies from 2mþ 1 to 3m, thereby

wϕð f Þ : ≠ wϕðgÞ :, for every two distinct faces f and g of G.
Further, tfsðGÞ : ¼ 1þ ⌈ m−1

2m ⌉:

3.3. P-Necklace Graph, PN½P
m
; C

i

m
� :.

In this section, a lower bound for the total face irregularity
strength is obtained for P-necklace graph, PN½P

m
; C

i

m
� :, 1≤

i≤m. The definition of PN½P
m
; C

i

m
�: is given in [20].

Definition 2 [20]. Let us consider P
m
to be a path with m

vertices and C
i

m
is a cycle with m vertices, 1≤ i≤m. The

resulting graph is called P-necklace graph that is obtained
by attaching any one vertex of C

i

m
to the corresponding i

th

vertex of P
m
, 1≤ i≤m and we denote it by PN½P

m
; C

i

m
� :.

Proof of correctness: Let G be a P-necklace graph,
PN½P

m
; C

i

m
� :, 1≤ i≤m. Let ðu i

1
; u

i

2
;…; u

i

m
Þ : and ðe i

1
; e

i

2
;…;

e
i

m
Þ : be the vertices and edges in Ci

m, respectively. Then by
our labeling Algorithm 3, the weight of this face is 2mþ
ði− 1Þ :. The weights of all the faces vary between 2m and
3m− 1. Therefore, for every two distinct faces f and g of
G, wϕð f Þ: ≠ wϕðgÞ :.

3.4. Sibling Tree. In this section, the total face irregularity
strength is obtained for sibling tree. The formal definition
of sibling tree can be seen in [21, 22].

Lemma 2. Let STðnÞ : be a sibling tree. The total face irregu-
larity strength of STðnÞ : is given by tfsðSTðnÞÞ : ≥ ⌈ n

2 ðn− 1Þ : þ
1⌉ for n≥ 1.

Proof of correctness: Let G be a sibling tree, STðnÞ :, for
n≥ 1. Let ðu i

1
; u

i

2
;…; u

i

m
Þ : and ðe i

1
; e

i

2
;…; e

i

m
Þ : be the vertices

and edges in each cycle Ci
m, respectively. Then by our label-

ing Algorithm 4, the weight of the face of the first cycle of
length 3 is 2m. The weights of all the faces of the cycles of
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FIGURE 2: Total face irregularity strength of C-necklace graph CN½C
5
; C

5

5
� :.

Input: P-necklace graph, PN½P
m
; C

i

m
� :, 1≤ i≤m.

Algorithm:

Step 1: Label the vertices and edges of the cycles C
1

m
;C

2

m
;…;C

i

m
, 1≤ i≤m, beginning with the minimum label 1 such that 2m is the

minimum weight of the C
1

m
and the weights of each of these faces varies from 2m to 3m− 1.

Step 2: Label the unlabeled edges of the path with 1 as shown in Figure 3.

Output: tfsðPN½P
m
; C

i

m
�Þ¼ 1þ ⌈ m−1

2m ⌉:

ALGORITHM 3: Total face irregularity strength of P-necklace graph.
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length 3 vary between 2m and ð6þ∑m−2
i¼1 2

iÞ :. Therefore, for
every two different faces f and g of G, wϕð f Þ: ≠ wϕðgÞ : as
illustrated in Figure 4.

3.5. Triangular Graph. In this section, a lower bound for the
tfsðGÞ : is obtained for triangular graph. Figure 5 shows the
diagrammatic representation of triangular graph.

Lemma 3. Let n
d
be the number of cycles of length 6 inTG

n
. The

total face irregularity strength of triangular graph is given by:

tfs TG
n

À Á
≥

nd þ 11
12

� �
: ð1Þ

Proof.With minimum label 1, the weight of a face is 12. If n
d

is the number of cycles of length 6, then the weights vary
between 12 and 12þ n

d
− 1¼ n

d
þ 11. Hence tfsðTG

n
Þ : ≥

⌈ ndþ11
12 ⌉. □

Remark 3. Label the vertices and edges in Levels 1; 2, and 3 of
TG

3
as shown in Figure 5(b) as 1 and the vertices and edges

in Level 4 as f1; 1; 1; 1; 2; 1; 1; 1; 2; 1; 1; 2; 2g: and the perpen-
dicular edges between Levels 1 and 2 as 1, between Levels 2
and 3 as f1; 2; 2g: and between Levels 3 and 4 as 2. The graph
has six faces. It is easy to see that the weights of the faces are
all distinct and sequential. Hence tfsðTG

3
Þ : ¼ ⌈ 6þ11

12 ⌉¼ 2.
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FIGURE 3: Total face irregularity strength of P-necklace graph PN½P
4
; C

4

4
� :.

Input: Sibling tree STðnþ 2Þ :, n≥ 1.

Algorithm:

Step 1: Let C3ðx; yÞ: denote a cycle of length three which is formed in Level x, for x≥ 1 and the number of copies, represented by yi for
1≤ i≤ 2x . The root vertices of each level of C3ðx; yiÞ : is called as the pivot vertices and the sum of the weights of C3ðx; yiÞ: is called as the
weight of C3ðx; yiÞ:. Notice that there will be 2x−1 copies of C3ðx; yiÞ: in each Level x.

Step 2: Let us begin by defining a rule for the labeling process. In order to label STðnþ 1Þ :, we retain the labeling of STðnÞ: and after
retaining the labeling of STðnÞ:, we start labeling the remaining copies of C3ðnþ 1; yiÞ:. In STð2Þ:, there will be three copies of C3ðx; yiÞ:

and we label the vertices and edges of C3ð0; y1Þ : by 1. Thus, the weight of C3ð1; y1Þ: is 6. Similarly, the vertices and edges of C3ð2; y1Þ: and
C3ð2; y2Þ: will be labeled as follows. The vertices and edges of copies of C3ð1; yiÞ: are labeled temporarily as they were for C3ð0; y1Þ:,
except for the pivot vertices. Observe that the two copies of C3ð2; yiÞ: will have the same weight as C3ð1; y1Þ:. In order to make the
weights distinct, we change the label of the left non-pivot vertex of C3ð2; y1Þ: to 2; and in the rightmost copy of C3ð2; y2Þ:, we change the
label of two non-pivot vertices to 2. Thus, the weight of the C3ð2; y1Þ : and C3ð2; y2Þ: are 7 and 8, respectively. Now we can say that copies
of C3ð1; yiÞ: are permanently labeled. We can now begin labeling the vertices and edges of STðnÞ:, for n≥ 3 from Step 3.

Step 3:When n≥ 3, the vertices and edges in C3ðn; y1Þ: of STðnÞ: are labeled temporarily as they were for C3ðn− 1; y2n−2Þ:, except for the
pivot vertices. Observe that, there will arise two cases.

Case (i): When the labels of the pivot vertices of C3ðn; y1Þ: ¼C3ðn− 1; y2n−2Þ:, then the weights, wðC3ðn; y1ÞÞ: ¼wðC3ðn − 1; y2n−2ÞÞ:.

Case (ii): When the labels of the pivot vertices of C3ðn; y1Þ: ≠ C3ðn− 1; y2n−2Þ: or C3ðn; y2Þ: ≠ C3ðn− 1; y2n−2Þ:, then the weights,
wðC3ðn − 1; y2n−2ÞÞ :<wðC3ðn; y1ÞÞ :.

Hence C3ðn; y1Þ: satisfies Case ðiiÞ: and the weights of C3ðn; y1Þ: and C3ðn− 1; y2n−2Þ: are all distinct.

Now the vertices and edges of C3ðn; yiþ1Þ : are labeled temporarily as they were for C3ðn; yiÞ:, except for the pivot vertices. Observe that,
there will arise another case.

Case (iii): When the labels of the pivot vertices of C3ðn; yiÞ:>C3ðn; yiþ1Þ: or C3ðn; yiÞ:>C3ðn; yiþ2Þ:, then the weights, wðC3ðn − 1;
y2n−2ÞÞ: ¼wðC3ðn; yiþ1ÞÞ:.

Thus all the weights of C3ðn; yiÞ: are all distinct.

Output: tfsðSTðnþ 2ÞÞ: ¼ n2þnþ2
2 , for n≥ 1.

ALGORITHM 4: Total face irregularity strength of sibling tree.
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Open problem: Let n
d
be the number of cycles of length 6

in TG
n
, n≥ 1. Then tfsðTG

n
Þ : ¼ ⌈

n
d
þ11

12 ⌉.

4. Conclusion

We have found the total face irregularity strength of plane
graphs like cycle-of-ladder, necklace graph, necklace graph,
and sibling tree. For triangular graphs, we have established a
lower bound on their total face irregularity strength. Our
labeling approach on the vertices and edges of graphs is
focused on estimating face weights of graphs in order to prove
the sharpness of k-labeling. Excitingly, we are now exploring
the total face irregularity strength of plane graphs like
Sierpinski-like graphs, Schreier graphs, and WK-recursive
networks, all of which find numerous practical applications
in network theory. In general, it would be really challenging to
improve the lower bound of total face irregularity strength for
both plane graphs and their dual counterparts.
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