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In this article the existence as well as the uniqueness (EU) of the solutions for nonlinear multiorder fractional-differential equations
(FDE) with local boundary conditions and fractional derivatives of different orders (Caputo and Riemann-Liouville) are covered.
The existence result is derived from Krasnoselskii’s fixed point theorem and its uniqueness is shown using the Banach contraction
mapping principle. To illustrate the reliability of the results, two examples are given.

1. Introduction

Fractional-differential equations (FDEs) have gained significant
attention recently due to their wide-ranging applications in the
diverse scientific and engineering fields. These equations find
relevance in areas such as fractal theory, potential theory, biol-
ogy, chemistry, and diffusion, among others [1, 2]. Some specific
physical phenomena associated with the fractional-oscillator
equations and fractional Euler—Lagrange equations containing
mixed fractional derivatives can be found in [1, 3]. Once a FDE
model is established to represent a real-world problem, the sub-
sequent challenge lies in solving the model. Finding the exact
solution to a FDE is often a difficult task. Therefore, researchers
strive to identify as many aspects of the solution as possible,
addressing questions such as its existence and uniqueness. These

inquiries explore whether a solution exists for the problem and if
so, whether it is the only possible solution.

Consequently, the investigation of existence and unique-
ness solutions for the FDEs with initial and boundary con-
ditions has attracted the interest of numerous scientists and
mathematicians [4-6]. This line of study aims to develop
theoretical frameworks, techniques, and methodologies for
analyzing and solving the FDEs. By understanding the
behavior and properties of solutions, researchers can devise
effective solution approaches and gain insights into the prac-
tical applications of FDEs. Many authors have studied the
existence and uniqueness theorem for the FDEs involving
mixed fractional derivatives in recent years [7-14]. Sarwar
[15] has shown the variable order Caputo type FDEs of the
form as follows:
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{ Dy Vo(p) = (d.9). 0<w(¢)<1 0

P(P)lp—o =00, @R, ¢e(0,+00)

where ©D”(?)(.) denotes Caputo derivative with the variable
order. Chai [16] investigated the existence of solutions to the
boundary-value problem as follows:

¢ €(0,1)

3

{ngwx(qs) + 1D x() = (. x()).
x(0)=x(1), x&=v, E€(0,1),
(2)

where @ and 2! denote the standard Caputo deriva-
tives of order @ and w — 1, respectively, in this case with
1<w <2, and r # 0. Additionally, more recently, Xu et al.
[17] considered the existence of solutions and Ulam-Hyers
stability for the fractional boundary value problem:

¢€(0,T)

{ ED7x(p) + 2°x(¢) = T(¢. (), 3)

2(0) =0, pu"x(T)+ I"%(v) =ys,

where 2% denotes the Riemann-Liouville fractional derivative
operator of order w, 1<w <2, 1<v<w, 0<¢<L1, 0<u<l,
0<y,<w-v, y,>0, and I"* denotes the Riemann-Liouville
fractional integral operator of order y,, and 0 <v < T. Motivated
by the analysis and outcomes obtained for the aforementioned
challenges. In this study, we will look at the existence and
uniqueness of solutions to the following nonlinear FDE bound-
ary value issue using multi-fractional derivatives.

l<w<2,0<v<1,
>0, €10,1],
(4)

£°D°x(9)-"D"x(¢) = F(¢, x(9)).
x(0) =0, ¥(1)=0,

where “@“ denotes the Caputo’s derivative of fractional order
o with 1<w<2 and ®P" denotes the Riemann-Liouville
derivative of fractional order v with 0 <v < 1. It should be noted
that our work makes some fundamental assumptions for the
order of multi-fractional derivatives; prospective relaxations of
these restrictions may be taken into account in future research.
This article’s key contribution is as follows:

(1) A generalization of the results obtained in [15].
(2) A generalization of the results obtained in [16].
(3) A generalization of the results obtained in [17].

The rest of the work is structured as follows: Section 2
covers the required definitions as well as the fundamental
tools that will be utilized in the next sections; Section 3
derives and solves various requirements for the existence
and uniqueness of solutions for multi-fractional derivatives.
Finally, some specific examples are provided to describe the
achieved findings.
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2. Preliminaries

Here, we introduce certain definitions, desired lemmas, and
theorems, which are essential to find the main result.

Definition 1 (see [1, 18]). The Riemann—Liouville fractional
integral of order @>0 of a function {: [a, b]—R at the point
¢ is defined by

i) = [ ¢%w>d¢, s)

provided the right side is point-wisely defined, where I is the
Gamma function.

Definition 2 (see [1, 18]). The Riemann-Liouville fractional
derivative of order of >0 a function f:[a, bj—R at the
point ¢ is defined by

BT = oy [ @0 e, (o)

I'(n-

provided the right side is point-wisely defined, where n = [w]
+ 1, [@] denotes the integer part of .

Definition 3 (see [1, 18]). The Caputo derivative of fractional
order  for an n-times differentiable function f: [a, b]—R is
defined as follows:

GO =iy | @00 (5) T
)

where n=[w]+1 and »>0.

Property 1 (see [1]). Assume 0<w <1 and n=[w|+1. If
x(¢) € (C*[0,1])

CI7 “D3x(¢) = x(¢) - %(0). (8)

Theorem 1 (Krasnosel’skii fixed point theorem [19]).
Suppose M is a closed, convex, and bounded nonempty subset
of a Banach space X. Let P and Q be two operators satisfying
the following conditions:

(1) Px+ Qy € M, whenever x,y € M;
(2) Q is a contraction mapping;
(3) Pis both compact and continuous, then there exists an

element w € M such that the equation @ =Pw + Qw
holds true.

Theorem 2 (contraction mapping principle [20]). Let M be a
Banach space. If T:M—M is a contraction, then T has a
unique fixed point in M.
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3. Main Result

Lemma 1. The solution to the boundary value problem (4)
satisfies the integral equation as follows:

i(g) = é[w—ux(qﬁ) + é]wf(d)’ () - %I(u—v—lx(l)

—%I“"lf(l,x(l)).

Proof. From Equation (4), we have
DY) = DY) + (BB (10)

Taking the Riemann-Liouville fractional integral of
order @ on both sides, we get

1() - x(0) = gfw-vxw») + ézww, () + o+ o
(1)

x() = érﬂ-w) + ézww, X$) toton (12)

Then, ¥(0) =0 implies ¢; =0. Hence,

x(p) = éfw-"st) + gzww, (p) + o (13)

On differentiating both side we get:

1d

w-v li ("
=Gagl O g a9 e (1)

30 S

Applying the boundary condition ¥(1)=0 in above
equation, we get:

1 —v-1 _lw—l
& == I (1) = L1 (1 x(D)). (15)

Now, putting the value of ¢; and ¢, in Equation (10),
we get:

3
1 1 1 —
() = L) + L 3(6) - 1)
—%I‘”‘lf(l,x(l)).
(16)
O

4. Existence and Uniqueness

In this section, we will utilize the Krasnoselskii fixed point
theorem and Banach contraction principle to establish both
the existence and uniqueness of a solution to problem (4)
within the Banach space C. Now, let’s examine the following
assumptions that are necessary for the forthcoming analysis:

(A1) Let f(C[0, 1]R) denotes the Banach space as the set
of all continuous functions from the interval [0, 1] into R
equipped with the norm determined by

IR = I T(¢, ()| = sup|x(e)

P €0,1].
(17)

(A2) There exists a constant & >0 such that | (¢, ¥,) —
f(p, %) | < L%, — %], V¥, %, €R, and ¢ €0, 1].

(A3) For each n.>0, B, € {xe C([0.1].R), [|x(¢)|| <7.}.
then B, is evidently a bounded, closed, and convex sub-
set within C([0, 1], R).

Now, we will demonstrate the existence of a solution for
the problem using the Krasnoselskii fixed point theorem.

Theorem 3. Assume that AI-A3 are satisfied, and if M <1
where M= (rsry + iy + s + ey then the
boundary value problem (4) possesses at least one solution
in C([0, 1], R).

Proof. In order to demonstrate the existence of a solution for
problem (4), we will proceed with the proof by considering
the following steps:

Step 1: For any constant >0, we will define two operator
T, and T, as follows:

Ty = 1 157x(6),
il (0] _l w—v-1 _l w—1
o= 277, 2(4)) = 2 17773(1) = 217711 x(1)).
(18)

Now, we will show that the operator T} + T, =T is
bounded as follows:
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ITG@)I < 125() + 51T x(8) —fff” 13(1) = 211,30 >>\
1 ¢ w—0— (U
SW (¢-<0) 'x ‘ Hw‘/ (¢ = 0) (@, x(p)) d ‘
+¢r<w—u—1\/ (=0 | 0= 0050
<= KON [0 = 0r=ae] + Lo [*0 - a0
*mw— 1)|x1|‘/O¢—(pw-v-2d¢‘+—nh M| [0 0t (19)
He [[A]] l2(1)]] [h(1)
Se(w-v+1) 5r(a)+1)+5r(w—u)+gr(m+)
1 He |7l [l [A(1)]]
<z F(w—v+l)+F(a)+l)_F(w—v)+F(a)+1)>’
M
¢
_ He I ()l [
wheTEM(I"(a)—u—l—1)+F(a)+1)+F(w—u)+F(w+1)'
\
Hence, operator T is bounded. Step 2: Contraction

Iy (x())-To (o ()]
= |[L1x(@) - 415 v(@)|
HH— 6= 0r oo -

1

[~

- ) ér(w—v)
<o x| [0 = 0 o) (20)
<3 Hae— o5
RFACET) K -v)’
<1 1
_Emllx—vll,
<Plx -yl
where ¢ = ém

Step 3: In order to establish the complete continuity of ~ continuity and equicontinuity. By proving these two proper-
the operator T,, it is necessary to demonstrate both its ties, we can establish the complete continuity of T5.
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IT,(5,(8) - To(a(@)
-| () L1, (1) = 171 x, ()
- L) - 1R 0) - L z(l))',
—m,H / -0 (10800 - [0 = 010050 )
t s | Lo oo = [ =0 o
|/ ¢—¢w-2(f<¢,zn<¢>>— / #=0ixt0) )ao)| @
_FS’HI 3€H/ (@ -o)" ‘d<o+§r |H/ (& — @) 2dg
o ool
S ERE xn<¢>—x<¢)H+m 0) = 30) [+ o1 2 50) - 00|
< T 1l -0

As x,(p)—x(p) as n— o0,
—0 as n—o0.

so [ Ta(x,(¢)) - Ta(x())ll

1T5(x(d)) - Ta(x())]
LJ”? (e5(2) - £1°713(1) -
_Ela)f(¢1vx(¢l)) ¢

- ["

As ¢y—¢p1, and x(¢h,)—x(¢y).

Hence, ¢, is equicontinuous operator.

Given that all the conditions of Krasnosel’skii fixed point
theorem are met, namely the existence of a fixed point, this
concludes the proof. 0

Theorem 4. Let u(x) € C[0, 1] such that € C([a, b|R) and
A<1 where,

<ol [ @20 (mp, o) - M- zp>w-1f<<o,x(w>>)dw',
Sfrw /jl (2 = 0)” (9. x(0)
- 9) (g, x(p))ds|,
Sero /f (42 = )" (0 (0)

Hence, T, is continuous.
Next, we will show that T, is equicontinuous operator.

gmu,x(l))

—+ llm—v—lx(l) + %I{Df(l, %(1))‘,

(22)
ds + /¢ " (h2 = @) (9, x(9))dop
dq)‘.
\
1 1 L(w+1)
Aw{l"((a)—v))+1+ Tw+1 } (23)

Then the problem (4) has a unique solution.

Proof. First, we will establish the boundedness of the operator T.
Step 1: In the previous result confirms that T is indeed
bounded. Moving forward, we will utilize the Banach con-
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traction mapping theorem to demonstrate the uniqueness

of T.
IT((#)) = T(y())ll
1 1 1
I°7%(p) + = 1°7(¢h, x —— 1777 1x(1) — = I7§(1, x(1
= (G170 + LT 5) - 317 500) = 171300 »
1 1 1 1
= 21 0() = LI () + 21 o() + T (1)
¢ ¢ ¢ ¢
<sra—ar| [0 0 ) = v@a)
Ser(w-o)l) " v
1| [ .
- _ w—v— _ d
tapa | ][0 0= (30 = T
1 ¢
+— - @) (y(1) - x(1 d’
1| @ =0 ) = x(0)d
1 ¢ 1
— — )™ (F(1,w(1)) - (1, (1
o [0 0 (000 = 009000
1 1 (25)
<= x-= _
<iTfw-vt )II ||+ gr rd L]l
1
+Em” | +§I‘ Z|lx -y,
2 1 < <
<l= +
(r(w-v+1) o+1 5]"
< l # + z i +1 ||I —
T M(w-v+1) Tw\w K
<Alx-ylA<1,
\
where A :ZI” {m +ZE+1)} Example 2. Let us consider the multi-FDE
Upon examining the situation, it becomes evident that .
the criteria of the Banach contraction principle is fulfilled, g,@%x( ) - Dx(h) = 1007 + sin x(¢) +Lx( o). telo.l,
allowing us to deduce that a unique fixed point exists for the 5 100z 100z
given problem. 0O 1(0)=0, x(1)=0.
(27)
5. Examples Here, w=3, v=1 &=& and f(¢,x(¢))=1007+
. . sinx(¢) +71(¢)
Example 1. Let us consider the multi-FDE 1007 ' 100z
Ttis clear that | F(¢h 2, (£) = F(¢h 5a(8)| < 5= () — x,(6) ],
10 s R e which fulfills condition (A2).
HQZTIx(dJ) - Dix(¢p) = [ o o8 i(¢p), te€]0,1], Here & =L <1.
0 —o0. £(1)=0 Hence, by employlng the concept of uniqueness and
x(0)=0. x(1)=0. utilizing the Lipschitz condition, A.Z<1 where A=
(26) m+1

3

Here, =2, 0=3, £=1% and f(¢, x(¢))
t

x,(t)|, which fulfills condition (A2).

Here3—1+er<l

Hence, by employing the concept of uniqueness and
utilizing the Lipschitz condition, A.&£<1 where A=

ZL(w+1)
Fa)+1

1 1
® {F((m—u))+l +

assert that the boundary value problem (4) possesses a soli-

tary solution, which is unique.

= 1+e‘ cos x(¢p).

It is dlear that |f(¢,% () - (¢ %()] <15 | (1) -

} Based on our deductions, we can

Ay + Fw +1 )}, Based on our deductions, we can
assert that the boundary value problem (4) possesses a soli-

tary solution, which is unique.

6. Conclusion

This research paper delves into the analysis of nonlinear
multifractional differential equations, specifically focusing
on the boundary-value problems involving mixed FDEs.
The investigation involves the utilization of Krasnoselskii’s
fixed point theorems to establish existence results, while the
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Banach contraction mapping principle is employed to obtain
a uniqueness theorem. Furthermore, the validity of the
obtained results is verified through the inclusion of two illus-
trative examples.
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