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This paper proposes a model predictive speed control strategy for a surface-mounted permanent magnet synchronous motor by
applying Laguerre functions. The model predictive controller (MPC) incorporates an integrator. A quadratic programming
procedure is applied to solve the constrained optimization problem online. The paper also provides a solution for stability. The
performance efficiency of the proposed scheme is validated by comparing the results with the performance of an optimal linear
quadratic regulator, conventional state-space model predictive control, and a simple MPC algorithm with integral action. Extensive
simulation results confirm the efficacy of the proposed scheme, showing that it achieves good steady-state performance while
maintaining a fast dynamic response.

1. Introduction

Permanent magnet synchronous motors (PMSMs) have been
intensively used in applications, such as industrial robots and
electrical machines. Permanent magnet motors are prevalent
in everyday machining tools due to their good dynamic prop-
erties and compact structure [1–4]. In addition to high effi-
ciency, the advantages of permanent magnet motors include
their lightweight and small size, which in turn facilitate instal-
lation and maintenance. Among the many techniques used in
electric drive control, the proportional integrator (PI), linear
quadratic regulator (LQR), and recently developed model
predictive controller (MPC) have been employed. A combi-
nation of cascaded linear controller structures and PI control-
lers has been used for the speed regulation of PMSMs due to
their simplicity [5]. To overcome extensive overshoots and
ringing, cascaded linear controllers use a limited bandwidth.
Hence, a reasonably good dynamic response can be achieved
[6, 7]. However, during the transient time and in the presence
of a load disturbance, the dynamic performance of the PI
controller is reduced. Extensive research has focused on speed
controller design for adjustable-speed PMSM systems to
enhance the transient response, recovery time from a load

disturbance, tracking ability, and robustness [8–14]. The
LQR method is a contemporary control technique that is
efficient but limited to linear systems. To evaluate the perfor-
mance of the LQR controller, this paper compares it with
results obtained from other control techniques. This means
designing the same system using another control technique
which could be cumbersome. On the other hand, anMPC can
be applied to control both linear and nonlinear systems
[15, 16]. In an MPC, the nonlinear system and corresponding
linear model can be easily compared with little modifications.

It is known that tuning anMPC is not as difficult as tuning
a PI, even for multiple input multiple output (MIMO) sys-
tems. Nevertheless, to optimally regulate the response of a
system to a reference while respecting the constraints, an
MPC requires more computational effort than either a PI or
an LQR. Since an optimal solution can be analytically accom-
plished, the feedback gain can be precalculated offline when
the operational constraints are absent or not active. However,
if the constraints are available, quadratic programing (QP)
can be used to solve the optimization problem online. Hence,
an MPC is used intensively in industrial control where fast
sampling is not required. In contrast, an MPC has limited
applications in the control of electric drives and power
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converters due to the computational load and fast sampling
requirements to solve the QP problem. An enhancement in
processor performance has notably surged, and new faster algo-
rithms have been developed, rendering the MPC implementa-
tion possible for a power converter and an electric drive [17–19].
The proposed scheme in this paper focusesmainly on improving
the performance of PMSM systems by designing an MPC using
orthonormal functions called Laguerre functions (LMPC).

The three notable contributions of the proposed scheme
are illustrated below:

(1) A controller with the capability to reject disturbances
from the load torque of a PMSM system is developed.
To ensure zero steady-state error in the presence of a
load torque disturbance, an integrator is incorpo-
rated into the design. This modification improves
the steady-state performance of the PMSM system.

(2) An LMPC is employed as a control technique for a
PMSM system. The LMPC method incorporates the
advantages of standard MPC algorithms such as con-
straint handling and online optimization and pro-
duces an algorithm with a low online computational
burden. Because the LMPC method uses a simpler
design, the computational load is reduced. The per-
formance improvements of a PMSM designed using
the LMPC are compared with those designed using
the algorithm presented in a different studies [20, 21].

(3) To achieve a lower computational load and minimize
the numerical problem, this paper proposes an expo-
nentially decreasing objective function for the LMPC,
specifically for a large prediction horizon to control
the speed of the PMSM. The proposed LMPCmethod
enhances the controller performance in an organized
manner.

The structure of the proposed paper is as follows. Section 2
illustrates the drive model and linearization of the model for
MPC design. Section 3 describes the MPC design. Section 4
outlines the simulation results, and Section 5 presents the
conclusion.

2. Drive Model

The permanent magnet synchronous machines considered
in this paper are called surface-mounted PMSMs. Models for
speed control can be derived from the stator’s equation and
torque’s equilibrium equations [22]. The following equations
determine the synchronous reference d–q frame [22–24]:

i̇d tð Þ ¼ 1
Ld

vd − Rid þ ωLqiq
À Á

i̇q tð Þ ¼ 1
Ld

vd − Riq − ωLdid − ωψ
À Á

ω̇ tð Þ ¼ p
J

T −
Bv

p
ω − TL

� �
T ¼ 3

2
p ψ iq þ Ld − Lq

À Á
idiq

Â Ã

8>>>>>>>>>>><>>>>>>>>>>>:
: ð1Þ

If the permanent magnets are mounted on the rotor
surface, and there is no significant internal asymmetry in
the iron parts of the rotor, the direct-axis and quadrature-
axis inductances of the machine are approximately equal,
Ld ¼ Lq. Hence, the torque in Equation (1) can be simplified
to T ¼ 3

2 pψ iq allowing the electromagnetic torque to be con-
trolled through iq directly and maintaining id ¼ 0. Maintain-
ing id ¼ 0 helps to achieve maximum efficiency of the
PMSM, i.e., maximum torque per ampere condition in the
whole operation range. ω¼ pωm is electromechanical speed,
ψ is the permanent flux linkage, p is the number of pole pairs,
and ωm is the mechanical speed. In addition, TL is the dis-
turbance from the load torque, while J and Bv are the motor’s
moment of inertia and viscous coefficient. In Equation (1),
the PMSM dynamics are expressed by a nonlinear set of
equations because of motional coupling terms ðω :iq and
ωid Þ :; hence, the equations will be linearized at operating
points for use in the MPC design. Using a first-order Taylor
series to approximate the nonlinear coupled terms as:

ω tð Þiq tð Þ≈ω0iq0 þ iq0 ω tð Þ − ω0ð Þ
þω0 id tð Þ − id0ð Þ : ð2Þ

Substituting Equations (2) and (3) into Equation (1)
yields the following equation:

ẋp tð Þ ¼ Apxp tð Þ þ Bpu tð Þ þ v

y tð Þ ¼ Dpxp tð Þ

(
; ð3Þ

where

Ap ¼

−
R
Ld

Lq
Ld

ω0
Lq
Ld

−
Ld
Lq

ω0 −
R
Lq

−
Ld
Lq

id0 þ
ψ

Lq

 !

0
3P2ψ

2J
−
Bv

J

2666666664

3777777775
; ð4Þ

Bp ¼

1
Ld

0

0
1
Lq

0 0

2666664

3777775; v ¼
−
Lq
Ld

ω0iq0

Ld
Lq

ω0iq0

−
pTL

J

266666664

377777775; ð5Þ

Cp ¼
1 0 0

0 0 1

" #
: ð6Þ

v2R3 is the steady-state parameter and load torque, xp ¼
idðtÞ iqðtÞ ωðtÞÂ Ã

T 2R3 is the state, y¼ idðtÞ ωðtÞ½ �T 2
R2 is the output, and u¼ vd vq

Â Ã
T 2R2 is the control input.

The MPC requires a discrete-time model, and
Equation (3) is thus discretized with a sampling period using
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a zero-order hold, resulting in the discrete-time model as
follows:

xp kþ 1ð Þ ¼ Adxp kð Þ þ Bdu kð Þ þ dv

y kð Þ ¼ Cdxp kð Þ

(
; ð7Þ

where Ad ¼ eApTs ;Bd ¼
R Ts
0  e

ApτBpdτ;Cd ¼Cp, and dv has
constant entries. For speed regulation of a PMSM, nu ¼ 2;
ny ¼ 2, and nx ¼ 3 will be used, where nu; ny, and nx corre-
spond to input, output, and state, respectively.

Let ΔxpðkÞ : ¼ xpðkÞ : − xpðk− 1Þ : and ΔuðkÞ : ¼ uðkÞ : − uðk−
1Þ : denote increment on state and input variables, respectively,
determined from the corresponding variables in Equation (7). The
state dynamics in the incremental model are as follows:

Δxp kþ 1ð Þ ¼ AdΔxp kð Þ þ BdΔu kð Þ: ð8Þ

In a similar manner, the output incremental dynamics
are given as follows:

y kþ 1ð Þ ¼ y kð Þ þ CdAdΔxp kð Þ þ CdBdΔu kð Þ: ð9Þ

By choosing a new state, xðkÞ: ¼ ΔxpðkÞT yðkÞTÂ Ã
:

T the
augmented state-space model is obtained by combining
Equation (8) with Equation (9):

x kþ 1ð Þ ¼ Ax kð Þ þ BΔu kð Þ
y kð Þ ¼ Cx kð Þ

(
; ð10Þ

where A¼ Ad 01
DdAd I

� �
:;B¼ Bd

DdBd

� �
:;C¼ 02 I½ � : ⋅ 01 and

02 denote the zero matrices and I is identity matrices of
appropriate dimensions.

Using the augmented model in Equation (10) has two
advantages. First, the augmented model removes the dv of
Equation (7) including any uncertain parameters. Second, it
eliminates the unknown torque.

3. Model Predictive Control Design

To achieve good controller performance while operational
constraints are present, use an MPC scheme. The perfor-
mance of a PMSM speed controller employing Laguerre
functions, i.e., an LMPC, is compared with an optimal dis-
crete LQR (DLQR) in this and the following section. In later
sections, the performance of an LMPC is compared with the
MPC-IA and with a more conventional MPC based on a
state-space design (SS-MPC).

3.1. State-Space MPC. An SS-MPC is formulated using the
state-space approach. An SS-MPC with a convex quadratic
performance index is a QP problem, which is appealing
because QP must be solved online [25]. The state variable
xðkÞ : is estimated through an observer to obtain an optimal
solution in the presence of operational constraints [26].
Thus, apply an observer of the form:

bx kþ 1ð Þ ¼ Ax kð Þ þ BΔu kð Þ þ Kob y kð Þ − Cbx kð Þð Þ;
ð11Þ

where Kob is the observer gain matrix, it is apparent that the
observer gain Kob can be used to manipulate the convergence
rate of the error. Kob is used to place the closed-loop eigen-
values of the error system matrix A−KobC at a desired loca-
tion of the complex plane. The estimate of the output yields
the following equation:

by kð Þ ¼ Cbx kð Þ: ð12Þ

Model in Equation (10) is used to calculate the future
state variables through ΔuðkÞ:;⋯;Δuðkþ 1Þ :;⋯;Δuðkþ

:Nc − 1), leading to following equation:

bx kþ 1∣kð Þ ¼ Abx kð Þ þ BΔu kð Þbx kþ 2∣kð Þ ¼ A2bx kð Þ þ ABΔu kð Þþ
BΔu kþ 1ð Þ

⋮bx kþ Np∣k
À Á¼ ANpbx kð Þ þ ANp−1BΔu kð Þþ

⋯þ ANp−NcBΔu kþ Nc − 1ð Þ

8>>>>>>>>><>>>>>>>>>:
; ð13Þ

where Np is the prediction horizon and Nc (control horizon)
is a parameter that determines the number of future control
inputs to be included in optimization. This, therefore,
assumes Nc ⩽ Np. In its compact form, the output prediction
for the next Np instants is as follows:

bY ¼ Ebx kð Þ þ ΘΔU; ð14Þ

where

bY ¼ by kþ 1ð ÞTby kþ 2ð ÞT ⋯ by kþ Np

À Á
T

Â Ã
T

ΔU ¼ Δu kð ÞTΔu kþ 1ð ÞT ⋯ Δu kþ Nc − 1ð ÞT½ �T
E ¼ CAð ÞT CA2ð ÞT ⋯ CANpð ÞT½ �T ;

ð15Þ

Θ¼

CB 0 ⋯ 0

CAB CB ⋯ 0

CA2B CAB ⋯ 0

⋮ ⋮ ⋱ ⋮
CANp−1B CANp−2B ⋯ CANp−NcB

26666664

37777775: ð16Þ

Consider the cost function:

Js ¼ Rs −
bY� �

T
Qs Rs −

bY� �
þ ΔUTRΔU ; ð17Þ

where Rs ¼RsrðkÞ : ¼ I I ⋯ I
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{ny×Np

rðkÞ : with reference rðkÞ : of
constant entries, Qs ⩾ 0ðny ×NpÞ : × ðny ×NpÞ : and R>0 is a
ðnu ×NcÞ : × ðnu ×NcÞ :. Upon minimizing the cost function in
Equation (17), obtain the optimal control vector ΔU ¼
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ðΘTQsΘþ RÞ−1ΘTQsðRs − EbxðkÞÞ :. The receding horizon
principle to obtain the control law:

Δu kð Þ ¼ I 0 ⋯ 0½ �ΔU
¼ kyr kð Þ − kmpcbx kð Þ; ð18Þ

where ky is the matrix correspond to change in set-point and
kmpc is the state feedback gain matrix. Operational con-
straints in control algorithms come from physical systems.
In PMSM, the input voltages and are limited by the DC bus
voltage. Further, space vector pulse width modulator mod-
ulates the maximum voltage to Vdc=

ffiffiffi
3

p
. The cost function in

Equation (17) is minimized with respect to ΔU :

D1 umin
− u k − 1ð Þð Þ ≤ D2ΔU

≤D1 umax
− u k − 1ð Þð Þ

D1Δumin ≤ ΔU ≤ D1Δumax

; ð19Þ

where

D1 ¼

I

I

⋮
I

266664
377775;D2 ¼

I 0 ⋯ 0

I I ⋯ 0

⋮ ⋮ ⋱ ⋮
I I ⋯ I

266664
377775: ð20Þ

The constraints in compact form is given as follows:

MΔU ≤ γ: ð21Þ

And the optimization problem with constraints is solved
by QP [25].

3.2. Laguerre-Based Model Predictive Control. The general
procedure for MPC designed using Laguerre function was
explained in a previous study [27]. The author addressed this
design method for single input single output. This paper
presents an LMPC design method for MIMO systems spe-
cifically for the use to control the speed of PMSM systems.

Design framework: Let ΔuðkÞ : ¼ Δu1ðkÞ Δu2ðkÞ ⋯½
ΔurðkÞ� :

T and the partitioned input matrix be B B1 B2½
⋯ Br� :, where r is the number of inputs and Bi is the ith column
of the matrix. Use orthonormal basis Laguerre functions to
model the control trajectory. The Laguerre function in the z-
transform is as follows:

Γi
N ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2i

p
1 − aiz−1

z − ai
1 − aiz−1

� �
N−1

; ð22Þ

where 0 ⩽ ai ⩽ 1 is the pole of the Laguerre network.
The control trajectory can be described using the

Laguerre functions:

Δui kð Þ ≈ ∑
N

j¼1
 dij kð Þlij kð Þ ; ð23Þ

where lijðmÞ : is the inverse z-transform of jth term in the
discrete Laguerre network, i.e., Γi

j and the coefficients dij are
unknowns and must be obtained from systems data.

The tuning parameters ai and Ni are related to Nc [26] by
the following equation:

ai ≈ e−Ni=Nc : ð24Þ

Now, rewriting Equation (23):

Δui kð Þ ¼ Li kð ÞTξi ; ð25Þ

where ξi and LiðkÞ : are ξi ¼ di1 di2 ⋯ diNi

Â Ã
:

T and LiðkÞ : ¼
li1ðkÞ li2ðkÞ ⋯ liNi

ðkÞÂ Ã
:

T .
The state prediction can be written as follows:

x ki þ h∣kið Þ ¼ Ahx kið Þ þ ϕ hð ÞTξ ; ð26Þ

where the vector ξ and the matrix ϕðhÞT are given by
ξT ¼ ξT1 ξT2 ⋯ ξTh

Â Ã
: and ϕðhÞT ¼∑h−1

j¼0A
h−j−1 B1L1ðjÞT

Â
⋯ BhLhðjÞT � :.

Similarly, the output is described as follows:

y ki þ h∣kið Þ ¼ CAhx kið Þ þ ∑
h−1

j¼0
 CAh−j−1

× B1L1 jð ÞTB2L2 jð ÞT ⋯ BhLh jð ÞT½ �ξ:
ð27Þ

3.2.1. Solution without Constraints. The objective is to deter-
mine the parameter vector that minimizes the disparity between
the predicted output and the desired set point signal. To achieve
this objective, a cost function designed for this specific purpose is
formulated. This cost function serves as a guiding metric to
measure how closely the predicted output aligns with the set
point signal. The cost function for this purpose is as follows:

JL ¼ ∑
NP

h¼1
 x ki þ h∣kið ÞTQLx ki þ h∣kið Þ

þξTRLξ;

ð28Þ

where QL ≥ 0 and RL ≥ 0. Performing the partial derivative
on JL, i.e., ∂JL=∂ξ¼ 0, the optimal Laguerre coefficients vec-
tor in absence of constraints is found as follows:

ξ¼ −Π−1Ψx kið Þ; ð29Þ

With Π¼∑
Np

h¼1 ΘðhÞ :QLΘðhÞT þRL and Ψ ¼ΘðhÞ :QLAh.
After calculating the optimal Laguerre coefficients vector

ξ, the receding horizon control (RHC) law is realized as
follows:
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Δu kið Þ ¼

L1 0ð ÞT oT2 ⋯ oTh
oT1 L2 0ð ÞT ⋯ oTh
⋮ ⋮ ⋱ ⋮
oT1 oT2 ⋯ Lh 0ð ÞT

266664
377775ξ ; ð30Þ

where oTk ; k¼ 1; 2;⋯; h is a row vector with an appropriate
dimension.

In linear state feedback control form, the control variable
ΔuðkiÞ : is written as follows:

Δu kið Þ ¼ −Klmpcx kið Þ ; ð31Þ

where the gain is given as follows:

Klmpc ¼

L1 0ð ÞT oT2 ⋯ oTh
oT1 L2 0ð ÞT ⋯ oTh
⋮ ⋮ ⋱ ⋮
oT1 oT2 ⋯ Lh 0ð ÞT

266664
377775Π−1Ψ : ð32Þ

3.2.2. Solution to Constrained LMPC. The optimization pro-
cedure is to minimize the cost function JL while ensuring
Equations (33) and (34):

Δumin ≤

L1 0ð ÞT oT2 ⋯ oTh
oT1 L2 0ð ÞT ⋯ oTh
⋮ ⋮ ⋱ ⋮
oT1 oT2 ⋯ Lh 0ð ÞT

266664
377775ξ

≤Δumax

; ð33Þ

umin ≤

∑
k−1

i¼0
 L1 ið ÞT oT2 ⋯ oTh

oT1 ∑
k−1

i¼0
 L2 ið ÞT ⋯ oTh

⋮ ⋮ ⋱ ⋮

oT1 oT2 ⋯ ∑
k−1

i¼0
 Lh ið ÞT

266666666664

377777777775
ξ ≤ umax

− u ki − 1ð Þ;
ð34Þ

where Δumin and Δumax represent the lower and upper
boundaries for the change in control input ðΔuÞ:, while
umin and umax define the lower and upper constraints for
the control input itself ðuÞ :. Here, uðki − 1Þ : denotes the con-
trol input at the previous time step. Additionally, oTm is a
zero-row vector, and its dimension corresponds to that
of Lmð0ÞT .

Therefore, given these conditions and considerations, the
constraints originally described in Equations (33) and (34)
can now be redefined as follows:

Mξ ≤ γ; ð35Þ

whereM and γ compatible matrices in the QP problem [24].
This compatibility signifies that they are structurally suitable
for the specific requirements and constraints of the problem,
ensuring a harmonious integration within the framework of
the QP problem.

3.2.3. Stability. In this context, this paper is broadening the
scope of stability analysis for the MPC algorithm, specifically
when constraints are in effect and Laguerre polynomials are
employed. To recap, in RHC, the control trajectory’s first
term, denoted as ΔuðkÞ: for time step k, is typically applied.
However, this work considers the case where Laguerre poly-
nomials are used, which extends our understanding of the
MPC algorithm’s stability, especially when constraints are
activated. This allows us to explore the broader range of
control actions over multiple time steps, Δuðkþ hÞ :; h¼ 0;
1; 2;⋯;Np, rather than just the immediate ΔuðkÞ: action.

This extension of stability analysis is crucial for a deeper
understanding of how the MPC algorithm performs when
constraints are in play, enabling more robust and effective
control in various real-world applications.

JL ¼ ∑
NP

h¼1
 x kþ h∣kð ÞTQLx kþ h∣kð Þ

þ ∑
Np

h¼0
 Δu kþ hð ÞTRLΔu kþ hð Þ:

ð36Þ

Subject to constraints in Equations (33) and (34).

Assumption 1 (Terminal State Constraints x(k+Np)= 0).
The assumption made here is that as the prediction horizon
becomes sufficiently long, the control trajectory Δuðkþ hÞ : ¼
LðhÞTξ tends to converge to zero. This convergence behavior is
observed when the terminal state constraints are met, specifi-
cally when xðkþNpÞ : ¼ 0.

Assumption 2 (Minimizable Cost). It is also assumed that
there exists a solution ξ when JL is minimized, i.e., Jmin ¼
∂JL=∂ξ¼ 0.

Theorem 1 (Stability). Under Assumptions 1 and 2, the PMSM
system described in Equation (10) exhibits asymptotic stability
when operated in a closed-loop configuration. This is achieved
through the implementation of a receding horizon controller
denoted as ΔuðkÞ:, an objective function defined in Equation (34),
and the constraints outlined in Equations (33) and (34).

Proof. Let VðxðjÞ; kÞ : ¼ Jmin be a candidate Lyapunov func-
tion:

V x kð Þ; kð Þ ¼ ∑
NP

h¼1
  x0 kþ h∣kð ÞTQLx0 kþ h∣kð Þ; ð37Þ

where x0ðkþ h∣kÞ : ¼AhxðkÞ : þ∑h−1
i¼0A

h−i−1BLðiÞTξ0 and ξ0 is
the solution. □

Mathematical Problems in Engineering 5



It can be clearly seen that VðxðkÞ; kÞ :>0 and VðxðkÞ; kÞ
: →1 as xðkÞ : →1.

V x kþ 1ð Þ; kþ 1ð Þ ¼ ∑
NP

h¼1
 x1 kþ h∣kþ 1ð ÞTQLx1 kþ h∣kþ 1ð Þ

þ ∑
Np−1

h¼0
 Δu1 kþ hð ÞTRLΔu1 kþ hð Þ;

ð38Þ
where x1ðkþ hþ 1∣kþ 1Þ : ¼Ahxðkþ 1Þ : þ∑h−1

i¼0A
h−i−1BLðiÞT

ξ1 and ξ1 is the solution at kþ 1.
Because ξ1 is the optimal solution, Vðxðkþ 1Þ; kþ 1Þ : ≤

V ðxðkþ 1Þ; kþ 1Þ : is valid where V ðxðkþ 1Þ; kþ 1Þ : is same
as Vðxðkþ 1Þ; kþ 1Þ : with ξ0 replacing ξ1 ⋅ ξ0 is feasible
solution in the vicinity of xðkÞ:.

Let ΔVðxÞ : ¼Vðxðkþ 1Þ; kþ 1Þ : −VðxðkÞ; kÞ : is bounded
by the following equation:

ΔV xð Þ ≤ V x kþ 1ð Þ; kþ 1ð Þ − V x kð Þ; kð Þ: ð39Þ

And V ðxðkþ 1Þ; kþ 1Þ : −VðxðkÞ; kÞ : ¼ xðkþ NpÞT
QLxðkþNpÞ : − xðkþ 1ÞTQLxðkþ 1Þ : −ΔuðkÞTRLΔuðkÞ :.

V x kþ 1ð Þ; kþ 1ð Þ − V x kð Þ; kð Þ: ð40Þ

Hence, ΔVðxÞ: ¼Vðxðkþ 1Þ; kþ 1Þ : −VðxðkÞ; kÞ : is nega-
tive, i.e.:

−x kþ 1ð ÞTQLx kþ 1ð Þ − Δu kð ÞTRLΔu kð Þ ≤ 0: ð41Þ

Therefore, the PMSM controller is asymptotically stable.

Remark 1. In MPC algorithms that contain integrators, the
prediction horizon also affects numeric condition [27]. Spe-
cifically, for a large control horizon, the MPC algorithm
becomes ill-conditioned. A proven technique to solve the
problem is to use exponential weighted cost function. In con-
trast to the more common exponentially increasing weight
[28, 29], an exponentially decreasing weighting is suggested
in this paper. The main purpose of focusing on exponentially
decreasing weighting is to enhance the numerical stability of
the class of MPC algorithms that contain integrators for mul-
tivariable systems.

The exponentially weighted cost function is as follows:

J ¼ ∑
NP

h¼1
  σ−2hx kþ h∣kð ÞTQLx kþ h∣kð Þ: ð42Þ

Subject to the constraints:

Mξ ⩽ γ: ð43Þ

With state equation:

x kþ hþ 1∣kð Þ ¼ Ax kþ h∣kð Þ þ BΔu kþ hð Þ: ð44Þ

Lemma 1 (Cost Function Equivalence). The solution of the
exponentially weighted objective function (Equation (42))
subject to the inequality constraints Equation (44) and state
equation constraints Equation (43) can be found by minimiz-
ing the following equation:

bJ ¼ ∑
NP

h¼1
  bx kþ h∣kð ÞTQLbx kþ h∣kð Þ: ð45Þ

Subject to the following equation:

MσΔbU ≤ γ: ð46Þ

With state-equation bxðmþ hþ 1Þ : ¼ A
σ bxðmþ h∣mÞ : þ

B
σ Δbuðmþ hÞ : and Aσ ¼A=σ; Bσ ¼B=σ, where Mσ is the
matrix defined by the following equation:

Mσ ¼M

I 0 ⋯ 0 0

0 σ1I ⋯ 0 0

0 0 ⋯ σNp−1I 0

0 0 ⋯ 0 σNpI

266664
377775: ð47Þ

Proof. Let bxðkþ h∣kÞ: ¼ σ−hxðkþ h∣kÞ :;Δbuðkþ hÞ : ¼
σ−hΔuðkþ hÞ :. This leads us to the equivalence of J
(Equation (42)) and bJ (Equation (45)). □

Similarly, for the state Equation (44):

bx kþ hþ 1∣kð Þ ¼ σ− hþ1ð Þx kþ hþ 1∣kð Þ: ð48Þ

Here, σ−hxðkþ h∣kÞ : ¼bxðkþ h∣kÞ :; σ−hΔuðkþ hÞ : ¼
Δbuðkþ hÞ :. Additionally, modifying the constraint
Equations (43) and (45) is done by substituting ΔuðkÞ : ¼
ΔbuðkÞ :;Δbuðkþ 1Þ : ¼ σΔbuðkþ 1Þ :;⋯;Δuðkþ 1Þ : ¼ σhΔbuðkþ
hÞ :. Hence, it has been proved that objective function (42) and
(45) with their respective constraints are identical.

Remark 2. It should be mentioned that the result Lemma 1
shows that an objective function with exponential data weight
is similar to unweighted objective function with no weights if
proper scaling factor σ is used to achieve a stable model.

3.3. Model Predictive Control with an Integral Action (MPC-
IA). Standard MPC algorithms usually do not have an inte-
grator. This is because algorithms employing integral actions
may not result in optimal operation. Among the many
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techniques to achieve optimality when integrator is in use,
apply a simple MPC algorithm in increment form proposed
in Di Ruscio’s [21] study for our task of controlling speed
of the PMSM system and compare with the proposed
algorithm.

4. Simulation Parameters and Results

4.1. Parameters. For simulation purpose, the system param-
eter values given as follows have been used. Take p¼ 2,
J ¼ 0:0235 Kgm2;Bv ¼ 1:1× 10−4 Nm ⋅ s; L¼ 0:007H, R¼
2:98 Ω;Vdc ¼ 100 V;ψ ¼ 0:125Wb;  ωe

∗ ¼ 83:8 rad=s, Nc ¼
20;Np0 ¼ 25;Np1 ¼ 50;Np2 ¼ 500;Ts ¼ 200× 10−6s. The
steady-state value for the q-axis current is iq0 ¼ 1 A.

4.2. Constraints. In order to avoid over modulation, the max-
imum achievable voltage is limited by the following equation:ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2d þ v2q
q

≤
Vdcffiffiffi
3

p : ð49Þ

The constraint in Equation (49) is nonlinear. Linearizing
using rectangular area approximation [30], yields the follow-
ing equation:

vq
�� �� ≤ ε

Vdcffiffiffi
3

p ; vdj j ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2ð Þ

q Vdcffiffiffi
3

p : ð50Þ

For this simulation, choose ε¼ 0:9. The constraints −

51:96≤ vq ≤ 51:96; − 25:17≤ vd ≤ 25:17; − 10≤Δvq ≤ 10
and − 10≤Δvq ≤ 10.

The performance efficiency of the LMPC control scheme
is validated using simulations on a PMSM system. First,
begin by examining the responses of LMPC controller ana-
lyzed for load disturbance. Next, the stability is checked with
those obtained from the optimal discrete linear quadratic
regulator (DLQR) for large prediction horizon. Finally, the
PMSM system under three control algorithms, i.e., SS-MPC,
LMPC, and MPC-IA control, are compared by simulation.

4.3. Tuning the LMPC. Tuning using parameters in the
weight matrix.

The cost function weights affect the closed-loop perfor-
mance of the LMPC. The larger the weights, the faster the
response.

The weight matrices in the cost function (28) are as
follows:

QL ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 q1 0

0 0 0 0 q2

26666664

37777775;RL ¼ r
1 0

0 1

" #
; ð51Þ

where q1 and q2 will be used as parameters for tuning the
controller. Use rw ¼ 0:1. Several simulations on PMSM

system show that tuning is not advisable, as the responses
are less sensitive to changes in the value of rw.

4.3.1. Tuning Using the Laguerre Parameters. Let us look at
the effects of Laguerre parameters (a and N) on the control
horizon Nc, tuning process, and the overall computational
burden of the LMPC algorithm. Using Equation (24), i.e., a ≈
e−N=Nc for relating the control horizon (Nc) the Laguerre
parameters a and N , consider the two cases:

(1) Constant N: Choosing a constant parameter N ¼ 5
obtain Table 1.

Thus, the control horizon can be increased by manipulat-
ing the parameter a without changing the network order N .

(2) Constant control horizon: Assume the target control
horizon is 20. Choose an integrator specifying the
Laguerre network order N . Thereafter, Equation (24)
to calculate the relevant scaling factor a as shown in
Table 2 has been used.

In order to achieve a lower overshoot, the weight coeffi-
cients are selected as q1 ¼ 1 and q2 ¼ 0:01. In three d-axis
current: id , motor speed, d-axis voltage: vd , q-axis voltage: vq,
d-axis incremental voltage: Δvd and q-axis incremental volt-
age: Δvq cases (N ¼ 4;N ¼ 6, and N ¼ 10), the LMPC tracks
the reference speed very well (Figure 1). To check the com-
puting resources required, times to compute the control law
while varying the network order have been recorded. Table 2
shows that as N increases the, the computation time also
increases. The experiments were carried out on a PC withWin-
dows 10, 64 bits, Intel Core i7-7820XCPUwith 3.60GHz, 16GB
of RAM. Thus, to ensure a lower computation burden a
Laguerre network of lower order N is chosen yet achieving
the same control horizon. The computational effort is lower
when smaller number of parameter is used. For N ¼ 4, only
four Laguerre term is used to capture the control input
while N ¼ 10 requires 10 Laguerre terms to capture the
same control input. The other important thing to remember

TABLE 1: Constant, N ¼ 5.

Control horizon N Required a

10 5 0.6065
15 5 0.7165
20 5 0.7788
25 5 0.8187
50 5 0.9048

TABLE 2: Constant control horizon, Nc ¼ 20.

Control horizon N Required a Time ðmsÞ:

20 2 0.9048 37.17
20 4 0.8187 38.54
20 6 0.7408 38.66
20 8 0.6703 39.71
20 10 0.6065 39.86
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FIGURE 1: Tuning LMPC with N.
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here is that the computational rate is slower than the sam-
pling rate causing computational delay. This computational
delay is related to using single MPC controller replacing the
cascade control structure and can be solved using encoders
[31, 32].

To check whether the trajectories in Figure 1 are optimal,
the LMPC is compared with optimal controller, i.e., a DLQR
[33, 34]. This optimal controller minimizes the same cost
function of Equation (36) particularly when NP →1. Using
the same parameters used for the LMPCs, the eigenvalues of
DLQR are 0.7875Æ j0.1661, 0.9021Æ j0.1390, 0.8337 with
feedback gain:

Klqr ¼
9:8924 0:1185 −0:1334 2:6522 −0:0125

0:0047 9:0901 2:9696 0:1210 0:2748

" #
:

ð52Þ

As it can be seen from Table 3 as N increases, the control
trajectory is trying to converge to the optimal solution gen-
erated by using DLQR (for N as large as 10 the LMPC con-
troller is not optimal). To achieve optimality, the exponential
data weighting will be used in later sections.

4.4. Response to Load Disturbances. Figure 2 shows a simula-
tion of the torque disturbance in Equation (1). Choose q1 ¼ 1
and q2 ¼ 1 with a Laguerre order of N ¼ 6 to ensure a faster
dynamic response. Table 3 shows a comparison of the per-
formance indices on the three Laguerre orders. It is observed
that the LMPC is able to reject the disturbance and continue
to track the reference speed in 5ms (Figure 2).

4.5. Stability Analysis. In this section, an exponentially
decreasing data weighting suggested in Lemma 1 in order
to improve the numerical condition while ensuring the
closed-loop stability of the LMPC algorithm in the presence
of a large prediction horizon has been used. With QL ⩾ 0;

RL>0, and Np →1, minimizing the cost function in
Equation (53) is equivalent to solving the DLQR problem
using the algebraic Riccati Equation (53). It is assumed that
the pair ðAσ;BσÞ : is controllable and ðAσ;DÞ : is observable
with QL ¼DTD. The state feedback control gain for the sta-
bilization bK is as follows:

bK ¼ RL þ σ−2BTbPB� �
σ−2BTbPA: ð53Þ

This makes the closed-loop system stable with all poles
inside the unit circle and the closed-loop system being
described by the following equation:

bx mþ hþ 1∣mð Þ ¼ σ−1 A − BbK� �bx mþ h∣mð Þ: ð54Þ

From Equation (54), the modified system has all its
eigenvalues inside the unit circle taking Np →1. So:

σ−1∣λmax A − Bð bK ∣<1: ð55Þ

Thus, by choosing σ>1, it is possible to make stable.
Several simulations on the PMSM system indicate that a
choice of σ greater than unity stabilizes the system. To exam-
ine the effects of prediction horizon on numeric condition,
compute the Hessian matrix, i.e., Π¼∑

Np

h¼1 ΘðhÞ :QLΘðhÞT þ
RL as the Np vary. Choose the Laguerre order of N ¼ 6, a
control horizon of Nc ¼ 20 and varying prediction horizon,
i.e., Np0 ¼ 25;Np1 ¼ 50, and Np2 ¼ 200. Table 4 shows the
effect of scaling on Hessian matrix as the prediction horizon
varies. Specifically, when weights are used on the objective
function the conditioning number converges to small finite
value. On the other hand, for the cost functions without
weighting, the conditioning number becomes too big as Np

TABLE 3: Comparison performance indices.

N Performance metrics Values

4

Feedback gain 10:1464  0:0413 − 0:1461  2:7743 − 0:0111
0:0397  8:8157  2:8364  0:1282  0:2639

� �
:

Eigenvalues 0:7824Æ j0:1697;  0:9065Æ j0:1378;  0:8337
Overshoot (%) 8.1522

Settling time (ms) 7.8769

6

Feedback gain 9:9049  0:1127 − 0:1326  2:6542 − 0:0120
0:0084  9:0440  2:9496  0:1212  0:2735

� �
:

Eigenvalues 0:7824Æ j0:1661;  0:9028Æ j0:1390;  0:8337
Overshoot (%) 6.9892

Settling time (ms) 7.7807

10

Feedback gain 9:8924  0:1186 − 0:1333  2:6522 − 0:0125
0:0049  9:0870  2:9686  0:1210  0:2748

� �
:

Eigenvalues 0:7875Æ j0:1661;  0:9022Æ j0:1391;  0:8337
Overshoot (%) 6.9892

Settling time (ms) 7.7681
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TABLE 4: Conditioning number, κðΠÞ:.

σ Np κðΠÞ :

1
25 97.4225
50 701.6131
200 2.2430× 104

1.2
25 11.1588
50 13.6601
200 10.8304
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FIGURE 3: Stability analysis with (a) closed-loop eigenvalues, and (b) gain elements.
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inicreases, making the systems unstable and restricting our
choose of NP.

In order to examine the stability of the LMPC controller,
check if all the eigenvalues appear inside a unit circle on two-
plane. To grant such stability, σ¼ 1:2;Np ¼ 200 and N ¼ 10
are used. Figure 3 illustrates the eigenvalues of the LMPC
(blue stars) coinciding with the DLQR (red circles) and all
appearing inside unit circle. Figure 3 confirms that both the
control gain matrices of LMPC (blue dots) and DLQR (red

squares) are identical to each other with conditioning num-
ber 14.7619.

4.6. Performance of LMPC as Compared to SSMPC and
MPC-IA. This section focuses on the performance of
LMPC by comparing to MPC-IA and SS-MPC when used
to regulate PMSM speed ðωεÞ : to reference signal ðω∗

εÞ :. Here,
the integral of absolute error (IAE) is introduced as perfor-
mance metric in addition to scheduling time and overshoot
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to measure the performance of the controllers. It is defined as
follows:

IAE¼ ∑
M

m¼1
  ω∗ mð Þ − ω mð Þj j: ð56Þ

Next, examine the response of the three control scheme
to step load disturbance. Assume a control horizon of 15 and
prediction horizon of 50 to be achieved.

As shown in Figure 4, all three control schemes regulate
the speed of PMSM to the reference (83.8 rad/s), though
MPC-IA and SS-MPC regulation has achieved at the cost
of higher computational complexity, because the LMPC requires
only seven parameters (N= 7) compared the minimum of 15
parameters in the MPC-IA and SS-MPC (the LMPC uses N=7
with a¼ 0:6271 achievingNc ¼ 15). The settling time and over-
shoot of the three controllers are the same. It can also be seen
that when a load torque is applied, both the LMPC and SS-MPC
remove the disturbance with shorter recovery time than MPC-
IA (Figure 5). However, the LMPC controller removes the dis-
turbance with a lower computational complexity, requiring only
seven control parameters compared to 15 in the case of the
SS-MPC.

5. Conclusion

In this paper, the design of Laguerre-based model predictive
speed controller for the PMSM system has been extensively
investigated. The paper has presented a solution to stability
and speed regulation of PMSM systems. Also, exponential
data weighing is used to decrease numerical issue, particularly
with large prediction horizon. For stability analysis, LMPC
has been compared to the optimal DLQR system, whereas for
speed tracking LMPC has been compared to a popular state-
space MPC and a simple MPC with an integrating action
(MPC-IA). Therefore, the proposed controller significantly
has better performance compared to MPC-IA controller.
The developed LMPC method also exhibited improved
steady-state characteristics by successfully eliminating the
steady-state error and stability issues. The simulation results
also showed that when reference and disturbance changes are
encountered, the developed method operates with minimum
settling time and overshoot. Therefore, the dynamic proper-
ties of the proposed control scheme are similar to SS-MPC
controller but with less computational effort while providing
more flexibility. By selecting appropriate values of a and N,
LMPC reduces the number of parameters required for accu-
rate prediction. Hence, the results obtained in this paper indi-
cate that the control scheme performs very well and is
considered feasible.
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