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Meta-heuristic algorithms have the advantages of resilience, global optimization capacity, and coding flexibility, making them
helpful in tackling difficult optimization issues. The enhanced wind-driven optimization (CHTWDO) that was proposed in this
paper coupled the chaotic map approach and the hyperbolic tangent with the T-distribution mutation method. The initial air
particles are evenly distributed in the system space through a tent mapping strategy. Meanwhile, the variation probability of the
hyperbolic tangent model and the T-distribution variation method are used to improve the comprehensive performance of the
algorithm. In this way, the global search accuracy and the ability of avoiding the extreme value of the algorithm can be taken into
account. Combining the three strategies, CHTWDO had higher global search accuracy and a stronger ability to jump out of local
extremum. Comparing with the eight meta-heuristic algorithms (including WDO) and the single strategy improved WDO on 24
test functions, the experimental results show that CHTWDO with two improved strategies has better convergence precision and
faster convergence speed. Statistical tests such as Friedman’s and Wilcoxon’s rank-sum tests are used to determine significant
differences between these comparison algorithms. Finally, CHTWDO also obtains the best results on four classical optimization
problems in engineering applications, which verifies its practicality and effectiveness.

1. Introduction

Since the 21st century, searching for new algorithms that can
solve multidimension, multiobjective, and multimode grad-
ually becomes a direction in the field of scientific research
[1]. Meta-heuristic algorithm has the advantages of intuition
and wide applicability and has been widely concerned by
many scholars. The meta-heuristic algorithm is developed
on the basis of an optimization algorithm [2]. While the
optimization algorithm can solve the exact optimal solution
according to the planning, the meta-heuristic algorithm can
obtain a feasible solution of the problem at an acceptable
cost, and the degree of deviation between the feasible solu-
tion and the optimal solution is unknown [3].

The meta-heuristic algorithm mainly comes from four
directions: (1) based on natural laws, such as genetic algo-
rithm (GA) [4], virulence optimization algorithm [5]; (2)
based on physical laws, for example, simulated annealing
algorithms [6], heat transfer search [7]; (3) human behavior,

such as teaching-learning-based optimization [8], fireworks
algorithm [9]; and (4) group-based ideas, such as particle
swarm optimization (PSO) [10], whale optimization algo-
rithm (WOA) [11], salp swarm algorithm [12], gray wolf
optimizer (GWO) [13], ant colony algorithm [14], butterfly
optimization algorithm [15], etc. These four directions belong
to the group-based metaheuristic algorithm, which has the
most achievements and is the most widely used. However,
according to the NFL (no free lunch) theorem, in reality, there
is no algorithm that can have a good effect on all problems
[16]. Therefore, it is necessary to study new meta-heuristic
algorithms and improve existing ones [17–19].

Dr. Bayraktar Z, Werner D H and Komurcu M, Penn
State University, USA, at IEEE Antennas and Propagation
Society International Symposium in 2010 Wind Driven
Optimization (WDO): “A novel nature-inspired optimiza-
tion algorithm and its application to electromagnetic [20].”

The wind-driven optimization (WDO) algorithm is also
a group-based meta-heuristic algorithm, which is realized by
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simulating the force movement of a simplified air particle
[21]. WDO provides the benefits of a straightforward struc-
ture, minimal parameters, and ease of programing. Since the
method was first developed, a growing number of academics
have paid notice, using it in several circumstances and
improving it in a variety of ways.

In combination with Newton’s second law and the ideal gas
equation of state, the updated equation of air particle velocity
and position can be obtained. The algorithm has the advan-
tages of simple principle, easy implementation, adjustable
parameters, and not easy to fall into the local extreme value,
and the equation of the algorithm has practical physical signifi-
cance. Sokolik [22], Lin and Lin [23], and Tang et al. [24]
investigated WDO on benchmark functions and used it for
the first time to create a double-sided artificial magnetic con-
ducting surface. It just serves to demonstrateWDO’s usefulness
and efficacy. In literature [20], WDO was used to synthesize a
stub-loaded inverted-F antenna. It shows how successfully
WDO handles electromagnetic optimization issues. WDO
was used in literature [25] to create high-impedance metasur-
faces. It shows how effective WDO is at creating high-
impedance metasurfaces. It was used to address three electro-
magnetic optimization issues as well as unimodal and multi-
modal functions [26]. The findings demonstrate that WDO is
frequently superior to certain popular evolutionary algorithms
in the field of electromagnetics. To sustain population variety,
collision avoidance technology and the multi-region concept in
meteorology were added into WDO in literature [27]. A novel
multiregion and anticollisionWDOvariationwas provided as a
result, and the enhanced technique was then used to solve
dynamic optimization issues. With the efforts of more and
more researchers, more and more improvements have been
incorporated into the wind-driven algorithm. A WDO
(WDOLE) with lévy flights is proposed. It is verified that
WDOLE outperformsWDO on the benchmark function. Lit-
erature [28] proposed an improved algorithm of hybridWDO
and differential evolution, which can find better solutions. In
literature [29], an adaptive WDO algorithm (AWDO) was
proposed. This algorithm mainly uses covariance matrix
adaptive evolutionary strategy (CMAES) to update parame-
ters. In literature [30], a Wind Driven Butterfly Optimization
Algorithm (WDBO) was used proportional-integral-deriva-
tive (PID) controller parameter optimization. In addition to
electromagnetic applications, a variety of WDO algorithms
are gradually applied to other fields. In literature [31],
WDO was used to solve the multiobjective optimization issue
of switching reluctance motor design. WDO was used in lit-
erature [32] to estimate solar photovoltaic characteristics. The
results from WDO show greater precision. In literature [33],
AWDO based on Chenlo’s model was used to derive the solar
cell model’s parameters. It is a trustworthy and effective tech-
nique. In literature [27], a wind-driven fusion cuckoo search
optimizes the algorithm to solve hyperspectral band selec-
tion problems. It can be seen from the NFL theorem
[34, 35] that it is unrealistic to solve all the most important
problems through one algorithm, which prompts us to
improve the WDO algorithm to better solve various opti-
mization problems.

2. WDO Algorithm

First, the air in the atmosphere is simplified into particles to
deal with, here called air particles. According to Newton’s
second law in the noninertial coordinate system and the ideal
gas equation of state, the model can be simplified, and the
WDO algorithm can be obtained.

ρω¼ ∑Fi; ð1Þ

where ρ is the density of air particle; ω is acceleration; Fi is
the force exerted on the air particle. According to aerody-
namics, there are four main forces applied to air as follows:

FG ¼ ρδVg; ð2Þ

FPG ¼ −rpδV ; ð3Þ

FC ¼ −2Ω × u; ð4Þ

FF ¼ −ρau; ð5Þ

where FG is gravity; FPG is pressure gradient force; FC is
Coriolis force; FF is the friction force; δV is the volume of
air particle; g is the acceleration vector of gravity; rp is the
pressure gradient (minus sign stands for going down along
the gradient). Ω is the earth rotation angle vector; u is wind
velocity vector; a is the friction coefficient. Figure 1 shows the
proton force map in air.

By substituting Equations (2)–(5) and ω¼ Δu
Δt into

Equation (1), we can get the following:

ρ
Δu
Δt

¼ ρδVg −rpδV−2Ω × u−ρau: ð6Þ

In order to simplify the equation, let Δt¼ 1, δV ¼ 1, then
Equation (6) can be simplified as follows:

FPG

FCFG

FF

v

FIGURE 1: Proton force map in air.
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ρΔu¼ ρδVg −rp − 2Ω × u−ρau: ð7Þ

The pressure equation for an ideal gas is as follows:

P ¼ ρRT; ð8Þ

where P is pressure; R is the ideal gas coefficient; T is the
temperature. Substituting Equation (8) into Equation (7)
yields:

Δu¼ g −rp
RT
Pcur

−
2Ω × uRT

Pcur
−au: ð9Þ

The position and velocity of air particles will change in
each iteration to explore new space. Hence, the following
equation:

Δu¼ unew − ucur: ð10Þ

And for the vectors g andrp by size and direction can be
obtained as follows:

g¼ gj j 0 − xcurð Þ; ð11Þ

−rp¼ popt − pcur
�� �� xopt − xcur

À Á
; ð12Þ

where popt is the optimal pressure value; pcur is the current
pressure value of the particle point; xopt is the optimal posi-
tion; xcur is the current location. The current iteration veloc-
ity value of the current iteration velocity is used by the
current iteration velocity value ucur, which is derived from
the following equation:

unew ¼ 1 − að Þucur − gxcur þ
RT
pcur

popt − pcur
�� �� xopt − xcur

À Á� �

þ −2Ω × uRT
pcur

� �
:

ð13Þ

The air particle velocity is expressed in uotherdimcur , literature
[20] sets the constant to c¼ − 2jΩjR. Instead of popt and pcur,
i is used to represent the descending order of all air particles.
When xopt is in position, the pressure value is the minimum
and popt is 1, then the equation of velocity updating and
position updating is as follows:

unew ¼ 1 − að Þucur − gxcur þ RT 1 −
1
i

����
���� xopt − xcur
À Á� �

þ cuotherdimcur

i

� �
;

ð14Þ

xnew ¼ xcur þ unew × Δtð Þ: ð15Þ

The time interval is 1, and for the air quality points in
each dimension, the location range of the search can be set
according to the specific problem, and the speed of the
update has a certain scope, which can be used to make the
following judgment of the velocity value size:

u∗new ¼ umax unew>umax

−umax unew< − umax

(
; ð16Þ

where umax is the speed boundary value.
For the application of the WDO algorithm, the actual

position of air particle in the air corresponds to a solution
of the problem, and then its fitness is calculated by the pres-
sure value of the position, and finally, it is put into
Equations (14) and (15) to iteratively search for the optimal
solution. For Equation (14), the first term represents the
effect of friction; that is, friction always reduces the original
air particle velocity. The second term represents the effect of
gravity. The velocity component is directed to the origin of
coordinates, which can ensure that air particles will not fall
into the boundary position to improve the global search
capability. The third term represents the effect of pressure
gradient force. When i¼ 1, the pressure value is the mini-
mum. Therefore, the closer the air particle is to the current
optimal solution, the smaller its velocity increment will be.
The fourth represents the effect of the Coriolis force, which
mainly simulates the effect of other dimensional forces on
the current dimensional velocity to enhance the robustness
of the algorithm.

3. The Improved WDO Algorithm

A meta-heuristic algorithm called WDO is based on swarm
intelligence. Exploration and exploitation are the two activi-
ties of swarm intelligence algorithms. Exploration is to create
a person at random in the search space to investigate a poten-
tial solution that is not immediately next to the current best
solution, which aids in leaving the present local optima. Uti-
lizing local search to conduct a local search in a promising
region and speed up algorithm convergence involves looking
for potential solutions in a limited area close to the current
optimal solution. The challenging problem of how to strike a
balance between exploration and exploitation is the main
objective of optimizing the algorithm. This paper provides a
new improved method. First, chaotic mapping is used to ini-
tialize air particles so that they are evenly distributed in space.
Second, air particles are mutated according to themodel value
of hyperbolic tangent. Accordingly, CHTWDO is proposed
based on these three improvements.

3.1. Chaotic Mapping. Chaotic mapping is mainly used to
generate chaotic sequences, which can change simple deter-
ministic systems into random sequences. In the field of algo-
rithmic optimization, chaotic maps are used to replace
pseudorandom number generators to produce a batch
of chaotic numbers between 0 and 1 [36]. Numerous
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experiments have verified that the initialization of a popula-
tion through a chaotic sequence will affect the whole process
of the optimization algorithm so that better results can be
obtained than pseudorandom numbers [37].

Therefore, this paper uses a chaotic mapping strategy to
improve the initialization process of wind particles. The
common chaotic mapping mainly includes logistic mapping,
cat mapping, and tent mapping. We choose tent mapping
here because tent chaotic mapping has advantages over other
maps in ergodic, uniform, and iterative speed [38].

The equation for tent mapping to generate chaotic parti-
cle sequences is shown in Equation (17).

xitþ1 ¼
2xit 0 ≤ xit ≤ 0:5

2 1 − xitð Þ 0:5<xit ≤ 1

(
; ð17Þ

where i= 1, 2… N represents the population number; t= 1,
2…M stands for space dimension. Figure 2 shows the initial
population based on the tent map.

According to Equation (17), N initial values can be
selected, n chaotic sequence xit , and then substituted in
Equation (18) inverse to the search space, and obtained a
uniform random initialization of the air proton.

yit ¼ lbi þ ubi − lbið Þxit ; ð18Þ

where lbi and ubi are the boundaries of the search range of xit .

3.2. Hyperbolic Tangent Model. After years of research and
development, scholars have put forward some new variation
methods, such as exponential, quadratic, and cosine func-
tions, on the basis of the original. After repeated comparison,
the CHTWDO algorithm adopts the hyperbolic tangent
mobility model, whose equation is as follows:

λk ¼
P
2

1þ αk−
n
2 − α−kþ

n
2

αk−
n
2 þ α−kþ

n
2

� �
; ð19Þ

where λk represents the variation rate; P represents the max-
imum variation rate; α is the influence factor parameter; k
and n represent the current and maximum number of air
proton iterations, respectively.

With P¼ 0:5, n¼ 500, and a¼ 1:01, variation probabili-
ties of different iterations can be obtained, and the results are
shown in Figure 3. In the initial stage, due to the adoption of
chaotic mapping, air particles are evenly distributed in the
whole space, so the mutation probability is small in the initial
stage, but with the increase of iteration times, the mutation
probability increases nonlinearly to ensure the convergence
speed and search range. In the final stage, the mutation
probability is close to the maximum value to avoid falling
into the extreme point.

3.3. T-Distribution Variation Strategy. In probability theory
and mathematical statistics, the T-distribution is often used
in terms of the mean of a small sample with unknown vari-
ance and a sample that is basically a normal distribution [39].
The T-distribution, also known as the student distribution,
has a probability density function for n degrees of freedom.
The equation is as follows:

pt xð Þ ¼ Γ nþ1
2

À Á
ffiffiffiffiffiffi
nπ

p
× Γ n

2

À Á × 1þ x2

n

� �n
2

  −1<x< þ1:

ð20Þ

If the parameter n of freedom is 1, t ðn¼ 1Þ¼Cð0; 1Þ,
then the T-distribution is the Cauchy distribution. When the
degree of freedom parameter n increases along the X-axis,
the T-distribution gradually approaches the normal distribu-
tion. When the final degree of freedom parameter n goes to
1, the T-distribution is the Gaussian distribution. Therefore,
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FIGURE 2: Initial population based on the tent map.
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FIGURE 3: Hyperbolic tangent variation probability.
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the Cauchy distribution and the standard Gaussian distribu-
tion can be considered as two special cases of T-distribution.

The probability of T-distribution variation depends on
the hyperbolic tangent model. For each air proton, a random
number between (0,1) will be generated. If the air proton
whose random number is less than the hyperbolic tangent
value of the iteration number is the air proton meeting the
variation condition, the position update will be completed.
The equation is as follows:

xti ¼ xi þ xi × t iterationð Þ; ð21Þ

where xti is the position of air proton after the i is disturbed
only by T-distribution; xi is the position of the ith air proton;
tðiterationÞ is a T-distribution whose degree of freedom
parameter is the number of iterations.

At the early stage of CHTWDO iteration, the iteration
value is small, and the T-distribution variation is close to the
Cauchy distribution. In this case, variation has a larger effect
and strong disturbance ability to air proton position, which
can greatly improve the diversity of the population and avoid
the algorithm falling into local extreme value. Therefore, it
has a strong global search ability. When the iteration reaches
the later stage, the iteration value increases and the
T-distribution variation approaches the Gaussian distribu-
tion. In this case, the effect of the variation term decreases.
Therefore, the algorithm performs local search and has a
better convergence speed and accuracy. However, when the
algorithm is iterated to the middle stage, the T-distribution
variation will have the advantages of Cauchy distribution
and Gaussian distribution variation, and it can have both
global and local searching capabilities of the algorithm.

3.4. CHTWDO Process. The CHTWDO process is as follows:

(a) Parameter initialization. The initial population num-
ber, the total number of iterations, search space
dimension, T-distribution mutation probability,
and other parameters.

(b) Population initialization. The chaotic particle sequence
of tent is generated by Equation (17) andmapped to the
search space according to Equation (18) to obtain the
initial position of the seagull.

(c) Calculate the fitness of each proton in the initial air
and sort it to find the proton position with the best
fitness.

(d) Update the position and velocity of the proton
according to Equations (1)–(16), check whether the
updated position is out of bounds, and adjust the
position of the transgressed proton position to the
boundary value of the search space.

(e) Calculate the pressure value of air particles in the
current iteration (suitable value) and rearrange the
population according to the pressure value.

(f ) Calculate the probability of the current iteration
value according to Equation (19).

(g) Make T-distribution variation with the probability of
each proton, update its position by Equation (20),
calculate the fitness value of the new position, and
compare it with the fitness value of the previous
generation to find out and save the location of air
particles with the best fitness.

(h) Check whether the algorithm runs to the total num-
ber of iterations. If the total number of iterations is
satisfied, the algorithm ends, and step (i) is exe-
cuted); If no, perform steps (d)–(g) to search.

(i) Output optimization results.

The pressure value during the last iteration is recorded as
the optimal result. Generally, the termination condition is set
to a good enough pressure value (adaptive value) or to a preset
maximum iteration algebra. Figure 4 shows the flow of the
WDO algorithm.

4. Experiments

In order to verify the performance of the improved algorithm
in this paper, 16 common benchmark test functions are used
for simulation and comparison experiments. The experimen-
tal running environment was Intel Core TM i5-10400 CPU,
2.90GHz main frequency, 16GB memory, Windows 10 64-
bit operating system, and MATLAB R2018b simulation soft-
ware. All parameters here are uniformly set as population
number 30 and total number of iterations 300. Considering
the randomness of some algorithms, any algorithm is run
independently for 30 times. The average value is used to rep-
resent the accuracy of the algorithm, and the standard devia-
tion is used to represent the robustness of the algorithm. The
optimal value of the function is shown in bold.

4.1. Benchmark Functions. Table 1 shows the eight bench-
mark functions used for testing. Here, f1–f8 is a single-peak
test function, which can measure the accuracy and conver-
gence speed of the algorithm; f9–f14 is a multipeak test func-
tion; f15–f24 is a fixed-dimension multipeak test function,
which can measure the global search of the algorithm and the
ability to avoid falling into the local optimal solution.

4.2. Comparison with Basic WDO and Several Other Algorithms.
To preliminarily verify the superiority of CHTMDO, seven
algorithms, GWO [40], WOA, BA, DA, PSO, IA [41], and basic
MDO, are selected for comparison. PSO and BA algorithms are
classical optimization algorithms,whileDA,GWO, IA, andWOA
algorithms are emerging optimization algorithms in recent years,
which contain abundant and innovative scientific achievements in
thefield ofmeta-heuristic algorithm research and are often used in
the comparison process of algorithm performance test [42].
Therefore, these six algorithms are selected as the control group
in this paper. Verify the effectiveness of the improvement policy in
CHTWDO. Tables 2 and 3, respectively, show the comparison
results of mean values and standard deviations on 14 test
functions in the low-dimensional search space, where f1–f14 is
30-dimensional, and f15–f24 is fixed-dimensional count.
Meanwhile, in order to more intuitively compare the
performance of the seven algorithms, the convergence curves of
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the seven optimization algorithms in 24 test functions in low
dimension are shown in Figure 5(a)–5(x).

As can be seen from Table 2, the CHTWDO algorithm is
in f1, f3, f5, f6, f7, f8, f13, f14 seven test letters. It is obviously
superior to the other six algorithms and has higher solving

accuracy. Especially for the function f1, compared with
WDO, the convergence accuracy is improved by more than
200 orders of magnitude, and for the functions f3, f5, f6, it is
also improved by more than 25 orders of magnitude. On
functions f2, f9,f10, f18,f20, and f21, CHTWDO and WDO
both find the theoretical optimal value. It can be seen from
Figure 5(a)–5(x) that the CHTWDO algorithm has a faster
convergence speed. In the functions f1–f8 and f10–f24, com-
pared with the other six algorithms, CHTWDO shows
extremely fast convergence speed and global optimization
ability. The theoretical extremum is found in about 20 itera-
tions on the functions f2 and f4. Only functions f9 and f16
are weaker than GWO and WOA. However, the function f5
and f6 CHTWDO show strong jumping ability in the middle
and late stages, indicating that the probability of tangent
function and T-distribution mutation strategy help the algo-
rithm to jump out of the local optimal solution. However, in
functions f9 and f16, CHTWDO and WDO are the same,
neither of which jumps out of the local extremum again. As
can be seen from Table 3, CHTWDO has good robustness on
the basis of improving convergence speed and accuracy. For
functions f3–f8 and f10–f12, the robustness of the
CHTWDO algorithm is much better than other algorithms,
including MWO. On functions f2, f9, f13, f14, and f16–f24,
CHTWDO is slightly more robust than other algorithms. For
function f15, CHTWDO is slightly less robust than BA, but it
is still improved compared with WDO.

Tables 4 and 5, respectively, show the comparison results
of the mean and standard deviation of 14 test functions in the
high-dimensional search space (100 dimensional). As can be
seen from Table 4, CHTWDO has the following perfor-
mance in optimization accuracy under high-dimensional
conditions: First, it is superior to other algorithms in f1,
f3–f8, f11, f13, and f14 test functions. Among them, for func-
tion f1, the solving accuracy is improved by about 140 orders
of magnitude compared with WDO, and for function f3–f5,
it is also improved by at least 10 orders of magnitude com-
pared with WDO, which is obviously better than the other
five algorithms. Second, in terms of functions f10 and f12,
CHTWDO has the same solving accuracy as MWO, but it is
still significantly better than the other five algorithms. On the
functions f4 and f10–f12, CHTWDO can be solved to the
theoretical optimal value. On functions f2 and f9, the perfor-
mance of CHTWDO and WDO trapped in the same local
extreme value is slightly worse than that of GWO and WOA.
As can be seen from Table 5, the CHTMWO algorithm has
the following performance in robustness under high-
dimensional conditions: First, in functions f1, f3–f8, and
f10–f14, the CHTMWO algorithm has more advantages
than the other seven algorithms, indicating that the algo-
rithm is more stable. Second, in terms of functions f2 and
f9, although the robustness of CHTMWO is slightly lower
than that of GWO and WOA algorithms, it is still improved
compared with MWO.

By combining the optimal values and standard deviations
of 30 and 100 dimensions, we sorted the eight algorithms, as
shown in Figure 6. By comprehensive comparison, it can be
seen that the CHTWDO algorithm has obvious advantages

Start

Initialize the CHTWDO algorithm, and inialize
the air proton position according to Equation (18)

Calculate the fitness of air protons and sort
them to select the proton with the best fitness

Update the proton position and velocity
according to Equations (1)–(16)

The mutation rate P of the proton is calculated
according to Equation (19)

Generates a random number R of  [0,1]

R < P

The proton is perturbed with T-distribution by
Equation (20), and the optimal fitness ranking is update

Maximum number of iterations?

Output the optimal result

End

No

Yes

No

Yes

FIGURE 4: Flowchart of CHTWDO.
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on more than 80% of test functions in the search space of
both low and high dimensions, and the increase of dimen-
sion has little influence on the optimization results of
CHTWDO.

Table 6 displays the p-values for each test function in
Wilcoxon’s rank sum test comparing CHTWDO with alter-
native methods according to Table 2. A p-value of less than α
= 0.05 often indicates that there are clear differences between
the two sets of data. “+” in this case denotes the superior
performance of the compared method above the suggested
CHTWDO algorithm. A “= ” indicates that the performance
of the two algorithms is consistent, while a “−” shows that the
comparative method performs worse than the CHTWDO
algorithm.

According to the overall ranking rates (Friedman mean
test) shown in Figure 7, we observe that the CHTWDO
achieves the best rank of 1.083, followed by WDO, WOA,
GWO, BA, DA, IA, and PSO, respectively.

4.3. Comparison to WDO with a Single Improvement Policy.
In order to compare the contribution of three improvement
strategies to CHTWDO and verify the effect of a single

improvement strategy on WDO optimization, the WDO
initialized by tent Chaos is named CWDO, and the WDO
algorithm with T-distribution variation perturbation is named
TWDO. HTWDO with hyperbolic tangent T-distribution
variation perturbation is compared with the CHTWDO
algorithm. The mean value is shown in Table 7, and the
standard deviation is shown in Table 8.

As can be seen from Table 7, the optimization accuracy
of CHTWDO integrated with three improved strategies in
functions f1–f3, f4–f10, and f12–f16 is better than that of
WDO improved with a single strategy, and the optimization
accuracy of CHTWDO in functions f4 and f11 is the same as
that of the other three algorithms. On the function f4, all the
four algorithms find the optimal solution. Moreover, it can
be found from the comparison that the HTWDO with
hyperbolic tangent is superior to TWDO in functions
f1–f3, f5–f10, and f12–f16, while the two algorithms are
equivalent in f4 and f11. Therefore, it is proved that the
optimal solution can be found more effectively according
to the probabilistic variation of hyperbolic tangent than the
fixed probabilistic variation. As can be seen from Table 7, the
robustness of CHTWDO on functions f1–f3, f5–f9, and

TABLE 1: Benchmark functions.

Function Equation Range
Optimal
solution

f1 f1ðxÞ¼∑n
i¼1x

2
i Æ100 0

f2 f2ðxÞ¼∑n¼1
i¼1 ½100ðxiþ1 − x2i Þ2 þðxi − 1Þ2� Æ30 0

f3 f3ðxÞ¼∑n
i¼1jxij þ∏n

i¼1jxij Æ10 0
f4 f4ðxÞ¼∑n

i¼1ðjxi þ 0:5jÞ2 Æ100 0

f5 f5ðxÞ¼∑n
i¼1jxijðiþ1Þ Æ1 0

f6 f6ðxÞ¼∑n
i¼1ix

2
i Æ10 0

f7 f7ðxÞ¼∑n
i¼1jxij þ∏n

i¼1jxij Æ10 0

f8 f8ðxÞ¼∑n
i¼1ð∑i

j¼1xjÞ2 Æ100 0

f9 f9ðxÞ¼∑n
i¼1ðx2i − 10 cosð2πxiÞþ 10Þ Æ5:12 0

f10 f10ðxÞ¼ − 20 expð− 0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n∑

n
i¼1x

2
i

q
Þ− expð1n∑n

i¼1cosð2πxiÞÞþ 20þ e Æ32 0

f11 f11ðxÞ¼∑n
i¼1ð10

i−1
n−1xiÞ2 − 10 cosð2π10 i

n−1xiÞþ 10 Æ5:12 0

f12 f12ðxÞ¼ 1
4000 ð∑n

i¼1ðxi − 100Þ2Þ− ð∏n
i¼1cosðxi−100ffiip ÞÞþ 1 Æ600 0

f13 f13ðxÞ ¼ ∑n
i¼1ð∑kmax

k¼0 ½akcosð2πbkðzi þ 0:5ÞÞ�Þ − n∑kmax
k¼0 ½akcosð2πbk ⋅ 0:5Þ�

a¼ 0:5; b¼ 3; kmax¼ 20
Æ0:5 0

f14 f14ðxÞ¼ 1
n∑

n
i¼1½x4i − 16x2i þ 5xi� Æ5 −78.3323

f15 f15ðxÞ¼ −∑5
i¼1½ðx − aiÞðx − aiÞT þ ci�−1 ½0; 10�4 −10.1532

f16 f16ðxÞ¼∑11
i¼1½ai − x1ðb2i þbix2Þ

b2i þbix3þx4
� ½−5; 5�4 0.0003075

f17 f17ðxÞ¼ ð 1
500 þ ∑25

j¼1
1

jþ∑n
i¼1ðxi−aijÞ6

Þ−1 Æ65:536 1

f18 f18ðxÞ¼ 4x21 − 2:1x41 þ 1
3 x

6
1 þ x1x2 − 4x22 þ 4x42 Æ5 −1.316285

f19 f19ðxÞ¼ ðx2 − 5:1
4π2 x

2
1 þ 5

π x1 − 6Þ2 þ 10ð1− 1
8πÞcos x1 þ 10 −5 ≤ x1 ≤ 10

0 ≤ x2 ≤ 15
0.398

f20 f20ðxÞ¼ −∑4
i¼1ci exp½−∑3

j¼1aijðxj − pijÞ2� 0≤ xi ≤ 1 −3.86
f21 f21ðxÞ¼ −∑4

i¼1ci exp½−∑6
j¼1aijðxj − pijÞ2� 0≤ xi ≤ 1 −3.32

f22 f22ðxÞ¼ −∑5
i¼1½ðx − aiÞðx − aiÞT þ Ci�−1 0≤ xi ≤ 10 −10

f23 f23ðxÞ¼ −∑7
i¼1½ðx − aiÞðx − aiÞT þ Ci�−1 0≤ xi ≤ 10 −10

f24 f24ðxÞ¼ −∑10
i¼1½ðx − aiÞðx − aiÞT þ Ci�−1 0≤ xi ≤ 10 −10
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f13–f16 is better than that of CWDO, TWDO, and HTWDO,
and the robustness of CHTWDO on functions f4, f10–f12 is
the same as that of CWDO, TWDO, and HTWDO.

As you can see from Figure 8, CHTWDO ranks first in all
16 functions, including a tie for first. The comprehensive
comparison shows that CHTWDO has absolute superiority
in 81% of the test functions and has the same optimization
performance as CWDO, TWDO, and HTWDO in 19% of
the test functions. However, HTWDO outperforms TWDO
on 88% of the functions and has the same optimization
performance on 12% of the functions. However, the three
single algorithms are better than ordinary WDO. The results
show that the CHTWDO integrated with the three improved
strategies has more advantages than the CWDO, TWDO,
and HTWDO of other strategies, which can improve the
optimization accuracy and convergence speed while ensuring
the stability of the algorithm. By comparing the contribution
degree of a single strategy on CHTWDO, it is found that the
chaotic initialization strategy can make the algorithm jump
out of the local extreme value stably and repeatedly and
improve the convergence accuracy. The T-distribution muta-
tion strategy can improve the optimization accuracy and
convergence speed, obviously, but the stability is poor.
Hyperbolic tangent variation can ensure that the conver-
gence speed is improved in the early stage and the ability
to jump out of the extreme point is enhanced in the late

stage. Combining the advantages of the three improvement
strategies, the optimization accuracy and convergence speed
of CHTWDO can be significantly improved, and the stability
is high.

4.4. Comparison of WDO Improvement with Other Scholars.
In order to further test the performance of CHTWDO, the
improved WDO in this paper is compared with that of other
scholars, and the comparison results are shown in Table 9.

As can be seen from Table 9, compared with WDO
improved by other scholars, CHTWDO shows absolute
superiority in functions f1, f4, and f10, and its optimization
accuracy and robustness are far superior to those of the other
three literatures. The solution results of functions f2, f3, f6,
f8, f9, f12–f15 are better than those of the other three papers.
However, the optimization accuracy and robustness of func-
tions f5, f7, f11, and f16 are inferior to the improved WDO
algorithm proposed in other literatures.

4.5. The Center-Bias Problem.We use the same method used
in literature [43] to reveal the central deviation problem.
The eight benchmark functions (f1–f8) used in our tests
are shown in Table 1. It can be easily seen that many of these
functions have corresponding optimal values at or very close
to the zero vector. For evaluation, we set the dimension of
the problem to 30 and allow up to 50,000 function evaluations.
We also chose a simple performance metric—the average

TABLE 2: Comparison of an average of eight algorithms in low dimension.

Algorithm f1 f2 f3 f4 f5 f6 f7 f8

CHTWMO 1.00E− 300 1.00E+ 02 1.52E− 60 0 2.15E− 10 1.47E− 10 2.23E− 90 2.24E− 58
WMO 4.21E− 82 1.01E+ 02 8.70E− 16 1.26E+ 02 2.81E− 02 1.55E− 02 1.98E− 60 5.88E− 28
GWO 4.72E− 42 1.03E+ 02 1.12E− 01 2.18E+ 01 5.24E− 03 2.93E− 03 1.84E− 30 9.94E− 02
WOA 2.59E− 65 1.00E+ 02 6.09E− 01 1.36E+ 01 1.79E− 02 9.56E− 03 2.25E− 15 1.46E+ 00
BA 5.54E− 33 2.26E+ 03 2.11E− 09 1.17E+ 01 2.84E− 02 6.34E− 03 3.64E− 02 9.97E− 01
DA 1.12E− 23 1.00E+ 05 9.41E− 07 3.85E+ 02 1.22E− 02 3.87E− 05 7.66E− 07 1.06E+ 01
PSO 1.97E− 19 1.02E+ 04 7.97E− 11 4.36E+ 02 7.97E− 01 2.49E− 02 4.59E− 04 6.25E+ 00
IA 5.88E− 08 4.28E+ 02 8.34E− 02 8.19E+ 02 6.43E− 01 4.78E− 03 1.35E− 07 4.40E+ 00

f9 f10 f11 f12 f13 f14 f15 f16

CHTWMO 1.21E− 10 1.08E− 15 1.15E− 15 1.35E− 15 8.08E− 13 −1.01E+ 02 −1.02E+ 01 3.30E− 04
WMO 1.30E− 10 1.87E− 15 1.88E− 15 1.96E− 15 5.61E− 07 −2.99E+ 01 −1.00E+ 01 3.88E− 04
GWO 1.04E− 10 1.79E− 10 2.32E− 08 2.18E− 07 2.24E− 04 −2.93E+ 01 −8.32E+ 00 5.11E− 04
WOA 1.53E− 02 2.04E− 05 2.59E− 05 2.52E− 05 7.79E− 04 −2.76E+ 01 −9.91E+ 00 3.26E− 04
BA 6.24E− 03 1.09E− 01 2.51E− 04 1.54E− 05 2.21E− 04 −2.63E+ 01 −9.92E+ 00 5.69E− 04
DA 2.07E− 01 7.64E− 01 4.41E− 03 1.51E− 04 2.22E− 02 −3.83E+ 01 −8.83E+ 00 3.56E− 04
PSO 2.67E-03 2.84E− 01 1.40E− 02 1.24E− 02 2.27E− 01 −3.38E+ 01 −7.65E+ 00 2.05E− 03
IA 1.98E− 02 1.28E− 01 1.31E− 01 1.80E− 01 6.43E− 01 −6.88E+ 01 −9.28E+ 00 6.10E− 03

f17 f18 f19 f20 f21 f22 f23 f24

CHTWMO 7.96E− 01 −1.03E+ 00 3.98E− 01 −3.86E+ 00 −3.26E+ 00 −1.02E+ 01 −9.87 E+ 00 −9.87 E+ 00
WMO 9.73E− 01 −1.03E+ 00 4.03E− 01 −3.86E+ 00 −3.26E+ 00 −9.99E+ 00 −9.82 E+ 00 −9.86 E+ 00
GWO 8.43E− 01 −1.03E+ 00 4.11E− 01 −3.85E+ 00 −3.25E+ 00 −8.05E+ 00 −9.74 E+ 00 −8.89 E+ 00
WOA 4.74E− 01 −1.01E+ 00 1.71E+ 01 −3.85E+ 00 −3.24E+ 00 −9.58E+ 00 −9.81 E+ 00 −9.81 E+ 00
BA 6.52E− 01 −0.99E+ 00 5.03E− 01 −3.84E+ 00 −3.23E+ 00 −9.65E+ 00 −4.95 E+ 00 −9.42 E+ 00
DA 6.80E− 01 −1.01E+ 00 3.99E− 01 −3.83E+ 00 −3.17E+ 00 −8.93 E+ 00 −6.89 E+ 00 −9.02 E+ 00
PSO 3.93E− 01 −1.02E+ 00 3.99E− 01 −3.73E+ 00 −2.88E+ 00 −7.46E+ 00 −8.98 E+ 00 −6.69 E+ 00
IA 8.16E− 02 −1.01E+ 00 7.22E− 01 −3.81E+ 00 −2.67E+ 00 −9.42E+ 00 −3.79 E+ 00 −4.96 E+ 00

The significance of bold values represent the optimal values of each test function.
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error (the difference between the best function value and the
best function value) of 20 independent runs. We refer to the
result of the calculation as the “unshifted” result. We then
introduce a shift operation, which “moves” the reference
function by a predetermined vector s, meaning that the func-
tion f(x) becomes f(x+ s). It is expected that a “small” value of
s should not lead to a large deviation in the behavior of the
optimizationmethod, because the two problems are very sim-
ilar. We choose the shift vector as 10% of the range—for
example, for F01, s= [20, 20,…]. We use the same computa-
tional framework (i.e., dimension 30, up to 50,000 function
evaluations, and 20 independent runs) and refer to the results
of these computations as “shifted” results. So, we get the ratio
between shifted and unshifted. For methods that do not
include center bias, one would expect the number to be close
to 1 (because the shift and shift problems are similar), while
for methods that do include center bias, the ratio should be
much greater than 1. If the geometric mean of the reference
function is greater than 1E+ 01, a central deviation operator
is considered to exist. The ratio of CHTWDO to WDO is
shown in Table 10.

From Table 10, we can find that the geometric mean of
CHTWDO is less than 1E+ 01, and the shift and nonshift
ratios are close to 1. On the other hand, WDO is greater than
1E+ 01, especially on f2, the ratio is as high as 4.457E+ 02,

and other functions f4, f13, f18, f19, and f24 is less than 1E+
01, all of which are greater than 1E+ 01. Therefore,
CHTWDO improves the defect of WDO in the problem of
center bias.

5. Engineering Examples

CHTWDO has demonstrated strong competitiveness on con-
ventional test functions through the aforementioned compari-
sons and analysis. This section will look at possible engineering
applications for CHTWDO. We choose CHTWDO and seven
additional well-liked algorithms to address four well-known
engineering optimization issues. The conclusion will be reached
by comparing the output of several algorithms on engineering
cases.WhileHTWDO ranks the first place in f4 and f11, f15, and
f16 rank the third, slightly worse than CWDO, and other func-
tions are better than CWDO in the second place. CWDO ranks
the first place in f4 and f11, while f15f and f16 are better than
HTWDO and TWDO, ranking the second, and the rest are the
worst. TWDO is inferior to HTWDO in all functions but super-
ior to CWDO except f4, f11, f15, and f16.

5.1. Welded Beam Design. One of the most well-known engi-
neering issues used to evaluate the algorithm’s effectiveness
is the welded beam design problem, which is a type of com-
posite beam. Figure 9 illustrates how a weld is created by

TABLE 3: Comparison of the standard deviation of eight algorithms in low dimension.

Algorithm f1 f2 f3 f4 f5 f6 f7 f8

CHTWDO 1.31E− 300 1.01E+ 02 2.23E− 60 0 3.11E− 10 1.32E− 10 2.81E− 90 2.89E− 58
WDO 5.79E− 82 1.14E+ 02 1.26E− 15 1.01E+ 02 3.14E− 02 1.74E− 02 2.35E− 60 3.90E− 28
GWO 2.99E− 42 1.36E+ 02 9.85E− 02 2.35E+ 01 2.81E− 03 2.04E− 03 1.52E− 30 9.74E− 02
WOA 4.36E− 64 3.55E+ 02 7.84E− 01 1.34E+ 01 2.51E− 02 1.15E− 02 3.25E− 15 1.33E+ 00
BA 5.68E− 33 1.13E+ 04 1.33E− 08 1.20E+ 01 4.06E− 02 3.45E− 03 1.95E− 02 1.11E+ 00
DA 9.15E− 24 1.16E+ 04 8.81E− 07 4.15E+ 02 5.69E− 04 2.65E− 05 7.19E− 07 1.29E+ 01
PSO 1.45E− 19 1.08E+ 04 1.12E− 10 4.14E+ 02 3.08E− 02 1.23E− 02 4.04E− 04 8.42E+ 00
IA 5.64E− 08 7.53E+ 02 1.03E− 01 8.67EÆ 02 2.73E− 02 2.94E− 03 1.71E− 07 3.52E+ 00

f9 f10 f11 f12 f13 f14 f15 f16

CHTWDO 1.00E− 10 0 0 0 6.14E− 16 8.02E+ 01 1.05E+ 01 2.04E− 04
WDO 1.01E− 10 1.45E− 15 1.74E− 15 1.94E− 15 6.03E− 07 3.84E+ 01 1.28E+ 01 2.96E− 04
GWO 1.23E− 10 9.58E− 11 3.31E− 07 1.79E− 07 1.05E− 04 2.43E+ 01 1.15E+ 01 3.73E− 04
WOA 1.82E− 03 2.07E− 05 3.09E− 05 2.78E− 05 6.47E− 04 2.86E+ 01 6.08E+ 01 6.50E− 04
BA 7.21E− 03 7.60E− 02 3.24E− 05 1.87E− 04 2.82E− 04 2.16E+ 01 1.03E+ 01 3.23E− 04
DA 1.34E− 01 9.14E− 01 2.60E− 03 5.80E− 03 3.13E− 02 1.87E+ 01 8.57E+ 01 5.94E− 04
PSO 1.70E− 03 1.84E− 01 6.98E− 03 9.61E− 03 2.31E− 01 1.43E+ 01 3.84E+ 01 4.95E− 03
IA 1.95E− 02 1.07E− 01 1.03E− 01 9.45E− 03 1.05E+ 00 4.74E+ 01 7.87E+ 00 1.25E− 03

f17 f18 f19 f20 f21 f22 f23 f24

CHTWDO 2.08E− 01 0 1.08E− 01 2.90E+ 00 1.09E+ 00 1.01E+ 00 2.05E− 02 7.13E− 01
WDO 5.35E− 01 1.18E+ 00 2.07E− 01 3.94E+ 00 1.20E+ 00 3.12E+ 00 1.46E− 01 1.56E+ 00
GWO 7.19E− 01 1.67E+ 00 1.96E− 01 3.71E+ 00 2.14E+ 00 4.08E+ 00 5.74E− 01 3.04E+ 00
WOA 4.46E− 01 1.96E+ 00 8.62E+ 00 3.08E+ 00 3.07E+ 00 3.62E+ 00 1.83E+ 00 4.24E+ 00
BA 4.91E− 01 2.83E+ 00 3.12E− 01 3.75E+ 00 4.95E+ 00 7.32E+ 00 3.09E+ 00 2.25E+ 00
DA 3.69E− 01 1.51E+ 00 2.83E− 01 4.97E+ 00 3.86E+ 00 3.12E+ 00 4.18E+ 00 5.16E+ 00
PSO 3.35E− 01 3.57E+ 00 2.37E− 01 3.15E+ 00 2.18E+ 00 4.47E+ 00 8.35E− 01 8.83E− 01
IA 6.07E− 00 1.64E+ 00 4.09E− 01 5.70E+ 00 2.83E+ 00 5.12E+ 00 3.82E− 01 3.06E+ 00

The significance of bold values represent the optimal values of each test function.
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FIGURE 5: Convergence curves of eight algorithms on 24 test functions in low dimensions: (a) f1; (b) f2; (c) f3; (d) f4; (e) f5; (f ) f6; (g) f7; (h) f8;
(i) f9; (j) f10; (k) f11; (l) f12; (m) f13; (n) f14; (o) f15; (p) f16; (q) f17; (r) f18; (s) f19; (t) f20; (u) f21; (v) f22; (w) f23; (x) f24.

TABLE 4: Comparison of the average of eight algorithms in 100 dimensions.

Algorithm f1 f2 f3 f4 f5 f6 f7

CHTWDO 1.74E− 256 1.03E+ 02 1.34E− 60 0 2.15E− 10 1.14E− 08 3.41E− 82
WDO 6.37E− 69 4.16E+ 02 4.24E− 15 1.34E+ 03 2.81E− 02 3.64E− 03 3.16E− 54
GWO 8.32E− 40 2.13E+ 03 7.43E− 01 5.72E+ 01 5.20E− 03 7.04E− 03 3.84E− 28
WOA 1.53E− 61 1.02E+ 02 8.56E− 01 4.07E+ 01 1.79E− 02 1.52E− 03 8.62E− 14
BA 2.15E− 34 5.73E+ 03 4.32E− 09 6.58E+ 01 2.84E− 02 1.72E− 02 1.84E− 01
DA 9.04E− 22 2.89E+ 05 4.31E− 06 9.40E+ 02 1.02E− 02 8.08E− 04 9.01E− 06
PSO 5.46E− 18 1.42E+ 05 5.52E− 10 8.53E+ 02 7.97E− 01 8.32E− 02 2.60E− 03
IA 7.38E− 08 6.48E+ 02 7.80E− 02 1.96E+ 03 6.43E− 01 1.29E− 02 1.24E− 07

f8 f9 f10 f11 f12 f13 f14

CHTWDO 1.06E− 54 1.08E− 10 0 0 0 8.02E− 15 7.16E+ 01
WDO 2.06E− 26 1.58E− 10 0 1.04E− 14 0 3.94E− 06 4.06E+ 01
GWO 5.92E− 02 1.04E− 10 1.26E− 10 2.31E− 06 1.79E− 07 1.95E− 04 3.12E+ 01
WOA 2.67E+ 00 5.16E− 02 8.26E− 05 3.13E− 04 2.78E− 05 4.07E− 04 3.15E+ 01
BA 3.94E+ 00 1.06E− 02 9.04E− 02 8.08E− 05 1.87E− 04 5.37E− 04 2.74E+ 01
DA 2.06E+ 00 6.12E− 01 9.90E− 01 9.26E− 03 5.80E− 03 9.41E− 01 1.98E+ 01
PSO 9.19E+ 00 8.42E− 03 8.97E− 01 9.04E−03 9.61E− 03 7.62E− 01 1.85E+ 01
IA 1.04E− 01 8.16E− 02 3.73E− 01 2.92E− 01 9.45E− 03 2.15E+ 00 5.38E+ 01

The significance of bold values represent the optimal values of each test function.
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joining several pieces together using molten metal in the
manner shown.

By choosing the best four design variables—bar thickness
(b), bar length (l), weld thickness (t), and bar height (h)—the
best aim is to reduce the overall cost of the beam. The opti-
mization model can be expressed as follows:

Already know: x¼ ½x1; x2; x3; x4� ¼ ½h;m; t; b�,
Minimize: f ðxÞ¼ 1:10471x21x2 þ 0:04811x3x4ð14:0þ x2Þ,
Variables range: 0:1≤ x1 ≤ 2; 0:1≤ x2 ≤ 10; 0:1≤ x3 ≤ 10;

0:1≤ x4 ≤ 2;

Restriction condition:

h1 xð Þ ¼ τ xð Þ − τmax ≤ 0; h2 xð Þ ¼ σ xð Þ − σmax ≤ 0;

h3 xð Þ ¼ δ xð Þ − δmax ≤ 0; h4 xð Þ ¼ x1 − x4 ≤ 0;

h5 xð Þ ¼ P − PC xð Þ ≤ 0; h6 xð Þ ¼ 0:125 − x1 ≤ 0;

h7 xð Þ ¼ 1:1047x21x2 þ 0:04811x3x4 14:0þ x2ð Þ − 5:0 ≤ 0;

8>>>><
>>>>:

ð22Þ
where

TABLE 5: Comparison of standard deviations of eight algorithms in 100 dimensions.

Algorithm f1 f2 f3 f4 f5 f6 f7

CHTWDO 1.28E− 240 1.68E+ 02 6.06E− 60 0 2.08E− 10 1.28E− 08 5.24E− 80
WDO 1.08E− 64 7.24E+ 02 8.26E− 15 3.24E+ 04 6.24E− 02 6.09E− 03 6.78E− 50
GWO 3.96E− 30 8.04E+ 03 9.12E− 01 2.72E+ 01 4.80E− 03 8.14E− 03 7.14E− 28
WOA 1.62E− 62 1.25E+ 02 9.76E− 01 6.07E+ 01 3.84E− 02 7.31E− 03 3.78E− 12
BA 4.25E− 34 9.69E+ 03 6.08E− 08 7.58E+ 01 7.14E− 02 2.49E− 02 9.08E− 01
DA 9.42E− 22 1.75E+ 04 9.31E− 08 9.57E+ 01 1.84E− 02 9.42E− 04 1.78E− 05
PSO 1.18E− 18 1.90E+ 05 8.52E− 11 2.36E+ 02 9.03E− 01 9.76E− 02 3.62E− 03
IA 6.73E− 08 9.08E+ 02 1.04E− 03 8.90E+ 03 8.24E− 01 1.83E− 02 7.92E− 07

f8 f9 f10 f11 f12 f13 f14

CHTWDO 8.72E− 50 1.47E− 10 2.17E− 08 9.63E− 18 0 4.34E− 14 6.03E+ 01
WDO 4.04E− 24 2.37E− 10 1.72E− 14 5.17E− 16 4.97E− 14 3.71E− 06 5.16E+ 01
GWO 5.93E− 02 1.16E− 10 1.86E− 10 6.41E− 05 1.88E− 07 7.15E− 04 3.78E+ 01
WOA 8.35E+ 00 7.23E− 02 8.35E− 04 2.37E− 03 4.14E− 05 8.08E− 04 3.82E+ 01
BA 7.14E+ 00 8.16E− 02 2.79E− 01 9.18E− 04 3.77E− 04 5.17E− 04 1.68E+ 01
DA 4.42E+ 00 9.37E− 01 3.81E+ 00 2.66E− 02 9.70E− 03 9.98E− 01 4.13E+ 01
PSO 9.82E+ 00 9.38E− 03 7.24E− 01 1.34E− 02 1.03E− 02 8.81E− 01 2.17E+ 01
IA 2.37E+ 00 9.42E− 02 5.13E− 01 6.93E− 01 1.25E− 02 7.03E+ 00 8.04E+ 01

The significance of bold values represent the optimal values of each test function.
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τðxÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτ0Þ2 þ 2τ0τ00 x2R þ ðτ00Þ2

q
,τ0 ¼ Pffiffi

2
p

x1x2
, τ00 ¼MR

J ,

M¼ PðLþ x2
2 Þ;R¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22
4 þ ðx1þx3

2 Þ2
q

,

J ¼ 2f ffiffiffi
2

p
x1x2½x

2
2
4 þ ðx1þx3

2 Þ2�g, σðxÞ¼ 6PL
x4x23

, δðxÞ¼ 6PL3

Ex4x23
,

PCðxÞ¼
4:013

ffiffiffiffiffiffi
x2
3
x6
4

36

q
L2 ð1− x3

2L

ffiffiffiffiffi
E
4G

q
Þ’

P¼ 6000 lb, L¼ 14 in, δmax in, E¼ 3× 106 psi,

G¼ 12× 106 psi, τmax psi, σmax psi.
All findings are compiled in Table 11 after 20 runs. All

four indicators show the greatest results for CHTWDO.

CHTWDO performs better on average value and STD, indi-
cating that it is more stable, even if WDO also achieves the
same data on best result. Table 12 shows the values of the
variables for each algorithm’s best outcome.

5.2. Three-Bar Truss Design. When constructing a truss with
several constraints, such as deflection, buckling, and stress,
the three-bar truss design aims to attain the least weight
possible. This optimization issue contains two design param-
eters, x1 and x2, as illustrated in Figure 10. It is presented in
mathematical form as follows:

Consider: x¼ ½x1; x2� ¼ ½A1;A2�,
Minimize: f ðxÞ¼ ð2 ffiffiffiffiffiffiffi

2x1
p þ x2Þ× l,

Restriction condition:

h1 xð Þ ¼
ffiffiffiffiffiffiffi
2x1

p þ x2ffiffiffiffiffiffiffi
2x21

p
þ 2x1x2

P − σ ≤ 0;

h2 xð Þ ¼ x2ffiffiffiffiffiffiffi
2x21

p
þ 2x1x2

P − σ ≤ 0;

h3 xð Þ ¼ 1ffiffiffiffiffiffiffi
2x21

p
þ x1

P − σ ≤ 0;

8>>>>>>>><
>>>>>>>>:

ð23Þ

Variables range: 0≤ x1; x2 ≤ 1;
where l¼ 100 cm, P¼ 2 kN/cm2, σ¼ 2 kN/cm2.
The best, mean, worst, and standard deviation of sev-

eral algorithms used to solve the three-bar truss design

TABLE 6: Results of Wilcoxon’s rank sum test on 24 benchmark functions.

WDO GWO WOA BA DA PSO IA

1 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/−
2 4.12E− 01/= 3.57E− 01/= NaN/= 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 2.39E− 08/−
3 7.82E− 08/− 7.82E− 08/− 7.82E− 08/− 7.82E− 08/− 7.82E− 08/− 7.82E− 08/− 7.82E− 08/−
4 9.24E− 08/− 9.24E− 08/− 9.24E− 08/− 9.24E− 08/− 9.24E− 08/− 9.24E− 08/− 9.24E− 08/−
5 8.43E− 09/− 8.43E− 09/− 8.43E− 09/− 8.43E− 09/− 8.43E− 09/− 8.43E− 09/− 8.43E− 09/−
6 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/−
7 8.94E− 08/− 6.79E− 08/− 3.94E− 08/− 3.31E− 08/− 9.23E− 08/− 6.41E− 08/− 6.70E− 08/−
8 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/−
9 1.02E− 02/+ NaN/= 3.89E− 06/− 4.02E− 06− 3.71E− 06/− 3.88E− 06/− 9.73E− 06/−
10 8.51E− 01/= 8.52E− 01/= 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/−
11 4.72E− 06/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/−
12 5.36E− 07/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/−
13 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/−
14 1.14E− 08/− 1.14E− 08/− 1.14E− 08/− 1.14E− 08/− 1.14E− 08/− 1.14E− 08/− 1.14E− 08/−
15 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/−
16 1.15E− 02/= 3.09E− 02/− NaN/+ 3.84E− 02/= 2.07E− 02/= 6.80E− 08/− 6.80E− 08/−
17 5.72E− 02/− 6.80E− 02/− 1.49E− 01/+ 6.35E− 01/+ 1.28E− 01/+ 3.69E− 01/+ NaN/+
18 NaN/= NaN/= 1.00E+ 00/= 8.76E− 01/− 1.00E+ 00/= 1.00E+ 00/= 1.00E+ 00/=
19 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/−
20 NaN /= 2.07E− 02/− 2.07E− 02/− 2.07E− 02/− 2.07E− 02/− 2.07E− 02/− 2.07E− 02/−
21 NaN /= 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/−
22 8.02E− 09/− 8.02E− 09/− 8.02E− 09/− 8.02E− 09/− 8.02E− 09/− 8.02E− 09/− 8.02E− 09/−
23 1.25E− 01/= 1.31E− 01/− 1.26E− 01/= 9.24E− 04/− 5.05E− 05/− 1.69E− 08/= 6.80E− 08/−
24 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/− 6.80E− 08/−
+/= /− 1/7/16 0/4/20 2/3/19 1/1/22 1/2/21 1/2/21 1/1/22
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FIGURE 7: Friedman mean rank based on results in Table 2.
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issue are shown in Table 13. CHTWDO continues to
perform remarkably well and is the best algorithm over-
all. The determined optimal decision factors for the best
solution for each comparison approach are listed in
Table 14.

5.3. Spring Design. Wire diameter (d), the number of active
coils (N), and mean coil diameter (D) are the three parame-
ters for the spring system in this problem. The major objec-
tive of this topic is to determine how to optimize these factors
to reduce the weight of the coil. The spring system is sche-
matically shown in Figure 11, and the optimization model is
provided by Equation (24).

Consider: x¼ ½x1; x2; x3� ¼ ½d;D;N�;
Minimize: f ðxÞ¼ ðx3 þ 2Þx2x21;

Restriction condition:

h1 xð Þ ¼ 1 −
x32x3

71785x41
≤ 0;

h2 xð Þ ¼ 4x22 − x1x2
12566 x2x

3
1 − x41ð Þ þ

1
5108x21

≤ 0;

h3 xð Þ ¼ 1 −
104:45x1
x22x3

≤ 0;

h4 xð Þ ¼ x1 þ x2
1:5

− 1 ≤ 0;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð24Þ

Variables range: 0:05≤ x1 ≤ 2; 0:25≤ x2 ≤ 1:30; 2:00≤
x3 ≤ 15:

TABLE 7: Comparison of the average of WDO with a single improvement strategy.

Algorithm f1 f2 f3 f4 f5 f6 f7 f8

CHTWDO 1.00E− 300 1.00E+ 02 1.52E− 60 0 2.15E− 10 1.47E− 10 2.23E− 90 2.24E− 58
CWDO 3.69E− 175 1.08E+ 02 3.47E− 34 0 3.65E− 06 6.17E− 05 8.04E− 68 1.08E− 42
HTWDO 8.49E− 258 1.03E+ 02 1.07E− 45 0 5.72E− 09 2.42E− 08 1.48E− 84 8.94E− 56
TWDO 2.01E− 169 1.05E+ 02 6.35E− 32 0 1.03E− 08 1.75E− 06 2.73E− 72 5.74E− 48

f9 f10 f11 f12 f13 f14 f15 f16

CHTWDO 1.21E− 10 1.08E− 15 1.15E− 15 1.35E−15 8.08E− 13 −1.01E+ 02 −1.02E+ 01 3.30E− 04
CWDO 7.30E− 06 3.73E− 06 1.15E− 15 2.49E−10 3.41E− 07 −7.89E+ 01 −1.39E+ 01 3.88E− 04
HTWDO 1.78E− 10 4.02E− 12 1.15E− 15 7.42E−14 5.18E−12 −6.43E+ 02 −1.16E+ 00 3.41E− 04
TWDO 5.71E− 08 8.93E− 10 1.15E− 15 8.32E−12 2.39E− 10 −2.51E+ 01 −9.91E+ 00 3.79E− 04

f17 f18 f19 f20 f21 f22 f23 f24

CHTWDO 7.96E− 01 −1.03E+ 00 3.98E− 01 −3.86E+ 00 −3.26E+ 00 −1.02E+ 01 −9.87E+ 00 −9.87E+ 00
CWDO 9.30E− 01 −1.03E+ 00 4.65E− 01 −2.38E+ 00 −2.49E− 07 −1.36E+ 00 −1.39E+ 00 −3.88E+ 00
HTWDO 8.18E− 01 −1.03E+ 00 5.12E− 01 −3.42E+ 00 −3.15E− 12 −6.43E+ 00 −9.16E+ 00 −9.41E+ 00
TWDO 8.54E− 01 −1.03E+ 00 4.44E− 01 −3.32E+ 00 −2.39E− 10 −2.51E+ 01 −7.91E+ 00 −8.79E+ 00

The significance of bold values represent the optimal values of each test function.

TABLE 8: Comparison of standard deviations of WDO with single improvement strategy.

Algorithm f1 f2 f3 f4 f5 f6 f7 f8

CHTWDO 1.31E− 300 1.01E+ 02 2.23E− 60 0 3.11E− 10 1.32E− 10 2.81E− 90 2.89E− 58
CWDO 5.03E− 175 2.38E+ 02 5.48E− 34 0 7.65E− 06 8.47E− 07 7.15E− 49 3.27E− 46
HTWDO 7.84E− 258 1.03E+ 02 1.27E− 50 0 8.92E− 09 1.96E− 09 1.64E− 86 1.92E− 56
TWDO 2.37E− 169 1.75E+ 02 6.61E− 40 0 1.45E− 08 5.23E− 08 3.58E− 80 5.79E− 48

f9 f10 f11 f12 f13 f14 f15 f16

CHTWDO 1.00E− 10 0 0 0 6.14E− 16 1.02E+ 01 1.05E+ 01 2.04E− 04
CWDO 4.32E− 08 0 0 0 5.39E− 07 6.19E+ 01 4.79E+ 01 3.58E− 04
HTWDO 1.62E− 10 0 0 0 4.53E− 14 1.40E+ 01 7.86E+ 00 4.03E− 04
TWDO 6.27E− 09 0 0 0 8.62E− 12 1.41E+ 01 9.93E+ 00 5.26E− 04

f17 f18 f19 f20 f21 f22 f23 f24

CHTWDO 2.08E− 01 0 1.08E− 01 2.90E+ 00 1.09E+ 00 1.01E+ 00 2.05E− 02 7.13E− 01
CWDO 4.17E− 01 1.08E− 04 1.90E− 01 8.31E+ 00 5.62E+ 01 6.32E+ 01 1.69E− 01 3.58E− 00
HTWDO 3.62E− 01 7.38E− 06 1.26E− 01 6.04E+ 00 4.13E+ 00 2.17E+ 01 3.46E− 01 9.94E− 01
TWDO 6.27E− 01 6.92E− 05 1.58E− 01 1.72E+ 01 8.92E+ 00 3.41E+ 01 4.84E− 01 1.82E− 00

The significance of bold values represent the optimal values of each test function.
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FIGURE 8: Radar map of WDO with single improvement strategy.

TABLE 9: Compared with the test results between CHTWDO and other scholars’ improved WDO.

Function
CHTWDO IWDO MFWDO GA-WDO

Average Std Average Std Average Std Average Std

f1 1.00E− 300 1.31E− 300 1.64E− 175 3.72E− 175 9.68E− 258 8.13E− 258 7.32E− 169 2.67E− 160
f2 1.00E+ 02 1.01E+ 02 1.21E+ 02 4.61E+ 02 1.22E+ 02 2.86E+ 02 1.37E+ 02 4.92E+ 02
f3 1.52E− 60 2.23E− 60 3.42E− 57 1.48E− 54 6.30E− 49 5.82E− 48 7.65E− 32 6.88E− 30
f4 0 0 6.32E− 190 7.70E− 190 1.81E− 178 9.22E− 176 4.84E− 164 6.05E− 160
f5 2.15E− 10 3.11E− 10 3.65E− 08 5.51E− 06 5.72E− 11 3.08E− 10 1.03E− 09 9.25E− 09
f6 1.47E− 10 1.32E− 10 9.85E− 08 1.38E− 07 4.55E− 08 2.49E− 08 7.30E− 09 8.91E− 09
f7 2.23E− 90 2.81E− 90 8.74E− 88 6.23E− 87 8.58E− 90 6.46E− 90 9.21E− 92 7.78E− 90
f8 2.24E− 58 2.89E− 58 1.37E− 46 7.01E− 45 9.36E− 56 5.87E− 54 5.26E− 49 6.82E− 50
f9 1.21E− 10 1.00E− 10 8.27E− 07 5.24E− 08 6.22E− 10 1.74E− 10 4.96E− 09 9.54E− 09
f10 1.08E− 15 0 6.19E− 09 4.18E− 09 8.50E− 12 2.15E− 12 3.58E− 14 1.69E− 14
f11 1.15E− 15 0 9.53E− 15 8.47E− 14 1.45E− 15 9.66E− 15 1.02E− 15 6.95E− 14
f12 1.35E− 15 0 4.89E− 12 2.67E− 12 1.71E− 14 6.82E− 14 8.49E− 13 5.26E− 13
f13 8.08E− 13 6.14E− 16 3.62E− 09 2.16E− 09 8.49E− 12 8.73E− 12 6.75E− 12 5.65E− 12
f14 −1.01E+ 02 1.02E+ 01 −2.96E+ 01 6.63E+ 01 −1.30E+ 02 1.77E+ 02 −9.71E+ 02 5.46E+ 02
f15 −1.02E+ 01 1.05E+ 01 −9.40E+ 01 5.73E+ 01 −7.16E+ 00 7.55E+ 00 −9.21E+ 00 2.71E+ 00
f16 3.30E− 04 2.04E− 04 2.20E− 04 9.26E− 04 2.26E− 04 3.78E− 04 2.35E− 04 1.23E− 04

The significance of bold values represent the optimal values of each test function.

TABLE 10: The results of the proposed methodology.

Ratio f1 f2 f3 f4 f5 f6 f7 f8 Geomean

CHTWDO 5.32E− 01 1.35E+ 00 1.79E+ 00 7.18E− 01 1.21E+ 00 9.99E− 01 1.09E+ 00 1.47E+ 00 6.93 E+ 00
WDO 3.62E+ 01 4.46E+ 02 4.74E+ 01 8.01E+ 00 5.43E+ 01 4.51E+ 01 4.35E+ 01 5.67E+ 01 3.49E+ 01

f9 f10 f11 f12 f13 f14 f15 f16

CHTWDO 6.65E− 01 2.90E+ 00 2.91E+ 00 4.95E− 01 3.98E+ 00 5.72E− 01 3.31E+ 00 1.11E+ 00 —

WDO 5.15E+ 01 9.83E+ 00 9.32E+ 01 9.55E+ 00 2.51E+ 01 9.79E+ 00 3.58E+ 01 5.23E+ 01 —

f17 f18 f19 f20 f21 f22 f23 f24

CHTWDO 2.88E− 01 9.28E+ 00 4.08E+ 00 6.64E− 01 6.12E+ 00 5.22E− 01 6.44E+ 00 7.66E+ 00 —

WDO 3.62E+ 01 8.89E+ 01 8.14E+ 00 8.77E+ 00 7.27E+ 01 4.32E+ 00 7.58E+ 01 1.62E+ 01 —
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TABLE 11: Results of the welded beam design problem.

Algorithms Best Mean Worst Std Rank

CHTWDO 1.724527 1.9142249 2.1056474 0.1175823 1
WDO 1.724527 2.0246610 2.2271271 0.2375921 2
GWO 1.724910 1.9528761 2.1444739 0.1802125 4
WOA 1.733462 2.6589611 3.1094312 0.7801672 7
BA 1.726240 1.9964298 2.8731091 0.5209634 5
DA 1.879950 2.1363578 2.9451802 0.4904327 8
PSO 1.729843 1.9275891 2.4980137 0.3089531 6
IA 1.724852 2.2614932 2.8091743 0.4308599 3

The significance of bold values represent the optimal values of each test function.

TABLE 12: The value of the variables when each algorithm obtains the optimal value in the welded beam problem.

Algorithms
Optimal values for variables

Optimum cost
h l t b

CHTWDO 0.187156 0.187156 0.187156 0.187156 1.724527
WDO 0.187156 0.187156 0.187156 0.187156 1.724527
GWO 0.203687 0.203687 0.203687 0.203687 1.724910
WOA 0.205700 0.205700 0.205700 0.205700 1.733462
BA 0.203137 0.203137 0.203137 0.203137 1.726240
DA 0.182129 0.182129 0.182129 0.182129 1.879950
PSO 0.204368 3.856979 3.856979 3.856979 1.719843
IA 0.205729 0.205729 0.205729 0.205729 1.724852

The significance of bold values represent the optimal values of each test function.
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FIGURE 10: Schematic of the three-bar truss design.
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Table 15 shows the final results produced by each pro-
gram. Although WOA is comparable to CHTWDO in accu-
racy, it lags behind CHTWDO in mean and standard
deviation. In this example, compared to CHTWDO, the

results provided by the other algorithms are very inconsis-
tent at runtime. However, CHTWDO maintains excellent
robustness, which is critical in engineering applications.
The ideal variables for this problem are shown in Table 16.

TABLE 13: Results of the there-bar truss design problem.

Best Mean Worst Std Rank

CHTWDO 291.7723 291.7877 291.7899 0.02849 1
WDO 303.5433 303.5451 303.5905 0.02964 8
GWO 292.1323 292.1392 292.1399 0.03027 3
WOA 292.2584 292.2797 292.2842 0.03351 4
BA 292.5509 292.5610 292.6141 0.12096 6
DA 292.1058 292.9142 293.0172 0.54818 2
PSO 292.4797 292.5026 292.8821 0.49729 5
IA 292.8279 292.8301 292.8491 0.39421 7

The significance of bold values represent the optimal values of each test function.

TABLE 14: The value of the variables when each algorithm obtains the optimal value in the three-bar truss design problem.

Optimal values for variables
Optimum cost

h l t b

CHTWDO 0.187156 0.187156 0.187156 0.187156 1.724527
WDO 0.187156 0.187156 0.187156 0.187156 1.724527
GWO 0.203687 0.203687 0.203687 0.203687 1.724910
WOA 0.205700 0.205700 0.205700 0.205700 1.733462
BA 0.203137 0.203137 0.203137 0.203137 1.726240
DA 0.182129 0.182129 0.182129 0.182129 1.879950
PSO 0.204368 3.856979 3.856979 3.856979 1.719843
IA 0.205729 0.205729 0.205729 0.205729 1.724852

The significance of bold values represent the optimal values of each test function.
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FIGURE 11: Schematic of the spring design problem.

TABLE 15: Results of the spring design problem.

Algorithms Best Mean Worst Std Rank

CHTWDO 0.0127 0.0134 0.0142 0.0005 1
WDO 0.0130 0.0194 0.0203 0.0098 4
GWO 0.0130 0.0140 0.0161 0.0072 3
WOA 0.0127 0.0142 0.0198 0.0024 2
BA 0.0134 0.0153 0.0184 0.0016 5
DA 0.6408 0.7241 0.7803 0.2459 8
PSO 0.0598 0.0893 0.1035 0.0852 6
IA 0.0610 0.0704 0.0830 0.0281 7

The significance of bold values represent the optimal values of each test function.
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6. Conclusions and Future Work

In this paper, a brand-new CHTWDO algorithm is sug-
gested. First, using chaos theory, a more uniformly distrib-
uted beginning population is produced. To help choose the
best search direction and start convergence to the optimum
at the start of the search, the enhanced initial value can be
seen from the convergence curve. The mining and explora-
tion capacities are then improved using hyperbolic tangent
and T-distribution, respectively. To evaluate the effectiveness
of the enhanced algorithm, three different types of tests are
planned. The E&P capabilities of CHTWDO were improved
by the hyperbolic tangent and t distribution when compared
to the original BWO and the single strategy BWO. In addi-
tion, 24 reference functions are chosen to compare seven
conventional algorithms and seven innovative algorithms.
In terms of solving accuracy, stability, and convergence
speed, CHTWDO excels. For the purpose of evaluating the
efficacy of this strategy in resolving real-world optimization
issues, three traditional engineering examples are provided.
CHTWDO came in first place among all engineering exam-
ples, demonstrating the algorithm’s competitiveness in chal-
lenging search spaces. Future practical applications of the
CHTWDO method could include path optimization, feature
selection, parameter optimization, image processing, etc. The
convergence process has improved the central deviation
problem, but how to further reduce the proportion of central
deviation needs further study.
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