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In this paper, we propose and analyze the dynamical behaviors of two opinion formation models, one with leadership and the other
without leadership. The two proposed models are formulated by fractional differential equations (FDEs) with the frame of the new
generalized Hattaf fractional (GHF) derivative. The stability in the sense of Mittag–Leffler is rigorously established for both models.
The convergence of agents’ opinions to the consensus opinion is fully investigated. Numerical simulations are given to illustrate the
analytical results.

1. Introduction

Opinion formation is a complex process that involves the
development or change of beliefs, opinions, or viewpoints
on a specific subject. It is influenced by various factors such
as education, personal experience, culture, media, social inter-
actions, and external influences. In the field of education,
formal education acquired in schools and universities can
have a significant impact on people’s opinions on various
issues. The media also plays a major role in opinion forma-
tion, as the information and messages disseminated by the
media can influence an individual’s perception of a particular
issue. Social interactions, including those with family, friends,
work colleagues, and the community, can also influence opin-
ion formation. Additionally, the way opinions are formed can
be influenced by the culture in which an individual resides.
Furthermore, external influences such as opinion leaders,
celebrities, interest groups, political groups, educational
campaigns, and advertising can also play a role in shaping
opinions [1–7].

Opinion formation models have been established in the
discipline of mathematical modeling to describe the dynam-
ics of how opinions arise and change over time within a
population, taking into account factors, such as personal
experiences, social interactions, and external sources of infor-
mation. Such models are highly relevant in various fields such
as politics [8], consumerism [9], and social media [10–12], as
they provide organizations with valuable insights into public
opinion and enable them to adapt their strategies accordingly.
For instance, Degroot [9] presented the initial agent-based
opinion formation model to discuss the importance of con-
sensus in group decision-making processes, he suggested dif-
ferent approaches to achieving it and discussed methods of
voting, compromise, negotiation, and the use of mathematical
and statistical models. The author also pointed out that the
appropriate method depends on the specific context of the
group decision-making situation. Chen et al. [13] studied a
fractional-ordermemristor neural networkmodel that describes
the effects of memristor memory and nonlinearity. They
proved that the system is Mittag–Leffler stable. Furthermore,
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they proposed synchronization conditions for neural mem-
ory networks. Almeida et al. [14] used the theory of fractional
differential equations (FDEs) to describe the opinion forma-
tion model and the proposed leader–follower control method.
They showed that the proposedmethod canminimize the gap
between the opinions of group members and the leader while
limiting the influence of the leader on the opinions of other
members. In [15], the authors proposed a leader–follower
control approach to a fractional opinion formation model,
in which the leader is responsible for directing the opinion
formation of group members. The goal of the proposed
approach was to minimize the discrepancy between the opi-
nions of group members and the leader while limiting the
influence of the leader on the opinions of other members.
Somjaiwang and Ngiamsunthorn [16] investigated the expo-
nential stability of a leader–follower opinion formation model
based on a nonlinear system of FDEs.

It is important to note that the FDEs used in [13–16]
have been formulated by the classical Caputo [17] fractional
derivative. To avoid the singularity of such derivative, Caputo
and Fabrizio [18] replaced the singular kernel with an expo-
nential kernel. The version of Caputo–Fabrizio (FC) derivative
was extended by Atangana and Baleanu [19] to Mittag–Leffler
kernel. In 2020, Hattaf [20] developed a new generalized Hattaf
fractional (GHF) derivative that includes the CF derivative [18]
and Atangana–Baleanu (AB) derivative [19]. This study aims to
extend the exponential stability defined in [21] and used in [16],
as well as theMittag–Leffler stability introduced in [13] to FDEs
with GHF derivative.

The second objective of this work is to propose two
mathematical models incorporating the new GHF derivative
for opinion formation with and without leadership. In order
to accomplish this, the fundamental ideas and the develop-
ment of the two fractional models are covered in Section 2.
The Mittag–Leffler stability of the fractional model in the
absence of leadership is investigated in Section 3. The stability
and consensus of the second fractional model with leadership
are established in Section 4. Three examples are provided in
Section 5 to illustrate the analytical results. Finally, we end our
current paper with a conclusion and some future works.

2. Basic Concepts and Models Formulation

In this section, we introduce the essential concepts and for-
mulate models both with and without leadership.

Definition 1 (Hattaf [20]). The GHF derivative of order η in
the Caputo sense of the function uðtÞ: with respect to the
weight function wðtÞ : is given by the following equation:

CDη;θ;σ
a;t;wu tð Þ ¼ GHF ηð Þ

1 − η

1
w tð Þ

Z
t

a
Eθ −μη t − sð ÞσÂ Ã d

ds
wuð Þ sð Þds;

ð1Þ
where η2 ½0; 1Þ, θ, and σ are both positive, while u belongs to
the space H1ða; bÞ:, w2C1ða; bÞ: with w>0 on ½a; b�:;  GHFðηÞ :

is a normalization function such that GHFð0Þ : ¼GHFð1Þ : ¼ 1;
 μη ¼ η

1−η and EθðtÞ : ¼∑þ1
k¼0

tk
Γðθkþ1Þ is the Mittag–Leffler func-

tion of parameter θ.
Here,H1ða; bÞ: ¼f f 2 L2ða; bÞ : f 0 2 L2ða; bÞg: be the Sobo-

lev space of order one.

Denote CDη; θ; θ
a; t;w by Dη; θ

a;w. It follows from Hattaf ’s [20]
study that the GHF integral associated with Dη; θ

a;w is given by
the following definition:

Definition 2 (Hattaf [20]). The GHF integral associated with
Dη; θ

a;w is given by the following equation:

Iη;θa;wu tð Þ ¼ 1 − η

GHF ηð Þ u tð Þ þ η

GHF ηð Þ
RLIθa;wu tð Þ; ð2Þ

where RLIθa;w is the weighted Riemann–Liouville fractional
integral of order θ defined by the following formula:

RLIθa;wu tð Þ ¼ 1
Γ θð Þ

1
w tð Þ

Z
t

a
t − sð Þθ−1w sð Þu sð Þds: ð3Þ

Now, we consider the following FDE:

Dη;θ
0;wO tð Þ ¼ g t;O tð Þð Þ; ð4Þ

where OðtÞ : 2Rn and g : ½0; þ1Þ×Ω→ Rn is a continuous
locally Lipschitz function.

Definition 3. System (4) is Mittag–Leffler stable if:

O1 tð Þ − O2 tð Þk k ≤ m O1 t0ð Þ − O2 t0ð Þð ÞEθ −λ t − t0ð Þσð Þ½ �v;
ð5Þ

for any solutions O1ðtÞ : and O2ðtÞ : of System (4), where t0 is
the initial time, λ≥ 0, v>0, mð0Þ : ¼ 0, mðOÞ : ≥ 0, and mðOÞ : is
locally Lipschitz on O2Rn.

Definition 3 extends the Mittag–Leffler stability intro-
duced in [13] when σ¼ θ, ν¼ 1, and mðOÞ: ¼MkOjj: with M
being a positive constant. Additionally, the exponential stabil-
ity employed in [21] is a particular case of Equation (5), it
suffices to take mðOÞ : ¼MkOjj : and θ¼ ν¼ 1.

Lemma 1 (Hattaf [22]). Let O1ðtÞ : and O2ðtÞ : be two functions
defined on ½t0; þ1Þ with Dη; θ

t0;wO1ðtÞ : ≥Dη; θ
t0;wO2ðtÞ : and

O1ðt0Þ : ≥O2ðt0Þ :. Then, O1ðtÞ : ≥O2ðtÞ :, for all t ≥ t0.

Lemma 2 (Hattaf [23]). Let λ>0 and OðtÞ : be a function
satisfying the following inequality:

Dη;θ
0;wO tð Þ ≤ −λO tð Þ: ð6Þ
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Then:

O tð Þ ≤ O 0ð ÞEθ
−ηλtθ

GHF ηð Þ þ λ 1 − ηð Þ
� �

: ð7Þ

Next, we propose two fractional opinion formation mod-
els. The first one without leadership, which is formulated by
the following system:

Dη;θ
0;wOi tð Þ ¼ ∑

1≤j≤N
aij fj Oj tð Þ

À ÁÀ Á
;  i¼ 1; 2;…;N; ð8Þ

with the given initial conditions Oið0Þ : ¼ ξi 2R, for i¼ 1; 2;
…;N . The state variable OiðtÞ : represents the opinion of the
ith follower at time t. The matrix A¼ ½aij�N×N denotes the
adjacency matrix of the social network connecting the fol-
lowers, and fjð⋅Þ : is the opinion function of the jth follower.

The second opinion formation fractional model with
leadership is given by the following equation:

Dη;θ
0;wO0 tð Þ ¼ 0;

Dη;θ
0;wOi tð Þ ¼ ∑

1≤j≤N
aij fj t;Oj tð Þ

À ÁÀ Áþ ci O0 tð Þ − Oi tð Þð Þ þ Ii tð Þ; i¼ 1; 2;…;N;

8<
: ð9Þ

where IiðtÞ : represents external inputs, ci is a constant that
indicates the leader’s influence on the ith follower and O0ðtÞ :

is the leader’s opinion at time t. As in Equation (8), we
consider System (9) with initial conditions Oið0Þ : ¼ ξi 2R,
for i¼ 0; 1;…;N .

3. Stability of the Model without Leadership

This section establishes the Mittag–Leffler stability of System
(8) without leadership.

Theorem 1. Assume that there exists a symmetric positive
definite matrix P2 IRN×N such that Q¼ − ðATPþPAÞ : is a
positive definite matrix and let fiðOiÞ : ¼Oi for every i¼ 1; 2;
…;N. Then, System (8) is Mittag–Leffler stable.

Proof. Let OðtÞ: ¼ðO1ðtÞ; O2ðtÞ; …; ONðtÞÞT and ŌðtÞ : ¼
ðŌ1ðtÞ; Ō2ðtÞ; …; ŌNðtÞÞT be the solutions of System (8) sub-
ject to the different initial conditionsOið0Þ : ¼ ξi and Ōið0Þ : ¼ ζi,
for i¼ 1; 2;…;N .

Consider the following Lyapunov function:

L tð Þ ¼ X tð ÞTPX tð Þ; ð10Þ

where XðtÞ : ¼OðtÞ : − ŌðtÞ :. So, we have the following
equation:

λ1 X tð Þk k2 ≤ L tð Þ ≤ λ2 X tð Þk k2; ð11Þ

where λ1>0 and λ2>0 are the minimum and the maximum
eigenvalues of the matrix P, respectively. It follows from
Lemma 1 of [24] that:

Dη;θ
0;wL tð Þ ≤ 2X tð ÞTPDη;θ

0;wX tð Þ
¼ −X tð ÞTQX tð Þ: ð12Þ

Let us denote by δ the minimum eigenvalue of the matrix Q.
Since Q is a positive definite matrix, we have δ>0. We

therefore have using Equation (11):

Dη;θ
0;wL tð Þ ≤ −δ X tð Þk k2 ≤ −

δ

λ2
L tð Þ: ð13Þ

By applying Lemma 2, we deduce the following equation:

L tð Þ ≤ L 0ð ÞEθ
−ηδtθ

λ2GHF ηð Þ þ δ 1 − ηð Þ
� �

: ð14Þ

By Equation (11), we have the following equation:

X tð Þk k2 ≤ 1
λ1
L 0ð ÞEθ

−ηδtθ

λ2GHF ηð Þ þ δ 1 − ηð Þ
� �

: ð15Þ

Therefore, it follows from Definition 3 that System (8) is
Mittag–Leffler stable. This completes the proof. □

4. Stability and Consensus of the Model
with Leadership

In this section, we discuss the stability and consensus of the
second opinion formation fractional model with leadership
presented by System (9).

In the following, we consider the following assumptions:

(A1) The functions fi, i¼ 1; 2;…;N , are continuous and
satisfy the following Lipschitz condition on R:

fi t;O1ð Þ − fi t;O2ð Þj j ≤ Li O1 − O2j j; ð16Þ

where Li>0 are the Lipschitz constants.
(A2) The constants ci are positive for i¼ 1; 2;…;N and

satisfy the following equation:
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Λi ¼ ci − ∑
1≤j≤N

aji
�� ��Li>0: ð17Þ

(A3) The functions Ii are bounded, i.e., there exists a
Mi>0 such that:

Ii tð Þj j ≤Mi; ð18Þ

for every i¼ 1; 2;…;N .

Theorem 2. Assume that (A1), (A2), and (A3) are satisfied.
Then, System (9) is Mittag–Leffler stable.

Proof. Let OðtÞ: ¼ðO1ðtÞ; O2ðtÞ; …; ONðtÞÞT and ŌðtÞ : ¼
ðŌ1ðtÞ; Ō2ðtÞ; …; ŌNðtÞÞT be the solutions of System (9)
subject to the different initial conditions Oið0Þ : ¼ ξi and
Ōið0Þ : ¼ ζi; i¼ 1; 2;…;N . Let u∗i ðtÞ : ¼ ŌiðtÞ : −OiðtÞ :, for i¼ 1;
2;…;N . Then, u∗i ð0Þ : ≠ 0. From Equation (9), we have the
following equation:

Dη;θ
0;wu

∗
i tð Þ ¼ −ciu∗i tð Þ þ ∑

1≤j≤N
aij fj t; Ōj tð Þ

À Á
− fj t;Oj tð Þ
À ÁÀ Á

:

ð19Þ

If u∗i ðtÞ : is positive, then:

Dη;θ
0;w u∗i tð Þj j ¼ GHF ηð Þ

1 − η

1
w tð Þ

Z
t

0
Eθ −μη t − sð ÞθÂ Ã

wuð Þ0 sð Þds

¼Dη;θ
0;wu

∗
i tð Þ:

ð20Þ

If u∗i ðtÞ : is negative, then:

Dη;θ
0;w u∗i tð Þj j ¼ −

GHF ηð Þ
1 − η

1
w tð Þ

Z
t

0
Eθ −μη t − sð ÞθÂ Ã

wuð Þ0 sð Þds

¼ −Dη;θ
0;wu

∗
i tð Þ:

ð21Þ

Hence:

Dη;θ
0;w u∗i tð Þj j ¼ sign u∗i tð Þð ÞDη;θ

0;wu
∗
i tð Þ: ð22Þ

Consider the following function:

U tð Þ ¼ ∑
1≤i≤N

u∗i tð Þj j: ð23Þ

Then:

Dη;θ
0;wU tð Þ ¼ ∑

1≤i≤N
Dη;θ

0;w u∗i tð Þj j

¼ ∑
1≤i≤N

sign u∗i tð Þð Þ −ciu∗i tð Þ þ ∑
1≤j≤N

aij fj t; Ōj tð Þ
À Á

− fj t;Oj tð Þ
À ÁÀ Á !

≤ ∑
1≤i≤N

−ci u∗i tð Þj j þ ∑
1≤j≤N

aij
�� �� fj t; Ōj tð Þ

À Á
− fj t;Oj tð Þ
À Á�� �� !

≤ ∑
1≤i≤N

−ci u∗i tð Þj j þ ∑
1≤j≤N

aij
�� ��Lj u∗j tð Þ

��� ���
 !

¼ − ∑
1≤i≤N

ci − ∑
1≤j≤N

aji
�� ��Li

 !
u∗i tð Þj j

≤ − ΛU tð Þ;

ð24Þ

where Λ¼min1≤i≤N Λi. It follows from Lemma 2 that:

U tð Þ ≤ U 0ð ÞEθ
−ηΛtθ

GHF ηð Þ þ Λ 1 − ηð Þ
� �

: ð25Þ

By using Definition 3, we conclude that System (9) is Mittag–
Leffler stable. □

Theorem 3. Assume that (A1), (A2), and (A3) are satisfied.
Then, for any solution OðtÞ : of System (9) with wðtÞ : ¼ 1, there
exists a t0>0 such that:

O tð Þk k ≤ u
Λ
þ ε;  for all  t ≥ t0; ð26Þ

where ε>0 is an arbitrary small constant and u¼∑1≤i≤N
ð∑1≤j≤N jaijj : supt2½0;1Þ j fjðt; 0Þj : þ cijξ0j : þMiÞ.

Proof. Let OðtÞ : ¼ðO1ðtÞ; O2ðtÞ; …; ONðtÞÞT be a solution
OðtÞ: of System (9). So, consider the the following equation:

V tð Þ ¼ O tð Þk k ¼ ∑
1≤i≤N

Oi tð Þj j: ð27Þ
Hence:
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Dη;θ
0;1V tð Þ ¼ ∑

1≤i≤N
Dη;θ

0;w Oi tð Þj j

¼ ∑
1≤i≤N

sign Oi tð Þð Þ −ciOi tð Þ þ ∑
1≤j≤N

aij fj t;Oj tð Þ
À Á

− fj t; 0ð ÞÀ Á !

þ ∑
1≤i≤N

sign Oi tð Þð Þ ∑
1≤j≤N

aij fj t; 0ð Þ
 !

þ ∑
1≤i≤N

sign Oi tð Þð Þ ciO0 tð Þ þ Ii tð Þð Þ

≤ ∑
1≤i≤N

−ci Oi tð Þj j þ ∑
1≤j≤N

aij
�� ��Lj Oj tð Þ

�� ��þ ∑
1≤j≤N

aij
�� �� fj t; 0ð Þ�� ��þ ci ξ0j j þMi

 !

¼ − ∑
1≤i≤N

ci − ∑
1≤j≤N

aji
�� ��Li

 !
Oi tð Þj j þ ∑

1≤i≤N
∑

1≤j≤N
aij
�� �� fj t; 0ð Þ�� ��þ ci ξ0j j þMi

 !

≤ − ΛV tð Þ þ u:

ð28Þ

Now, consider the following fractional system:

Dη;θ
0;1G tð Þ ¼ −ΛG tð Þ þ u: ð29Þ

According to Remark 2 of Hattaf ’s [20] study, we get the
following equation:

G tð Þ ¼ u
Λ
þ GHF ηð Þ
GHF ηð Þ þ Λ 1 − ηð Þ G 0ð Þ − u

Λ

� �
Eθ

−ηΛtθ

GHF ηð Þ þ Λ 1 − ηð Þ
� �

:

ð30Þ

Hence:

lim
tÀ!þ1G tð Þ ¼ u

Λ
: ð31Þ

Therefore, for any ε>0, there exists a t0>0 such that:

G tð Þ ≤ u
Λ
þ ε;  t ≥ t0: ð32Þ

From Lemma 1, we deduce that VðtÞ : ≤GðtÞ : with Vð0Þ : ¼
Gð0Þ :. SinceVðtÞ : ¼kOðtÞjj:, we deduce the following equation:

O tð Þk k ≤ u
Λ
þ ε;  t ≥ t0: ð33Þ

This ends the proof. □

Theorem 4. Let fiðt; ξ0Þ : ¼ 0 for t 2 ½0;1Þ and limt→1 IiðtÞ
: ¼ 0 for all i¼ 1; 2;…;N. If (A1), (A2), and (A3) are satisfied,
then the consensus opinion ξ0 is reached by all agent opinions
OiðtÞ : of System (9) wðtÞ : ¼ 1, i.e., limt→1 OiðtÞ : ¼ ξ0 for every
i¼ 1; 2;…;N.

Proof. Let ðO0ðtÞ;O1ðtÞ;…;ONðtÞÞ : be a solution of System
(9). As Dη; θ

0;wO0ðtÞ : ¼ 0, we get O0ðtÞ : ¼ ξ0. For each i¼ 1;…;
N , let Ōi ¼Oi − ξ0 and hiðt; ŌiÞ : : ¼ fiðt; Ōi þ ξ0Þ :. Then,

System (9) becomes:

Dη;θ
0;1Ōi tð Þ ¼ ∑

1≤j≤N
aij hj t; Ōj tð Þ

À ÁÀ Á
− ciŌi tð Þ þ Ii tð Þ: ð34Þ

For any x; y2 I R, we have the following equation:

hi t; xð Þ − hi t; yð Þj j ¼ fi t; x þ ξ0ð Þ − fi t; y þ ξ0ð Þj j ≤ Li x − yj j:
ð35Þ

Then, the condition (A1) holds for hi. In addition, the other
conditions (A2) and (A3) are satisfied by System (34) with
initial conditions Ōið0Þ : ¼ 0, for i¼ 1; 2;…;N . By applying
Theorem 3, we deduce that there exists a t0>0 such that:

Ō tð Þk k ≤ u
Λ
þ ε;  for all  t ≥ t0; ð36Þ

where u¼∑1≤i≤N ð∑1≤j≤N jaijj :supt2½0;1Þ jhjðt; 0Þj : þ cið0Þ : þMiÞ.
Since hjðt; 0Þ: ¼ fjðt; ξÞ: ¼ 0, we get u¼∑1≤i≤N Mi.
As limt→1 IiðtÞ : ¼ 0, then there exists a t1>0 such that

jIiðtÞj : ≤ ε for all t≥ t1. In the same way used in the proof of
Theorem 3, we can easily obtain the following equation:

Ōi tð Þk k ≤ Nε

Λ
þ ε;  t ≥ t1: ð37Þ

Hence, limt→1 ŌiðtÞ : ¼ 0, which leads to limtÀ!1 OiðtÞ : ¼ ξ0.
This completes the proof. □

Remark 5. Obviously, the vector ðξ0;…; ξ0Þ : 2 IRNþ1 is the
equilibrium of System (9) when fiðt; ξ0Þ : ¼ 0 and IiðtÞ : ¼ 0 for
all i¼ 1; 2;…;N . This equilibrium is asymptotically stable
according to Theorems 3 and 4.
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5. Numerical Simulations

This section presents three examples as in [16] and [14] to
demonstrate our analytical results using numerical simula-
tions based on the numerical method presented in [25].

Example 6. Consider the following system:

Dη;θ
0;1O1 tð Þ ¼ 0:3O2 tð Þ − 0:3O1 tð Þ

Dη;θ
0;1O2 tð Þ ¼ O1 tð Þ − O2 tð Þ

Dη;θ
0;1O3 tð Þ ¼ 0:5 O4 tð Þ − O3 tð Þð Þ

Dη;θ
0;1O4 tð Þ ¼ 0:1O3 tð Þ − 0:1O4 tð Þ;

8>>>>><
>>>>>:

ð38Þ

with the initial conditions O1ð0Þ : ¼ 0;  O2ð0Þ : ¼ 3;  O3ð0Þ : ¼ 4,
and O4ð0Þ : ¼ 7:5.

Figures 1–3 show the dynamical behaviors of Model (38)
for different fractional orders η and θ.

We notice that each agent is influenced by the opinions
of its neighbors. Also, in a leaderless environment where
each agent acts independently, the agents’ opinions do not
converge to a consensus state.

Example 7. Consider the following system:

Dη;θ
0;1O0 tð Þ ¼ 0

Dη;θ
0;1O1 tð Þ ¼ 0:03 sin O1 tð Þð Þ þ 9e−t − 0:3O1 tð Þ þ 0:3O0 tð Þ

Dη;θ
0;1O2 tð Þ ¼ 0:015 sin O1 tð Þð Þ − 0:0006 sin O4 tð Þð Þ þ 0:09e−t − 0:3O2 tð Þ þ 0:3O0 tð Þ

Dη;θ
0;1O3 tð Þ ¼ −0:003 sin O3 tð Þð Þ þ 0:003 sin O4 tð Þð Þ þ 0:1e−t − 0:2O3 tð Þ þ 0:2O0 tð Þ

Dη;θ
0;1O4 tð Þ ¼ 0:009 sin O4 tð Þð Þ − 0:006 sin O5 tð Þð Þ − 0:4O4 tð Þ þ 0:4O0 tð Þ

Dη;θ
0;1O5 tð Þ ¼ −0:003 O3 tð Þð Þ þ 0:02e−t − 0:1O5 tð Þ þ 0:1O0 tð Þ

Dη;θ
0;1O6 tð Þ ¼ 0:015 sin O1 tð Þð Þ þ 0:027 sin O3 tð Þð Þ − 0:4e−t − 0:4O6 tð Þ þ 0:4O0 tð Þ;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð39Þ

with the initial conditionsO0ð0Þ : ¼ 0;O1ð0Þ : ¼ 25;O2ð0Þ : ¼ 10;
O3ð0Þ : ¼ 30;O4ð0Þ : ¼ 1:5;O5ð0Þ : ¼ − 20, and O6ð0Þ : ¼ − 10.

Figures 4–6 show the dynamical behaviors of Model (39)
for different fractional orders η and θ.

In this case, the leader O0ðtÞ : ¼ ξ0 ¼ 0, fiðt; ξ0Þ : ¼ 0,
limt→1 IiðtÞ : ¼ 0, and Li ¼ 1 for i¼ 1; 2;…; 6. As a result, the
fractional opinion formation Model (39) is Mittag–Leffler
stable. The states of O0, O1, O2, O3, O4, O5, and O6 converge
to a consensus state of ð0; 0; 0; 0; 0; 0; 0Þ:.
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FIGURE 1: Behavior of Model (38) with η¼ 1 and θ¼ 1.
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Example 8. Consider the following system:

Dη;θ
0;1O0 tð Þ ¼ 0

Dη;θ
0;1O1 tð Þ ¼ −0:36O1 þ 0:01O2 tð Þ þ sin tð Þ

t
þ 0:2O0 tð Þ

Dη;θ
0;1O2 tð Þ ¼ −0:03O1 tð Þ − 0:22O2 tð Þ − 2e−t þ 0:3O0 tð Þ;

8>>><
>>>:

ð40Þ
with the initial conditions O0ð0Þ : ¼ 1;O1ð0Þ : ¼ − 10, and
O2ð0Þ : ¼ 15.

In this example, we have fiðt; ξ0Þ : ¼ 0, limt→1 IiðtÞ : ¼ 0,
and Li ¼ 1 for i¼ 1; 2; 3. System (40) is Mittag–Leffler stable,
as well as the states ofO0,O1, andO2 converge to a consensus
state ð1; 1; 1Þ:, in which all agents share the same opinion.
Figures 7–9 demonstrate these results. In addition, we
observe that the speed of consensus depends on the values
of the fractional orders η and θ. More precisely, the time for
arriving at the consensus with large fractional derivative
order value is faster than that with small fractional derivative
order value.
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FIGURE 4: Behavior of Model (39) with η¼ 1 and θ¼ 1.
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6. Conclusion

In this work, we have presented two fractional opinion for-
mation models involving the new GHF derivative. The first
model is without leadership, while the second one is with
leadership and time-dependent external inputs. At the begin-
ning, we have proposed a definition for Mittag–Leffler sta-
bility in order to investigate the dynamical behaviors of such
fractional models. The proposed definition extends that
introduced in [13] and generalizes the exponential stability
given in [21] and used in [16]. Furthermore, the convergence
of agents’ opinions toward the consensus opinion was care-
fully examined. At the last, three numerical examples and

corresponding numerical simulations have been given to
illustrate our main analytical results.

On the other hand, it would be very interesting to extend
our work to the case of delay systems and to model the
dynamics of opinion formation using the novel mixed frac-
tional derivative [26] that covers the GHF and Caputo frac-
tional derivatives. These issues will be the topics of futurework.

Data Availability

All data used during the study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] J. M. Nolan, P. W. Schultz, R. B. Cialdini, N. J. Goldstein, and
V. Griskevicius, “Normative social influence is underdetected,”
Personality and Social Psychology Bulletin, vol. 34, no. 7,
pp. 913–923, 2008.

[2] D. Graber, “The media and democracy: beyond myths and
stereotypes,” Annual Review of Political Science, vol. 6, pp. 139–
160, 2003.

[3] V. M. Patti and M. B. Oliver, “Media effects theories 1: an
overview,” inMedia Effects, Advances in Theory and Research,
pp. 16–35, Routledge, 2019.

[4] J. S. Seiter, R. H. Gass, and C. R. Seiter, “Persuasion GO: an
activity for increasing students’ awareness of approaches to
social influence,” Communication Teacher, vol. 32, no. 4,
pp. 179–185, 2018.

[5] R. B. Cialdini, Influence: The Psychology of Persuasion, vol. 55,
pp. 1–339, Collins, New York, 2007.

[6] E. Noelle-Neumann, The Spiral of Silence: Public Opinion–Our
Social Skin, pp. 1–259, University of Chicago Press, 1993.

[7] M. A. Al-Garadi, K. D. Varathan, S. D. Ravana et al., “Analysis of
online social network connections for identification of influential

5004003002001000
Time (t)

–10

–5

0

5

10

15

O
(t)

O0
O1

O2

FIGURE 7: Behavior of Model (40) with η¼ 1 and θ¼ 1.

5004003002001000
Time (t)

–10

–5

0

5

10

15

O
(t)

O0
O1

O2

FIGURE 8: Behavior of Model (40) with η¼ 0:8 and θ¼ 0:7.

8007006005004003002001000
–10

–5

0

5

10

15

O
(t)

Time (t)

O0
O1

O2

FIGURE 9: Behavior of Model (40) with η¼ 0:8 and θ¼ 0:5.

8 Mathematical Problems in Engineering



users: survey and open research issues,” ACMComputing Surveys,
vol. 51, no. 1, pp. 1–37, 2018.

[8] S. Bikhchandani, D. Hirshleifer, and I. Welch, “A theory of
fads, fashion, custom, and cultural change as informational
cascades,” Journal of Political Economy, vol. 100, no. 5,
pp. 992–1026, 1992.

[9] M. H. Degroot, “Reaching a consensus,” Journal of the
American Statistical Association, vol. 69, no. 345, pp. 118–121,
1974.

[10] K. M. D. Chan, R. Duivenvoorden, A. Flache, andM. Mandjes,
“A relative approach to opinion formation,” The Journal of
Mathematical Sociology, vol. 48, no. 1, pp. 1–41, 2022.

[11] I. V. Kozitsin, “Opinion dynamics of online social network
users: a micro-level analysis,” The Journal of Mathematical
Sociology, vol. 47, no. 1, pp. 1–41, 2023.

[12] I. V. Kozitsin, “Formal models of opinion formation and their
application to real data: evidence from online social networks,”
The Journal of Mathematical Sociology, vol. 46, no. 2, pp. 120–
147, 2022.

[13] J. Chen, Z. Zeng, and P. Jiang, “Global Mittag-Leffler stability
and synchronization of memristor-based fractional-order
neural networks,” Neural Networks, vol. 51, pp. 1–8, 2014.

[14] R. Almeida, A. B. Malinowska, and T. Odzijewicz, “Fractional
opinion formation models with leadership,” in 2018 23rd
International Conference on Methods & Models in Automation
& Robotics (MMAR), pp. 259–264, IEEE,Miedzyzdroje, Poland,
August 2018.

[15] R. Almeida, A. B. Malinowska, and T. Odzijewicz, “Optimal
leader–follower control for the fractional opinion formation
model,” Journal of Optimization Theory and Applications,
vol. 182, pp. 1171–1185, 2019.

[16] D. Somjaiwang and P. S. Ngiamsunthorn, “Exponential stability
for an opinion formation model with a leader associated with
fractional differential equations,” International Journal of
Differential Equations, vol. 2022, Article ID 3973157, 9 pages,
2022.

[17] M. Caputo, “Linear models of dissipation whose Q is almost
frequency independent—II,” Geophysical Journal Interna-
tional, vol. 13, no. 5, pp. 529–539, 1967.

[18] M. Caputo and M. Fabrizio, “A new definition of fractional
derivative without singular kernel,” Progress in Fractional
Differentiation and Applications, vol. 1, no. 2, pp. 73–85,
2015.

[19] A. Atangana and D. Baleanu, “New fractional derivatives with
nonlocal and non-singular kernel: theory and application to
heat transfer model,” Thermal Science, vol. 20, no. 2, pp. 763–
769, 2016.

[20] K. Hattaf, “A new generalized definition of fractional derivative
with non-singular kernel,” Computation, vol. 8, no. 2, Article ID
49, 2020.

[21] C. Xu and P. Li, “α-stability of fractional-order Hopfield neural
networks,” International Journal of Dynamical Systems and
Differential Equations, vol. 8, no. 4, pp. 270–279, 2018.

[22] K. Hattaf, “On some properties of the new generalized fractional
derivative with non-singular kernel,”Mathematical Problems in
Engineering, vol. 2021, Article ID 1580396, 6 pages, 2021.

[23] K. Hattaf, “On the stability and numerical scheme of fractional
differential equations with application to biology,” Computa-
tion, vol. 10, no. 6, Article ID 97, 2022.

[24] K. Hattaf, “Stability of fractional differential equations with new
generalized hattaf fractional derivative,” Mathematical Pro-
blems in Engineering, vol. 2021, Article ID 8608447, 7 pages,
2021.

[25] K. Hattaf, Z. Hajhouji, M. Ait Ichou, and N. Yousfi, “A
numerical method for fractional differential equations with new
generalized hattaf fractional derivative,”Mathematical Problems
in Engineering, vol. 2022, Article ID 3358071, 9 pages, 2022.

[26] K. Hattaf, “A new mixed fractional derivative with applications in
computational biology,”Computation, vol. 12, no. 1, Article ID 7,
2024.

Mathematical Problems in Engineering 9




