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This research paper presents a new iterative method (NIM) for obtaining the solution to the potential Kadomtsev–Petviashvili
(PKP) equation. NIM is a promising approach to solving complex mathematical problems, and its effectiveness and efficiency are
highlighted through its application to the PKP equation. The results obtained through the use of NIM are compared to the exact
solutions of the PKP equation, and it is found that the NIM approach provides results that are in close agreement with the exact
solutions. This demonstrates the utility and accuracy of NIM and makes it a valuable tool for solving similar mathematical
problems in the future. Furthermore, the lack of discretization in the NIM approach makes it a more convenient method for
solving the PKP equation compared to traditional approaches that require discretization. Overall, the findings of this research
paper suggest that NIM is a highly effective and convenient method for obtaining approximate analytical solutions to complex
mathematical problems, such as the ð2þ 1Þ-dimensional PKP equation.

1. Introduction

Nonlinear phenomena are of paramount importance in
numerous scientific and engineering disciplines. Despite their
widespread significance, the models of real-world problems
that incorporate nonlinearity are often challenging to solve,
either theoretically or numerically. This has led to a growing
interest in developing better and more efficient methods for
determining solutions to nonlinear models, whether they be
approximate or exact, analytical or numerical.

In recent years, significant progress has been made in this
direction, with researchers devoting a great deal of attention
to the search for new and improved methods for solving
nonlinear problems. This has led to a wealth of studies and
publications that explore various approaches to solving non-
linear models (such as those by [1–10]). These efforts are
aimed at improving our understanding of nonlinearity and
finding ways to effectively model and solve real-world pro-
blems that incorporate nonlinear dynamics.

Despite the progress that has been made, much work
remains to be done. Nonlinear models can still be difficult
to solve, and the search for more effective and efficient meth-
ods for determining their solutions continues to be a focus of

research and development efforts in various scientific and
engineering disciplines. Nevertheless, the progress that has
been made in recent years highlights the promise of contin-
ued progress in the future as researchers continue to work
toward finding better and more efficient methods for solving
nonlinear problems.

The ð2þ 1Þ-dimensional potential Kadomtsev–Petviashvili
(PKP) equation is an important partial differential equation in
the field of nonlinear wave phenomena. It is a generalization of
the (2+1)-dimensional KP equation and describes the propaga-
tion of nonlinear waves in a two-dimensional space with an
additional degree of freedom.

The importance of PKP lies in its ability to model a wide
range of physical phenomena, such as plasma physics, fluid
dynamics, and nonlinear optics. For example, PKP has been
used to describe the interaction of Langmuir waves and ion-
acoustic waves in plasma physics, the propagation of waves in
shallow water, and the dynamics of optical pulses in nonlinear
media.

Moreover, PKP possesses several interesting mathemati-
cal properties, such as soliton solutions, integrability, and
infinite-dimensional symmetries. These properties make
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PKP an attractive subject of study in the field of mathematical
physics, where it has been investigated extensively using a
variety of techniques, including inverse scattering transform,
Darboux transformation, and the Hirota bilinear method.

Overall, the PKP equation plays an important role in
both the physical and mathematical sciences and continues
to be an active area of research [11–13].

The PKP equation is a partial differential equation that
has applications in various fields of physics, including fluid
dynamics, plasma physics, and nonlinear optics. Here are
some examples of how PKP equations are used in the real
world.

Fluid Dynamics: The PKP equation is used to describe
the dynamics of fluids in various contexts, including ocean
currents, atmospheric circulation, and turbulence. For exam-
ple, the PKP equation has been used to study the behavior of
waves in shallow water and to model the flow of viscous
fluids in channels and pipes.

Plasma Physics: The PKP equation is also used in the
study of plasma physics, particularly in the context of
magnetohydrodynamics (MHDs). MHD is a branch of
plasma physics that studies the behavior of ionized gases in
the presence of magnetic fields. The PKP equation has been
used to describe the dynamics of MHD waves and to study
the stability of plasma configurations.

Nonlinear Optics: The PKP equation has applications in
the field of nonlinear optics, which studies the behavior of
light in nonlinear media. Nonlinear optics is used in a variety
of applications, including telecommunications, laser technol-
ogy, and medical imaging. The PKP equation has been used
to model the propagation of ultrashort pulses of light in
optical fibers and to study the dynamics of solitons in non-
linear media [14–16].

In 2001, Senthilvelan [17] solved the potential PKP
equation by applying the homogenous balance method
(HBM). Later, Li and Zhang [18] made improvements to
the steps of the HBM and applied the method to the study
of the PKP equation. Through their research, they were able
to obtain various exact solutions to the equation, including
soliton, multisoliton, and rational-type solutions.

In an independent investigation, Li and Zhang [19] success-
fully derived novel soliton-like solutions for the PKP equation
through the application of symbolic computation. Additionally,
Kaya and El-Sayed [20] employed the Adomian decomposition
method (ADM) to ascertain the solution of the PKP equation.
Simultaneously, Batiha and Batiha [21] utilized the variational
iteration method (VIM) to uncover solutions for the ð2þ 1Þ
-dimensional PKP equation. These diverse approaches under-
score the range of methodologies employed in addressing the
PKP equation, showcasing the potential of different methods in
resolving intricate nonlinear problems.

The new iterative method (NIM), presented by Daftardar-
Gejji and Jafari [22] in 2006, emerged as a potent mathemati-
cal tool for tackling both linear and nonlinear functional
equations. Demonstrating its efficacy, NIM has been success-
fully applied to solve a diverse array of nonlinear equations,

encompassing integral equations, algebraic equations, as well
as ordinary or partial differential equations of both fractional
and integer order.

NIM stands out due to its simplicity in implementation
and comprehensibility, rendering it accessible to a wide spec-
trum of researchers and practitioners. In contrast to well-
established methods like the ADM [23], the homotopy per-
turbation method [24], and the VIM [25], NIM has demon-
strated superior performance and increased efficiency. This
has contributed to its popularity among individuals addres-
sing intricate nonlinear problems [26].

In this study, our aim is to use theNIM to obtain a numerical
solution for the ð2þ 1Þ-dimensional PKP Equation, which is
given in the following form:

uxt þ
3
2
uxuxx þ

1
4
uxxxx þ

3
4
uyy ¼ 0: ð1Þ

The initial conditions are already known and will be used
in our analysis. In order to validate the effectiveness of NIM,
we will compare the results obtained through its application
with the exact solution of the PKP equation.

2. Overview of the NIM

This section provides an outline of the NIM numerical
method, detailing its approach as follows [27–30]:

y ¼ f þ L yð Þ þ N yð Þ: ð2Þ

In the presented equation, f represents a given function,
while L andN denote linear and nonlinear operators, respec-
tively. The solution to Equation (2) is expressed as follows:

y ¼ ∑
1

i¼0
yi: ð3Þ

Suppose we have the following:

H0 ¼ N y0ð Þ; ð4Þ

Hm ¼ N ∑
m

i¼0
yi

� �
− N ∑

m−1

i¼0
yi

� �
: ð5Þ

Then, we get the following:

H0 ¼ N y0ð Þ;
H1 ¼ N y0 þ y1ð Þ − N y0ð Þ;
H2 ¼ N y0 þ y1 þ y2ð Þ − N y0 þ y1ð Þ;
H3 ¼ N y0 þ y1 þ y2 þ y3ð Þ − N y0 þ y1 þ y2ð Þ þ⋯:

ð6Þ

Therefore, NðyÞ can be decomposed as follows:
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N ∑
1

i¼0
yi

� �
¼N y0ð Þ þ N y0 þ y1ð Þ − N y0ð Þ þ N y0 þ y1 þ y2ð Þ − N y0 þ y1ð Þ

þN y0 þ y1 þ y2 þ y3ð Þ − N y0 þ y1 þ y2ð Þ þ⋯:
ð7Þ

The recurrence relation is written in the following form:

y0 ¼ f

y1 ¼ L y0ð Þ þ H0

ymþ1 ¼ L ymð Þ þ Hm;  m¼ 1; 2;⋯:
ð8Þ

By knowing that L is linear we will have the following:

∑
m

i¼0
L yið Þ ¼ L ∑

m

i¼0
yi

� �
: ð9Þ

So,

∑
mþ1

i¼0
yi ¼ ∑

m

i¼0
L yið Þ þ N ∑

m

i¼0
yi

� �
:

¼ L ∑
m

i¼0
yi

� �
þ N ∑

m

i¼0
yi

� �
;  m¼ 1; 2;⋯

ð10Þ

thus,

∑
1

i¼0
yi ¼ f þ L ∑

1

i¼0
yi

� �
þ N ∑

1

i¼0
yi

� �
: ð11Þ

So, the solution will be given as follows:

y ¼ ∑
k−1

i¼0
yi: ð12Þ

3. Convergence Analysis of NIM

Theorem 1. For any n and given real constants L>0 and kuijj
≤M< 1

e for i¼ 1; 2;…, if the nonlinear operator N is Cð1Þ in
the neighborhood of u0 and kNðnÞðu0Þjj≤ L, then the series
∑1

n¼0Hn is absolutely convergent, and kHnjj≤ LMnen−1ðe− 1Þ
for n¼ 1; 2;….

Proof.

Hnk k ≤ LMn ∑
1

in¼1
∑
1

in−1¼0
⋅⋅⋅ ∑

1

i1¼0
∏
n

j¼1

1
ij!

 !
¼ LMnen−1 e − 1ð Þ:

ð13Þ

Therefore, the series ∑1
n¼1kHnjj is bounded by the con-

vergent series LMðe− 1Þ∑1
n¼1ðMeÞn−1, where M<1=e. Con-

sequently, ∑1
n¼0Hn converges absolutely, as established by

the comparison test. □

Since demonstrating the boundedness of ui for all i poses
challenges, a more practical result is provided in the follow-
ing theorem. This theorem specifies conditions on NðkÞðu0Þ
that are sufficient to ensure the convergence of the series.

Theorem 2. If the series ∑1
n¼0Hn converges absolutely, given

that N is Cð1Þ and kNðnÞðu0Þjj≤M ≤ e−1 for all n.

Proof. Let’s examine the recurrence relation

εn ¼ ε0 exp εn−1ð Þ;  n¼ 1; 2; 3;…; ð14Þ

where ε0 ¼M. Define ηn ¼ εn − εn−1; n¼ 1; 2; 3;…. We can
observe that

Hnk k ≤ ηn; n¼ 1; 2; 3;…: ð15Þ

Now, let

σn ¼ ∑
n

i¼1
ηi ¼ εn − ε0: ð16Þ

Note that ε0 ¼ e−1>0, ε1 ¼ ε0 exp ðε0Þ>ε0, and ε2 ¼
ε0 exp ðε1Þ>ε0 exp ðε0Þ¼ ε1. In general, εn>εn−1>0. Hence
∑ηn is a series of positive real numbers. Observe that

0<ε0 ¼M ¼ e−1<1;
0<ε1 ¼ ε0 exp ε0ð Þ<ε0e1 ¼ e−1e1 ¼ 1;

0<ε2 ¼ ε0 exp ε1ð Þ<ε0e1 ¼ 1:

ð17Þ

In general, 0<εn<1. Hence, σ¼ εn − ε0<1. This implies
that fσng1n¼1 is bounded above by 1, and hence convergent.
Therefore, ∑Hn is absolutely convergent by the comparison
test. □

4. Examination of the PKP Equation with
Numerical Applications

This paper focuses on the (2+ 1)-dimensional PKP equation,
defined as follows:

uxt þ
3
2
uxuxx þ

1
4
uxxxx þ

3
4
uyy ¼ 0: ð18Þ

The initial conditions for the PKP equation are given as
follows:

Mathematical Problems in Engineering 3



u x; 0; tð Þ ¼ 1þ 2kα tanh k αx − ctð Þ½ �;
uy x; 0; tð Þ ¼ 2αβk2 sech2 k αx − ctð Þ½ �; ð19Þ

where c¼ðk2α3 þ 3β3

4α Þ.
The exact solution to the PKP equation has been deter-

mined and was first published by Senthilvelan [17]. The
traveling wave solution is expressed as follows [20]:

u x; y; tð Þ ¼ 1þ 2kα tanh k αx þ βy − k2α3 þ 3β3

4α

� �
t

� �� �
:

ð20Þ
To solve Equation (18) by NIM, we integrate Equation (18)

twice with respect to y from 0 to y and use Equation (19) to get
the following:

u ¼ 1þ 2αk tanh kmð Þ þ 2αβk2y sech2 kmð Þ
þ
Z

y

0

Z
y

0
−
4
3
uxt − 2uxuxx −

1
3
uxxx

� �
 dy dy;

ð21Þ

where m¼ αx− tð3β34α þ α3k2Þ.
By using Equation (8), we get the following:

u0 ¼ 1þ 2αk tanh kmð Þ þ 2αβk2y sech2 kmð Þ; ð22Þ

u1 ¼ 1
2
y2 16α5k5 tanh k mð Þð Þsech4 k mð Þð Þ þ 1

3
4α4k4sech4 k mð Þð Þð

�

− 8α4k4 tanh2 k mð Þð Þ sech2 k mð Þð ÞÞ þ 16
3
α2k3 α3 −k2ð Þ − 3β3

4α

� �
tanh k mð Þð Þ sech2 k mð Þð Þ

�
;

⋮

ð23Þ

Thus,

∑
1

i¼0
ui ¼ 1þ 2αk tanh kmð Þ þ 2αβk2y sech2 kmð Þ

þ 1
2
y2 16α5k5 tanh k mð Þð Þsech4 k mð Þð Þ þ 1

3
4α4k4sech4 k mð Þð Þð

�

− 8α4k4 tanh2  k mð Þð Þ sech2 k mð Þð ÞÞ þ 16
3
α2k3 α3 −k2ð Þ − 3β3

4α

� �
tanh k mð Þð Þ sech2 k mð Þð Þ

�
;

ð24Þ

where m¼ αx− tð3β34α þ α3k2Þ.
Figure 1 illustrates the comparison between the 1-iterate

of NIM and the exact solution given by Equation (20).
Table 1 presents a comparison between the first iteration

of NIM and the exact solution given by Equation (20).
To validate the accuracy of NIM, we showcase the solu-

tion of the PKP Equation (18) through ADM, as previously
demonstrated in [20]. In Table 2, we present a comprehen-
sive comparison between the ADM solution [20] and the
exact solution provided by Equation (20). This analysis
allows us to assess the precision and reliability of NIM in
solving complex mathematical problems.

We will now use the NIM to find an approximate analyt-
ical solution to the PKP equation as follows:

uxt þ
3
2
uxuxx þ

1
4
uxxxx þ

3
4
uyy ¼ 0; ð25Þ

with the initial conditions are as follows:

u x; 0; tð Þ ¼ 1þ 2kα tan k αx − ctð Þ½ �;
uy x; 0; tð Þ ¼ 2αβk2sec2 k αx − ctð Þ½ �; ð26Þ

where c¼ðk2α3 þ 3β3

4α Þ.
The exact solution to Equation (25) can be found in [17]

and is given by the following:

u x; y; tð Þ ¼ 1þ 2kα tan k αxþ βyþ k2α3 −
3β3

4α

� �
t

� �� �
:

ð27Þ

To solve Equation (25) by NIM, we integrate
Equation (25) and use Equation (26) to get the following:
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FIGURE 1: A comparison between the exact solution and the numerical results of uðx; y; tÞ is depicted, where the numerical solution is obtained
through the 1-iterate NIM solution. The comparison is conducted for the parameter values α¼ 1, β¼ 0:1, k¼ 0:1, and c¼ k2α3 þ 3β3

4α .

TABLE 1: Comparison between the exact solution and the numerical results for the numerical solution uðx; y; tÞ obtained through the 1-iterate
NIM solution is presented for the values α¼ 1; β¼ 0:1; k¼ 0:1 and c¼ k2α3 þ 3β3

4α .

xi=yi 0.1 0.2 0.3 0.4 0.5

0.1 6:40477× 10−9 2:64440× 10−8 6:13530× 10−8 1:12362× 10−7 1:80704× 10−7

0.2 1:25927× 10−8 5:11935× 10−8 1:17031× 10−7 2:11330× 10−7 3:35310× 10−7

0.3 1:87615× 10−8 7:58620× 10−8 1:72528× 10−7 3:09961× 10−7 4:89370× 10−7

0.4 2:48999× 10−8 1:00414× 10−7 2:27741× 10−7 4:08101× 10−7 6:42644× 10−7

0.5 3:09997× 10−8 1:24807× 10−7 2:82605× 10−7 5:05611× 10−7 7:94914× 10−7

TABLE 2: Comparison between the exact solution and the numerical results obtained through the ADM solution [20] is presented for the
values α¼ 1; β¼ 0:1; k¼ 0:1 and c¼ k2α3 þ 3β3

4α .

xi=yi 0.1 0.2 0.3 0.4 0.5

0.1 6:40478× 10−9 2:64439× 10−8 6:13527× 10−8 1:12364× 10−7 1:80706× 10−7

0.2 1:25928× 10−8 5:11930× 10−8 1:17029× 10−7 2:11326× 10−7 3:35301× 10−7

0.3 1:87611× 10−8 7:58615× 10−8 1:72522× 10−7 3:09956× 10−7 4:89368× 10−7

0.4 2:48998× 10−8 1:00411× 10−7 2:27744× 10−7 4:08099× 10−7 6:42668× 10−7

0.5 3:09995× 10−8 1:24803× 10−7 2:82608× 10−7 5:05603× 10−7 7:94960× 10−7
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u ¼ 1þ 2αk tan kmð Þ þ 2αβk2y sec2 kmð Þ
þ
Z

y

0

Z
y

0
−
4
3
uxt − 2uxuxx −

1
3
uxxx

� �
 dy dy;

ð28Þ

where m¼ αx− tð3β34α þ α3k2Þ.

By using Equation (8), we get the following:

u0 ¼ 1þ 2αk tan kmð Þ þ 2αβk2y sec2 kmð Þ; ð29Þ

u1 ¼ 1
2
y2 −16α5k5tan k mð Þð Þ sec4 k mð Þð Þ þ 1

3
−4α4k4 sec4 k mð Þð Þð

�

− 8α4k4tan2 k mð Þð Þ sec2 k mð Þð ÞÞ − 16
3
α2k3 α3 −k2ð Þ − 3β3

4α

� �
tan k mð Þð Þ sec2 k mð Þð Þ

�
;

⋮

ð30Þ

Thus,

∑
1

i¼0
ui ¼ 1þ 2αk tan kmð Þ þ 2αβk2y sec2 kmð Þ

þ 1
2
y2 −16α5k5 tan k mð Þð Þ sec4 k mð Þð Þ þ 1

3
−4α4k4 sec4 k mð Þð Þð

�

− 8α4k4 tan2 k mð Þð Þ sec2 k mð Þð ÞÞ − 16
3
α2k3 α3 −k2ð Þ − 3β3

4α

� �
tan k mð Þð Þ sec2 k mð Þð Þ

�
;

ð31Þ
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FIGURE 2: Comparison of the exact solution with the numerical results for the 1-iteration NIM solution of uðx; y; tÞ, obtained for the
parameter values α¼ 1, β¼ 0:1, k¼ 0:1, and c¼ k2α3 þ 3β3

4α .
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where m¼ αx− tð3β34α þ α3k2Þ.
Figure 2 presents the comparison between the 1-iteration

of NIM and the exact solution defined by Equation (27).
Table 3 displays a contrast between the initial iteration of

NIM and the exact solution defined by Equation (27).
Table 4 showcases a comparison between the VIM [21]

and the exact solution provided by Equation (27).

5. Conclusions

The development of theNIMpresents a significant breakthrough
in the field of differential equations. Unlike traditional numerical
methods, NIM does not rely on linearization or make any limit-
ing assumptions, making it highly versatile and applicable to a
wide range of linear and nonlinear differential equations. The
successful application of NIM in deriving numerical solutions
for the (2+1)-dimensional PKP equation demonstrates its
remarkable efficacy and ease-of-use. Furthermore, the compari-
son with the exact solution showcases the accuracy and precision
of NIM. The potential applications of NIM are vast, as it offers a
powerful and efficient tool for uncovering analytical and numer-
ical solutions for a diverse range of differential equations in vari-
ous fields such as physics, engineering, andmathematics. Overall,
NIM has opened up new possibilities for researchers and profes-
sionals in the field of differential equations, making complex
problems more accessible and solvable.
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