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The fluctuation of microgrid power flow leads to serious voltage problems at the point of common coupling (PCC). The
quantitative representation of the disturbance parameters of the voltage waveform at the PCC is necessary for evaluating and
controlling the impact of distributed generation in the microgrid on the power system. An improved atomic decomposition (IAD)
method is proposed to represent the disturbance parameters quantitatively and efficiently. Based on the disturbance characteristics
of the PCC voltage, a coherent atom dictionary composed of four subdictionaries is constructed to improve the decomposition
efficiency. To further improve the computational efficiency, an improved matching pursuits algorithm is proposed by alternating
the search way to extract the disturbance components in the atomic decomposition. Meanwhile, simulation results show that the
proposed IAD method has better antinoise and disturbance parameters quantization ability than wavelet transform.

1. Introduction

As the increased capacity of distributed generation in micro-
grids, power quality problems such as voltage deviation and
fluctuation are more serious at the microgrid-connected
point of common coupling (PCC) because of the fluctuation
and intermittency of power flow [1]. The mitigating equip-
ment, such as a static var compensator or static var genera-
tor, is usually installed at the PCC to improve the power
quality. But whether and how much-mitigating equipment
should be required to properly mitigate the power quality
problem economically. The answer needs a sound evaluation
of the PCC voltage influence by the microgrid. Evaluation of
the historically recorded disturbance is an effective approach
to estimating the PCC voltage influenced by the distributed
power and decides whether mitigation is required. Generally,
voltage profiles are expressed with root mean square (RMS)
values. The recording interval may be one or several minutes.
It is the average value of RMS in several cycles per recording
data. This description can reflect only the steady-state voltage
problems. Sometimes, we are concerned about the instantaneous

voltage waveform caused by the fluctuation of distributed
resources in microgrids, for example, the voltage sag wave-
form. In this circumstance, we need to record a piece of volt-
age disturbance waveform instead of presenting the RMS
values. Due to the disturbances that exist all the time inmicro-
grids; therefore, the recorded waveform is tremendous. If the
waveform is stored and transmitted in the form of sampling
data, the dimension is huge and hard to deal with. If the data
are modeled properly and only the modeling parameters are
stored and transmitted, the data dimension will be reduced
greatly [2–4].

At present, many experts have done a lot of research
on the analysis and detection of interference signals [5]. By
analyzing the recovery and reconstruction process of various
power-quality single disturbances and composite disturbance
signals, a set of acquisitionmethods suitable for power-quality
disturbance (PQD) signals was proposed in [6]. Long-term
gapless oscillographic analysis was proposed in [7] for effi-
cient real-time compression of data. Chen et al. [8] proposed
several methods to compress the synchrophasor and POW
data in a lossless manner. Literature [9] proposed a singular
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value decomposition-based method for the compression of
synchrophasor data, which provided high CR and preserved
the critical information of events and disturbances. In [10],
considering the patterns, potential applications, and associ-
ated precision to preprocess the time series, the lossless coding
considering the precision method was proposed.

Signal model parameter extractionmethods based on wave-
let transform (WT) or analysis methods combined with other
methods are widely used [11–13]. In this method, the distur-
bance signal is decomposed first, and then the residual coeffi-
cient and detail coefficient of each scale are applied to a
certain threshold to compress the feature data. In [11], a
wavelet denoising method based on variational mode decom-
position andmultiscale permutation entropy was proposed to
analyze vibration fault characteristics. Literature [12] pre-
sented a methodology to characterize voltage sags using fault
analysis and deep convolutional neural networks, and the
discreteWTwas used in signal processing. In [13], to separate
the interharmonic components, a set of new scaling filters and
wavelet filters with narrow transition bands was designed for
the undecimated wavelet packet transform.

Overall analysis, WT has good time–frequency domain
localization characteristics, which can provide the character-
istics of disturbance signals at different scales, but it is vul-
nerable to noise and has poor application effect on low-
frequency disturbances such as voltage sag and voltage swell.
Therefore, these methods cannot obtain the accurate model
parameters of the disturbance signals.

Atomic decomposition algorithm technology has been a
hot research topic in the field of signal processing in recent
years. This method originates from the idea proposed by Mallat
and Zhang to decompose signals on overly complete non-
orthogonal bases [14]. The atomic decomposition method
decomposes signals based on an over-complete dictionary,
which can improve the sparse representation of signals [15].
Sparse signal representation has good adaptability and high
flexibility in describing any complex signal based on atomic
decomposition, which is not limited by an orthogonal basis. It
provides an effective method for extracting features from com-
plex signals for fault diagnosis [16]. Tcheou et al. [17] analyze
the problem of using atomic decompositions for rate-distortion-
optimum compression of signals from electric power system
disturbances. They use different dictionaries corresponding to
different quantizers of atomic parameters. These quantizers can
provide near-optimum rate-distortion performance. Gao
et al. [18] propose an internal overvoltage identificationmethod
based on time–frequency atomic decomposition, which mainly
decomposes the overvoltage waveform using the atomic
decomposition algorithm and obtains effective atoms from
the waveform. Then, by combining corresponding recogni-
tion standards, the hierarchical identification of overvoltage
types is achieved. The experimental results show that the
algorithm has high accuracy and strong adaptability.

However, traditional atomic decomposition algorithms
used for PQD signals have problems with excessive computa-
tional resource consumption and low subdictionary selection
accuracy. The conventional atomic decomposition algorithm
for PQD signals is optimized by introducing a convolutional

neural networks-based subdictionary predictor inspired by
the PQD signal classification technique [19]. They verify that
this method can reduce the demand for computing resources
and improve the accuracy of subdictionary selection in signal
decomposition. To accurately extract fault features from noise
signals, Zhang et al. [20] propose an improved orthogonal
matching pursuit (MP) with an adaptive Gabor subdictionary.
It can significantly improve the efficiency of signal sparse
representation while ensuring accuracy. Agarwal et al. [21]
present a novel algorithm for the estimation of overcomplete
dictionaries. Under the probabilistic model of generating data
as well as assumptions on the coefficients and dictionaries,
it can be guaranteed that such a procedure approximately
recovers the unknown overcomplete dictionary.

In this paper, we proposed an improved atomic decom-
position (IAD) method to model the voltage disturbances in
microgrids. The contribution of this work is as follows:

(1) An efficient disturbance modeling method based on
atomic decomposition is presented to extract the
model parameters.

(2) An improved MP algorithm is proposed to decrease
computation quantities by alternating the search way
of selecting the optimal atoms.

(3) The coherent atom dictionary is constructed accord-
ing to the characteristics of the PCC voltage distur-
bance to improve the decomposition efficiency.

After the introduction, the principle of atomic decompo-
sition, as well as the expression method for disturbances with
atoms, is discussed in Section 2. Section 3 discusses the con-
struction of the coherent atom dictionary and the improved
MP algorithm. In Section 4, the performance of the proposed
IAD method is evaluated with simulations. Finally, the con-
clusions are listed in Section 5.

2. Modeling of Signals with Atoms

2.1. Principle of Atomic Decomposition.DictionaryD is defined
as a set of all possible basic items representing the signal
waveforms. In this paper, the signals are voltage disturbances
collected at the PCC of microgrids. D is called a dictionary of
atoms. The ideal signal bX can be represented by the linear
combination of elements gγðmÞ selected in D.

X ¼ ∑
n

m¼1
αmgγ mð Þ þ γmX

bX ¼ ∑
n

m¼1
αmgγ mð Þ

8>><
>>: ;  gγ mð Þ 2 D; ð1Þ

where gγðmÞ is the atoms of dictionary D, and γðmÞ : is an
indexing parameter associated with a particular dictionary
element in D. αm is the amplitude of atom gγðmÞ;m¼ 1; 2;…;
n, and n is the number of atoms. In neglecting the residual
parts, the analyzed signal X is approximately equal to bX .
Therefore, the practical signal X can be expressed approxi-
mately by the combination of gγðmÞ.
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Usually, the dictionary D is over-complete to ensure that
any signal can be represented by an optimal set of elements
selected adaptively, resulting in the sparsity of the expression.
Atomic decomposition differs from other signal transfor-
mations, for it permits the linear dependency among the
selected atoms. Because the decomposition in the over-complete
dictionary is not unique, it permits the selection with different
atoms to compose X, therefore, leading to sparse and compact
representation. For a specific signal, the best expansion func-
tion can be selected adaptively from an over-complete set of
expansion functions according to the signal characteristics.
Such expansion functions are more accurate to represent the
signal. The expanded functions in the over-complete set are
atoms, and the over-complete set composed of atoms is called
the atomic dictionary. Atoms are generated by stretching,
translating, and modulating from a window function gðtÞ :.

The key issue in atomic decomposition is how to search the
energy factor αm and the atom gγðmÞ. Here, we accomplish the
search by using the MP algorithm described in Section 2.2.
The atoms in the dictionary are usually obtained by scaling,
transforming, and modulating some special functions. One of
the common methods is to use Gabor as the mother function
to form the Gabor atoms, as shown in Equation (2).

gγ tð Þ ¼ Kγffiffi
s

p g
t − τ

s

� �
cos ξt þ ϕð Þ; ð2Þ

where gðtÞ : ¼ 2
1
4e−πt

2
is the Gaussian window, γ¼ðs; τ; ξ;ϕÞ:

is the parameter group of atoms, s is the scale factor, τ is the
translation factor, ξ is the frequency modulation factor, and
ϕ is the phase. The phase ϕ2 ½0; πÞ : and Kγ is assigned to
make kgγðtÞjj: ¼ 1.

Theoretically, the denser the atom distributions in the
dictionary get, the more concise the signals are represented,
while the dictionary gets larger. The overlarge dictionary is
adverse to computation. It is impossible to search in a dictio-
nary with infinite atoms. Therefore, parameters of the atoms
should be discrete sampled to obtain a finite while redundant
dictionary. The discretization of atom parameters obeys that
γ¼ð2j; 2jp; 21−jkπ;ϕÞ :, where j; p; k2Z are the integers,ϕ2R
is a real number. Thus, γ can be uniquely represented in
discrete form as γs ¼ðj; p; k;ϕÞ: 2Z3 ×R, where j dominates
the atom scaling, p dominates time shift, and k dominates the
atom modulation. Let the length of the signal is N , then the
atoms in the finite discrete dictionary are expressed as follows:

grd nð Þ ¼ gj n − p2jð Þcos nkπ21−j þ ϕð Þn¼ 0; 1;…;N − 1

gj nð Þ ¼

δ jð Þ j¼ 0

Kγdg n2−jð Þ j 2 1; L½ Þ
1ffiffiffiffi
N

p j¼ L

8>>><
>>>:

;

ð3Þ

where L¼ log2 N; j2 ½0; L� :; p2 ½0; 2−jN� :; k2 ½0; 2jÞ :. The phase
parameterϕ is unnecessary to be searched separately; it can be
derived from parameters ½s; τ; ξ� : depicted in [22].

2.2. MP Algorithm. Implementation of atomic decomposi-
tion directly through optimization is a hard problem. As a
suboptimal scheme, the MP algorithm is usually used in the
atomic decomposition [18]. MP algorithm is a greedy itera-
tive algorithm. In each iteration, the atom that best matches
the signal or the residual component of the signal is extracted
from the atomic dictionary. The signal is represented as a
linear combination of the best-matched atoms. The number
of iterations or the energy of the residual signal is restricted
as the end condition of the decomposition.

Suppose the signal to be analyzed is f ; f 2H,H is a finite-
dimensional Hilbert space. D is an over-complete atomic
dictionary, D2H;gγ is an atom of D, γ is the atomic param-
eter group, Γ is the set of parameter groups, γ 2Γ. The atoms
are usually normalized, that is, kgγjj : ¼ 1. First, select the atom
gγð0Þ fromD that best matches the signal f, and the gγð0Þ satisfy
as follows:

f ;gγ 0ð Þ
D E��� ���¼max

γ2Γ
f ;gγ

D E��� ���: ð4Þ

Equation (4) h ; i : represents the inner product of the two
quantities. Signal f is divided into two parts: the component
on the optimal atom gγð0Þgγð0Þ and the residual component,
namely,

f ¼ f ;gγ 0ð Þ
D E

gγ 0ð Þ þ r1f ; ð5Þ

where r1f is the residual component after the 1st atomic
decomposition of signal f. The residual components will be
further extracted to gain more atomic components. The iter-
ation is as follows:

rmf ¼ rmf ; gγ mð Þ
D E

gγ mð Þ þ rmþ1
f ; ð6Þ

gγðmÞ satisfy as follows:

rmf ;gγ mð Þ
D E��� ���¼max

γ2Γ
rmf ;gγ

D E��� ���: ð7Þ

After n iterations, let the residual component is rnf , then
the signal f can be expressed as follows:

f ¼ ∑
n−1

m¼1
rmf ;gγ mð Þ

D E
gγ mð Þ þ rnf : ð8Þ

Therefore, through n iterations, signal f can be repre-
sented by a linear combination of n atoms, adding the error.
The error is the residual component after n iterations. In
discrete forms, if the length of the signal is finite and n
increases infinitely, the krnf jj: decays exponentially to zero.
In general, the main components of the signal can be repre-
sented very sparse by the atoms compared to the signal
length.
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3. Improvement of Atom Decomposition

3.1. Construction of Damped Sinusoidal Coherent Atoms. The
voltage disturbances in microgrids connected to PCC are
mainly the fundamental component. According to the prin-
ciple of atomic decomposition, if the atoms have similar
structures to the analyzed signal, the performances of atomic
decomposition, such as the efficiency and the accuracy will
get better. This kind of atomic dictionary is specially con-
structed for a certain type of signal and is called the coherent
atom dictionary [21]. In this paper, we employ damped sinu-
soidal atoms to build the coherent atom dictionary instead of
using the Gabor dictionary. The other reason for introducing
damped sinusoidal atoms to substitute Gabor atoms is that
the parameters of Gabor atoms have no physical significance.
This is a disadvantage to evaluating the disturbances.

The expression of the signal with damped sinusoidal
atoms is shown in Equation (9).

f tð Þ ¼ ∑
Q−1

q¼0
Aqcos 2πfqt þ ϕq

À Á
e−ρq t−tsqð Þ × u t − tsq

À Á
− u t − teq

À ÁÂ Ã
;

ð9Þ

where Aq is the amplitude of damped sinusoidal atoms, fq is
the frequency, ρq is the damping factor, ϕq is the phase, uðtÞ :

is the unit step function, tsq and teq are the component start-
ing and ending time, respectively.

The key issue of this dictionary is that the discrete atom
parameter group (Aq; fq; ρq;ϕq; tsq; teq) of Equation (9) needs
to be determined. Here, we use Gabor atoms to produce the
damped sinusoidal atoms. The procedure is shown in Figure 1.

Step 1. Decompose the signal in the Gabor dictionary
with the MP algorithm to acquire parameters ½s;  ξ; u� :.

Step 2. Deduce approximately the damped sinusoidal
atoms from Gabor ones obeying the steps as follows:

(1) Determine the position of the greatest inner product
of Gabor atoms and the signal or residuals. If the
position lies on the right-hand of the center τ of
the Gauss window function, the sinusoidal atoms
are attenuated. Otherwise, if the position lies on the
left-hand, the sinusoidal atoms are divergent.

(2) Calculate the initial estimated value of the damped
coefficient ρ based on the time scale s. If the sinusoi-
dal atoms are attenuated, ρ¼

ffiffiffiffiffiffiffiffiffiffiffi
π=2s3

p
. On the con-

trary, if the sinusoidal atoms are divergent, ρ¼
−

ffiffiffiffiffiffiffiffiffiffiffi
π=2s3

p
. Such a treatment can maintain the equiv-

alence between the damped sinusoidal atom and the
Gabor atom in the central point τ. Note that ρ is not
the ultimate value; it should be optimized latterly.

(3) The starting and ending times of the sinusoidal atom
were obtained using the method as [22].

Step 3. Optimize the parameters to acquire the ultimate
sinusoidal atoms. Here, the Pseudo-Newton algorithm is
occupied. The detailed processes are as follows:

(1) Increment the parameters ½ρ; ξ; u�: in turn. The incre-
mental quantities are assigned to half the parameter
values.

(2) Build atoms based on the newly created parameters
and obtain the inner products for each atom with
the residual of the approximate damped sinusoidal
atoms. If one of the products is increased, then sub-
stitute the original atom with the new one and con-
tinue the next judgment. Otherwise, reduce the
incremental value of the atom parameters by 1/4
and continue searching.

(3) If the incremental quantity of the product is lower than
a given threshold, then terminate the current optimiz-
ing process and optimization for the next parameter.

Get damped sinusoids
initial atoms [ρ, ξ, u]

Yes

No

Voltage signal

Residual
energy < threshold

MP with Gabor dictionary

Derive  damped sinusoids

Residual component

Start

Get Gabor atoms
[s, ξ, τ]

Atoms [ρ, ξ, u] optimized
  by Pseudo-Newton

Best atom parameters
[Aq,  fq, ρq, ϕq, tsq, teq]

End

FIGURE 1: The procedure of solving damped sinusoidal atoms
parameters based on MP.
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Through optimizations, the discrete parameters of atoms
tend to be denser. The over-complete characteristics are
ensured. The complex forms of Gabor atoms are advanta-
geous to real signals in practice that the phases are uncon-
sidered temporarily. After ½s;  ξ; u� : are determined, the phase
can be derived from them. This will simplify the computa-
tion greatly.

3.2. Categories of Atoms in the Coherent Dictionary. As dis-
cussed above, the atoms are permitted to construct according
to the characteristics of the specific signal. The algorithm is
presented to produce damped sinusoidal atoms from Gabor.
Damped sinusoidal atoms are more suitable for voltage dis-
turbances of microgrids connected to PCCs. Considering the
possible behavior of voltage disturbances, we construct dif-
ferent categories of detail subdictionaries to suit for different
behaviors of disturbances such as voltage sags, voltage surges,
voltage interruptions, and so on. The categories of subdic-
tionaries are mentioned in the following sections.

3.2.1. Fundamental Subdictionary of Atoms. The fundamen-
tal component is usually the most predominant one in the
disturbances. The fundamental subdictionary of atoms is
constructed, as shown in Equation (10).

g1γ1 tð Þ ¼ Kγ1 cos ω1t þ ϕ1ð Þ; ð10Þ

where γ1 ¼ ½ω1;ϕ1� :, ω1 is the angular frequency of the fun-
damental component, ϕ1 is the phase, and Kγ1 is the coeffi-
cient that makes kg1γ1ðtÞjj : ¼ 1. The length of signal f ðtÞ : is N,
then the parameters are discretized as γ1 ¼ ½2πj=N; 2πp=N� :,
j2 ½1;N� :, p2 ½0;N − 1� :.

Let the sampling rate of the signal f ðtÞ : be fs, the relation-
ship between the frequency f of the signal f ðtÞ: and discrete
angular frequency ω is as follows:

f ¼ fsω= 2πð Þ: ð11Þ

Let g11γ1ðtÞ : ¼ cos ðω1tþϕ1Þ :, then Equation (10) can be
written as follows:

g1γ1
tð Þ ¼ Kγ1g

1
1γ1

tð Þ: ð12Þ

Then

Kγ1 ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g11γ1 tð Þ;g1

1γ1
tð Þ

D Er
: ð13Þ

According to the MP algorithm, a best-matching atom
g1γ1ðtÞ : can always be found. Let the best matching parame-
ters ω and ϕ of the fundamental component are ω1 and ϕ1,
and the sinusoid is expressed with f1ðtÞ :, then

f1 tð Þ ¼ Ag11γ1 tð Þ; ð14Þ

where A is the amplitude of the fundamental component
f1ðtÞ :.

According to Equation (5),

f1 tð Þ ¼ f tð Þ;g1γ1 tð Þ
D E

g1γ1 tð Þ: ð15Þ

Substitute Equations (12) and (14) into Equation (15) to
obtain Equation (16).

A¼ Kγ1 f tð Þ; g1γ1 tð Þ
D E

: ð16Þ

3.2.2. Fundamental-Like Subdictionary of Atoms. For voltage
disturbances such as voltage sag, voltage rise, and voltage
interruption, their frequencies are still the fundamental fre-
quency, but their phases are altered. Here, voltage sag, voltage
rise, and voltage interruption are referred to as fundamental-
like disturbances. The fundamental-like subdictionary of atoms
is shown in Equation (17).

g2γ2 tð Þ ¼ Kγ2 cos ω1t þ ϕ2ð Þ u t − ts2
À Á

− u t − te2
À ÁÂ Ã

;

ð17Þ

where ω1 is the angular frequency of the fundamental com-
ponent obtained by the MP algorithm, γ2 ¼ ½ϕ2; ts2 ; te2 � :, ϕ2 is
the phase of the fundamental-like disturbance, ts2 and te2 are
the starting time and ending time of the fundamental-like
disturbance, respectively, Kγ2 is the coefficient that makes
kg2γ2ðtÞjj : ¼ 1; uðtÞ : is the unit step function.

When the fundamental-like disturbance is in phase with
the fundamental component, the disturbance is a voltage
rise; when the fundamental-like disturbance is in opposite
phase with the fundamental component, it is a voltage sag or
interruption. Otherwise, it is a voltage transient. The param-
eters are discretized as γ2 ¼ ½2πq=N; ns2 ; ne2 � :; q2 ½0;N − 1�:;
0≤ ns2<ne2 ≤N − 1. The MP algorithm can still be used to
extract the fundamental-like disturbance. The amplitudes
can be obtained by substituting Equation (16) with the
parameters. The start time ts and end time te with the dis-
crete start point ns and end point ne are as follows:

ts ¼ ns=fs; ð18Þ

te ¼ ne=fs: ð19Þ

3.2.3. Pulse Atomic Dictionary. The voltage notch and voltage
spike disturbances with short duration are referred to as
pulse disturbances. The pulse subdictionary of atom is shown
in Equation (20).

g3γ3 tð Þ ¼ Kγ3 u t − ts3
À Á

− u t − te3
À ÁÂ Ã

; ð20Þ

where γ3 ¼ ½ts3 ; te3 � :; ts3 and te3 are, respectively, the start time
and end time of the pulse disturbance, and Kγ3 is the coeffi-
cient to make kg3γ3ðtÞjj : ¼ 1. Pulse disturbances are also
extracted through the MP algorithm. Their amplitudes can
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be obtained by substituting Equation (16) with the parame-
ters. As the pulse atoms in the subdictionary are expressed in
positive, they are voltage spikes when the best-matched max-
imum inner product is positive. Otherwise, they are voltage
notches when the best-matched maximum inner product is
negative. It is generally believed that the duration of a voltage
notch or voltage spike is less than 1/4 fundamental cycle.
Therefore, the parameters can be discretized as γ3 ¼ ½ns3 ;
ne3 �:, 0≤ ns3<ne3 ≤N − 1, and 0≤ ne3 − ns3 ≤ fs=ð4f Þ :.

3.2.4. Oscillatory Subdictionary of Atoms. Voltage distur-
bances such as voltage harmonics, interharmonics, attenu-
ated oscillations, and divergent oscillations are referred to
as oscillatory disturbances. Oscillatory atoms are shown in
Equation (21).

g4γ4 tð Þ ¼ Kγ4 cos ω4t þ ϕ4ð Þe−ρ4 t−ts4ð Þ u t − ts4
À Á

− u t − te4
À ÁÂ Ã

;

ð21Þ

where γ4 ¼ ½ω4;ϕ4; ρ4; ts4 ; te4 � :;ω4 is the angular frequency of
the oscillation, ϕ4 is the phase, ρ4 is the attenuation coeffi-
cient, ts4 and te4 are the start time and end time, respectively,
Kγ4 is the coefficient to make kg4γ4ðtÞjj : ¼ 1. If ρ4 ¼ 0, the
oscillatory disturbance is harmonic or interharmonic; if
ρ4>0, the oscillatory disturbance is the attenuated oscillatory
disturbance; and if ρ4<0, the oscillatory disturbance is a
divergent oscillatory disturbance. The oscillatory distur-
bances can be extracted through the MP algorithm as
well. Their amplitudes can be obtained by substituting
Equation (16) with the parameters. The discretized parame-
ters are as γ4 ¼ ½2πw=N; 2πs=N;m=N; ns4 ; ne4 � :;  w2 ½1;N� :;
 s2 ½0;N − 1� :;  m2 ½−N;N� :;  0≤ ns4 <ne4 ≤N − 1. The rela-
tionship between the attenuation coefficient ρ and the dis-
crete attenuation coefficient ρ0 is as follows:

ρ¼ ρ0fs: ð22Þ

Among the four coherent subdictionaries, the fundamen-
tal subdictionary and the fundamental-like subdictionary are
attributed to the oscillatory subdictionary in essence. They
are listed separately mainly to reduce the computation and
improve the accuracy of signal extraction. If the fundamental
subdictionary is triggered merely, only two parameters are
searched in the iteration. If the fundamental-like subdiction-
ary is triggered, three parameters should be searched in the
iteration. If the oscillatory subdictionary is triggered, five
parameters should be searched. When the abovementioned
atoms are used in turn, the computation will be reduced
greatly. The fundamental component in the signal is extracted
first by the fundamental atoms to remove the best-known
component. Then, the residual components are extracted by
the other atoms.

3.3. Improvement of MP Algorithm. To reduce the amount of
computation further, the MP algorithm is improved by
searching the parameters step by step and searching manners
from rough to fine. The following takes the MP algorithm in
the fundamental-like atoms as an example.

For γ2 ¼ ½ϕ2; ns2 ; ne2 � :, a step-by-step search is taken for
ϕ2; ns2 and ne2 . First, search ϕ2 and ns2 at the same time, and
implement rough search first and fine search second for both
ϕ2 and ns2 . The procedure is, dividing the sampling points N
into M equal parts, let ϕ0

2 ¼ 2πi=M (i2 ½0;M − 1� :, 0≤ n0s2 ≤
M − 1) to calculate with MP and get the rough matching
parameters ϕ0

2λ and n
0
s2α (λ2 ½0;M − 1� :; α2 ½0;M − 1� :). Search

for ð2N=M − 1Þ: times by step 2π=N in the range ½ϕ0
2λ −

2πðN=M − 1Þ=N;ϕ0
2λ þ 2πðN=M − 1Þ=N� : in fine search to

obtain the best matching parameter ϕ2r (r 2 ½0;N − 1� :). Simi-
larly, search for ð2N=M − 1Þ: times in the range ½n0s2α −ðN=M − 1Þ; n0s2α þðN=M − 1Þ� : to obtain the best matching
parameter ns2β (β2 ½0;N − 1� :). For ne2 , it is obliviously after
ns2 . In case that ns2 has been acquired, ne2 will be in the
interval of ½ns2β;N − 1� :, the searching interval is reduced.
Therefore, the best matching parameter ne2θ (θ2 ½0;N − 1� :)
needs to be searched in the interval of ½ns2β;N − 1� : merely.
The computational complexity is downgraded. Through
improvement of the MP algorithm, the computational
complexity is ½M2 þð2N=M − 1Þ2� : þðN − ns2βÞ :, while the
computational complexity using the direct MP algorithm
is N2ðN − 1Þ :=2. If N is 1,024 points and M is 128, the
computational complexity of the direct MP algorithm is
536346624. The computational complexity of the presented
MP algorithm is ð17 633− ns2βÞ :, which is downgraded greatly.

The orders to search the parameters are different also for
different components. For the fundamental component, ω1
should be searched first and then ϕ1. For the impulsive dis-
turbances, ns3 and ne3 should be searched simultaneously.
For the oscillatory disturbances, the orders are ω4 is searched
first, and ϕ4 and ns4 is simultaneously searched following,
then ρ4 is searched, ne4 is searched finally. In each step, the
parameters are searched from rough to fine.

4. Case Studies

The proposed modeling method is applied to microgrids
connected disturbance signals. The sampling frequency is
3,200Hz, the fundamental frequency is 50Hz, and the sam-
pling signal length is 1,024 points. The performance of the
proposed IAD method is evaluated by the modeling effi-
ciency Em, normalized mean-square error NMSE and energy
ratio Npower, respectively. The definition of each indicator is
as follows:

Em ¼ La
Ls

; ð23Þ

NMSE ¼
f nð Þ − ef nð Þ

 2
f nð Þk k2 ; ð24Þ

Npower ¼
ef nð Þ

 2
f nð Þk k2 ;

ð25Þ

where La is the number of parameters of the total atoms to
represent the signal, Ls is the length of the original signal,

6 Mathematical Problems in Engineering



f ðnÞ : is the original signal, and f̃ ðnÞ : is the reconstructed
signal with atom decomposition.

Figure 2 shows the schematic diagram of disturbance
parameter modeling based on IAD. The IAD algorithm is
used to decompose several typical voltage disturbance sig-
nals at the microgrid-connected PCC. Then, the voltage
disturbance parameters are determined based on the best
atomic parameters, and the performance of the proposed
method is evaluated through evaluation indicators Em;
NMSE;Npower.

4.1. Voltage Sag. Figure 3(a) shows the original voltage sag
signal with a 50% drop, which was decomposed by the IAD
method with only four iterations to obtain the atoms’ com-
ponents, as shown in Figure 3(d)−3(g), and the parameters
are listed in Table 1. The reconstructed signal and residual

are shown in Figures 3(b) and 3(c), respectively. As can be
seen from Figure 3 and Table 1, the fundamental component
and voltage sag disturbance component in the signal can be
extracted using the atomic library and matching tracking
algorithm. Therefore, the atomic algorithm can accurately
decompose the components of the signal and has a good
signal reconstruction ability.

Voltage
disturbance signal

Improved atomic decomposition algorithm

Improved MP
algorithm

Atomic
parameters

optimization

Best atomic
parameters

Disturbance parameters
evaluation Em, NMSE, Npower

Coherent dictionary
of atomic 

Disturbance parameters modeling

FIGURE 2: The schematic diagram of disturbance parameter modeling based on improved atomic decomposition.
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FIGURE 3: Decomposition results of IAD for voltage sag signal: (a) the original sag signal; (b) the reconstructed signal; (c) the residual component;
(d) the first atomic component; (e) the second atomic component; (f) the third atomic component; (g) the fourth atomic component.

TABLE 1: Decomposed parameters of voltage sag.

Atom numbers Aq (V) ρq fq (Hz) ϕq (rad) tsq (s) teq (s)

1 0.868 0.000 50 0.000 0.000 0.320
2 0.432 0.000 50 0.000 0.068 0.239
3 0.197 0.000 50 3.142 0.070 0.320
4 0.213 0.000 50 0.000 0.000 0.240
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FIGURE 4: Decomposition results of IAD for voltage sag signal with 20 dB noise: (a) the original sag signal with SNR of 20 dB; (b) the
reconstructed signal; (c) the residual component.
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FIGURE 5: Decomposition results of WT for voltage sag signal with 20 dB noise: (a) the original sag signal with SNR of 20 dB; (b) the
reconstructed signal; (c) the residual component.

TABLE 2: Evaluation indicators comparison for voltage sag signal.

Methods SNR Em NMSE Npower

IAD
Pure signal 1/43.5 0.0008 0.998

30 dB 1/43.5 0.0008 0.999
20 dB 1/43.5 0.0063 0.991

WT
Pure signal 1/13.1 0.0005 0.994

30 dB 1/12.7 0.0011 0.991
20 dB 1/12.5 0.0013 0.989
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To verify the performance of the proposed IAD method
in a noisy environment, we added 20dBGaussianwhite noise to
the above voltage sag signal, which was decomposed by the IAD
method. The decomposition results are shown in Figure 4(a),
which shows the original sag signal with 20 dB noise, which is
decomposed and reconstructed to obtain the reconstructed sig-
nal, as shown in Figure 4(b). There is little difference between

Figures 3(b) and 4(b), which shows that this method has good
antinoise and signal reconstruction ability.

In addition, the WT method is used for comparison.
The decomposition results are shown in Figure 5. The
reconstructed signal by WT is shown in Figure 5(b), which
describes that the waveform has some distortion compared
with Figure 4(b). Meanwhile, the amplitude of the residual
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FIGURE 6: Decomposition results of IAD for combined voltage sag and momentary interruption signal: (a) the original signal; (b) the
reconstruction signal after IAD; (c) the residual component of reconstruction.
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FIGURE 7: Decomposition results of WT for combined voltage sag and momentary interruption signal: (a) the original signal; (b) the
reconstruction signal after WT decomposition; (c) the residual component of reconstruction.
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component is higher than that of the IAD method, as shown
in Figure 4(c).

In order to compare the disturbance modeling perfor-
mance of the proposed method, the evaluation indicators Em;
NMSE;Npower of IAD and WT are shown in Table 2. The
results exhibit that the IAD has very high modeling efficiency
Em and the normalized mean-square error NMSE and the
energy ratio Npower are similar with WT.

4.2. Combined Signals with Voltage Sag and Momentary
Interruption. The voltage sag and momentary interruption
combined signal is generated by the electromagnetic tran-
sient program to simulate a short circuit fault, as shown in
Figure 6(a). The combined signal was decomposed by the
IAD method with five atomic iterations; the residual energy
is very low, as shown in Figure 6(c). Figure 6(b) shows the
reconstructed signal, which can accurately model the com-
bined signal.

Similarly, the decomposition result of WT for the
combined voltage sag and momentary interruption signal is
shown in Figure 7. The reconstruction signal after WT decom-
position still has some distortion in the sag waveform, as shown
in Figure 7(b). In addition, the amplitude of the residual com-
ponent is higher than that of the IAD method. This indicates
that the disturbance signal modeling performance of WT is
weaker than the IAD method proposed in this paper.

The performance of the proposed method is further
reflected through the evaluation indicators Em;NMSE;
Npower. Table 3 shows the indicators for combined signals
with the IAD method and the WT. Similarly, the modeling
efficiency Em of IAD is higher than that of WT, and the
normalized mean-square error NMSE and the energy ratio
Npower of IAD are also better than that of WT.

In addition, the IAD uses analytical parameters to repre-
sent the disturbance signals, which is independent of signal
length and greatly improves the modeling efficiency. Fur-
thermore, the atomic decomposition represents signals in a
linear combination form, which is more suitable for different
types of disturbance signals.

5. Conclusions

This paper proposed an IAD method for modeling voltage
disturbances of the microgrids PCC. The proposed method
can quickly and accurately quantify the voltage disturbance
parameters, which can provide a basis for the voltage distur-
bance assessment and management in time. The coherent

atom dictionary is constructed according to the characteris-
tics of the PCC voltage disturbance of wind farms to improve
the decomposition efficiency. In addition, an improvedmatch-
ing pursuit algorithm (IAD) is proposed to decrease compu-
tation quantities by alternating the search way of selecting the
optimal atoms. Case studies showed that the proposed IAD
method can achieve efficient and accurate modeling for volt-
age disturbances. Meanwhile, the evaluation indicators Em;
NMSE;Npower of IAD are better than that of WT.

The proposed measures in this paper, such as the damped
sinusoidal atoms, the improved MP, and the subdiction-
aries, are designed specifically for PCC voltage disturbances
modeling of microgrids to simplify the computations of
atomic decomposition. However, the coherent atom dictio-
nary is not over-complete, and it is necessary to further
study how to construct the coherent atom dictionary of
voltage fluctuation and flicker, so that it can be more widely
used in various voltage disturbance problems caused by
microgrid connections.
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