
Research Article
Splitting Long Event Sequences Drawn from Cyclic Processes for
Discovering Workflow Nets

Yolanda Alvarez-Pérez and Ernesto López-Mellado

CINVESTAV Unidad Guadalajara, Av. Del Bosque 1145, Col. El Bajio, Zapopan 45019, Jalisco, Mexico

Correspondence should be addressed to Ernesto López-Mellado; e.lopez@cinvestav.mx

Received 6 September 2023; Revised 27 November 2023; Accepted 13 December 2023; Published 3 January 2024

Academic Editor: Carlos-Renato Vázquez

Copyright© 2024 Yolanda Alvarez-Pérez and Ernesto López-Mellado. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

This paper addresses the preprocessing of event sequences issued from cyclic discrete event processes, which perform activities
continuously whose delimitation of jobs or cases is not explicit. The sequences include several occurrences of the same events due
to the iterative behaviour, such that discovery methods conceived for workflow nets (WFN) cannot process such sequences. In
order to handle this issue, a novel technique for splitting a set of long event traces S= {Sk} (|S|≥ 1) exhibiting the behaviour of cyclic
processes is presented. The aim of this technique is to obtain from S a log λ= {σi} of event traces representing the same behaviour,
which can be processed by methods that discover WFN. The procedures derived from this technique have polynomial-time
complexity.

1. Introduction

In discrete event processes, modelling is essential for designing
management or control systems or analysing processes in oper-
ation. In the latter case, automated modelling of discrete-event
processes from the recorded system behaviour is a valuable
resource for process reengineering. In the areas of business
process and manufacturing systems, automated modelling is
an active research matter; in the first area, it is called process
discovery [1], while in the second one it is named process iden-
tification [2].

1.1. Automated Modelling. In both areas, the aim is to build
discrete-event models from records of event data generated
by the processes; such event data are captured in the form of
event sequences or traces, which reveal the actual process
behaviour. The models must represent clearly sequential
and concurrent behaviours; finite automata and Petri nets
(PNs) are the formalisms mostly used.

The source of event traces, called the event log, is the
management information systems [3–6] or the process con-
trollers [2, 7]. In each type of process, the logs are repre-
sented in different formats. In business processes, the event
logs are composed of large multisets of traces; each trace

describes a process execution called a case. In manufacturing
processes, the activities are continuously performed iteratively;
the delimitation of jobs or cases is not explicit. Thus, the event
logs are composed of a few (usually one) very long sequences.

1.2. Event Log Preprocessing. Extracting the iterative subse-
quences from long task sequences is a way to isolate the
executions of t-components of the workflow net (WFN) to
discover, allowing splitting the long sequences into multiple
traces. This approach allows the application of diverse tech-
niques that discover WFN to event logs drawn from the
manufacturing processes.

Existing discovery methods for WFN cannot always pro-
cess long sequences from cyclic process, in particular, when
initial events occur again in the sequence due to the iterative
behaviour of the process; the obtainedmodels are less readable
or, in some cases, wrong. Consider the log S= {abcdabcecd};
the discovered model obtained using a standing method [8] is
shown in Figure 1(a). Conversely, when the single sequence of
the log is split into λ= {abcd, abcecd}, the same discovery
method yields the WFN in Figure 1(b); the extended WFN
replays S.

Splitting or partitioning an event log is a strategy held for
several purposes: trace clustering [9, 10], reduction of the

Hindawi
Mathematical Problems in Engineering
Volume 2024, Article ID 7033048, 9 pages
https://doi.org/10.1155/2024/7033048

https://orcid.org/0009-0003-8853-1286
https://orcid.org/0000-0003-0880-7098
mailto:e.lopez@cinvestav.mx
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2024/7033048

surplus language for fault diagnosis [11], model simplifica-
tion [12], discovering unobservable behaviour [13], and model
refinement [14]. Methods dealing with the problem of sequence
segmentation for improving the translation from Japanese to
English have been proposed [15, 16].

1.3. Contribution. In this paper, a novel technique for split-
ting long task sequences issued from highly repetitive cyclic
processes into subsequences is proposed. To the best of our
knowledge, there are no methods addressing the stated prob-
lem. The method processes a reduced set of long event traces
S= {Sk} (|S|≥ 1) and obtains a log λ= {σi} of event traces
representing the same behaviour. The purpose of this pro-
cessing is to apply WFN discovery algorithms, in particular,
those dealing with the silent transitions.

The paper is organised as follows: Section 2 presents the
notation on PNs, WFNs, and the splitting problem; Section 3
describes the splitting trace method; Section 4 presents
the implementation and tests; finally, Section 5 presents the
conclusions.

2. Background and Problem Statement

This section presents the basic concepts and notation of ordi-
nary PNs and WFNs used in this paper. For further details
the reader can consult to the study by van der Aalst et al. [1].
Additionally, the sequence splitting problem is formulated.

2.1. Petri Nets
Definition 1. An ordinary PN structure G is a bipartite
digraph represented by the three-tuple G = (P, T, F); where:
P= {p1, p2, …, p|P|} and T= {t1, t2, …, t|T|} are finite sets
of nodes named places and transitions, respectively; F⊆ P×
T∪T× P is a relation representing the arcs between the nodes.

For any node x 2 P∪ T, ∙x= {y|(y, x)2 F} and x∙ = {y|(x,
y)2 F}. The incidence matrix of G is C= [cij]; where cij=−1
if (pi, tj)2 F and (tj, pi)∉ F; cij= 1 if (tj, pi)2 F and (pi, tj)∉ F;
cij= 0 otherwise.

The places in P can be empty or marked by one or more
tokens. A marking M: P→N determines the number of
tokens within the places; where N is the set of nonnegative
integers. A marking M, usually denoted by a vector (N)|P|,
describes the current state of the modelled system.

Definition 2. A Petri net system or Petri net (PN) is the pair
N= (G, M0), where G is a PN structure and M0 is an initial

marking. R(G, M0) denotes the set of all reachable markings
from M0.

Definition 3. A PN system is 1-bounded or safe iff, for any
Mi2R(G, M0) and any p2 P, Mi(p)≤ 1. A PN system is live
iff, for every reachable marking Mi2R(G, M0) and t2T
there is a Mk2R(G, Mi) such that t is enabled in Mk.

Definition 4. A t-invariant Yi of a PN is a nonnegative integer
solution to the equation CYi= 0. The support of Yi (t-sup-
port) denoted as <Yi> is the set of transitions whose corre-
sponding elements in Yi are positive. Y is minimal if its
support is not included in the support of other t-invariant.
A t-component G(Yi) is a subnet of PN induced by a <Yi>: G
(Yi)= (Pi, Ti, Fi), where Pi= ∙<Yi>∪<Yi> ∙, Ti=<Yi>, Fi=
(Pi×Ti∪Pi×Ti)∩ F.

In a t-invariant Yi, if we have initial marking (M0) that
enables a ti2<Yi>, when ti is fired, then M0 can be reached
again by firing only transitions in <Yi>.

2.2. Workflow Nets
Definition 5. A WorkFlow net (WFN) N is a subclass of PN
owning the following properties [1]: (i) it has two special
places: i and o. Place i is a source place: ∙i =∅, and place o
is a sink place: o∙ =∅. (ii) If a transition te is added to PN
connecting place o to the place i, then the resulting PN
(called extended WFN) is strongly connected.

Definition 6. A WFN (N, M0) is said to be sound iff any
marking Mi2R(N, M0), o2Mi→Mi= [o] and [o]2 R(N,
Mi) and (N, M0) contains no dead transitions. An extended
WFN sound is live and bounded. A WFN can represent a
process behaviour by associating task labels to some transitions.

Definition 7. A labelled WFN is a four-tuple (N, M0, Σ, L)
where Σ is a finite set of tasks labels, and L: T→Σ∪ {ε} is the
labelling function. Transitions labelled with ε are called silent
or unobservable, otherwise they are called observable. Addi-
tionally, ∀ ti, tj2 T, ti≠ tj, if L(ti), L(tj)2 Σ then L(ti)≠ L(tj);
i.e., two transitions cannot have the same label from Σ.

Definition 8. Let Σ be a finite set of tasks labels; an event log λ
is a set of traces σi=A1A2…Ak2Σ ∗, |σi|= k, Aj 2Σ; 1≤ j≤ k
refers to the task at position j.

1

a

e

d

c

b

ðaÞ

1 a b c e

e

ðbÞ
FIGURE 1: Models discovered from S (a) and λ (b).

2 Mathematical Problems in Engineering

2.3. The Problem of Sequence Splitting

Definition 9. Given a set of long event traces S= {Sk}, where
Sk2 T ∗ and |S|≥ 1, representing the behaviour of a cyclic
discrete even process, the aim is to obtain a set λ= {σi} of
task traces by splitting the Sk, such that the concatenation of
traces in λ represents the same behaviour expressed in S, i.e.
an extended WFN discovered from λ must replay S.

Assumptions. A1. The sequences Sk are arbitrarily long; they
capture all the possible actual behaviour of the process. Such
sequences are generated by an unknown, live, and 1-bounded
cyclic PN. It means that the process is well behaved; there are
no deadlocks nor buffer overflows during the recording of
traces.

A2. In every Sk all the tasks occur at least twice.
A3. Sk are recorded from the initial state. Thus, the first

tasks are known.

Example 1. Consider the log S= {S1} on Σ= {A, B, C, D, E, F,
G, H}, where S1=HDEGADBEFDECABDECH DEFDEGA
DEBFDECHDEGABDECABDEFDECHDEFDEGHDEFDE
GADBECADEFBDECHDEGADEB CHDEFDEGADEFDB
ECADEFDEBCHDEGHDEG. A suitable splitting technique
should determine λ= {σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8, σ9, σ10, σ11},
where σ1=ABDEC, σ2=ADBEC, σ3=ADEBC, σ4=ABDE
FDEC, σ5=ADBEFDEC, σ6=ADEBFDEC, σ7=ADEFBDEC,
σ8=ADEFDBEC, σ9=ADEFDEBC, σ10=HDEG, and
σ11=HDEFDEG that represents the execution of the WFN
is depicted in Figure 2. The extended WFN replays S1.

3. The Splitting Technique

3.1. Strategy. Every Sk2 S is parsed by searching subsequences
in Sk that have the same alphabet; such subsequences are
represented by a macrotask θj, which is replaced in all the
Sk that contains this subsequence; this operation is repeated
until all the sequences in S are formed only by macrotasks.

Example 2. Consider the event log S of Example 1. Then,
using the strategy described above, the output of the method
is λ= θ1∪ θ2∪ θ3∪ θ4 where θ1= {HDEG}, θ2= {ABDEC,
ADBEC, ADEBC}, θ3= {HDEFDEG}, θ4= {ABDEFDEC,
ADBEFDEC, ADEBFDEC, ADEFBDEC, ADEFDBEC,
ADEFDEBC}. Figure 2 shows the WFN obtained from λ.

The main steps of the technique are the following. First,
an initial splitting of Sk, induced by the first task, is performed.
Then, the subsequences of Sk are analysed for obtaining the
macrotasks θ1, which are replaced in Sk.

3.2. Basic Operators. Several operators for handling task
traces are introduced below.

Definition 10. Let λ be an event log over Σ and let a be a task
in Σ; for every trace σk= x1x2…xn2 λ and a 2 σk:

(i) τ(xi, σk) provides the name of the task of position xi
in σk;

(ii) First(S′): gets the first subsequence of the list S′;
(iii) A(X) gets the set of tasks (alphabet) used in the

object X; A(σk) and A (λ) gets the set of tasks in a
trace σk and in λ, respectively.

Definition 11. Let λ be an event log and σk= x1x2…xn2 λ a
trace. A macrotask θ= {σ1, σ2, …, σn} is a set of traces such
that A(σ1)=A(σ2)=…= A(σn).

Notice that A(σ1) is the support of a t-invariant of the
extended WFN to build.

Definition 12. Let S′= {σ1, σ2,…, σn} be a list of subtraces,
σ= t1t2…tm2 S′ be a subtrace, i2 {1,…, m-1} and j2 {2,…,
m} be indexes. Then, the operator delSet(S′, σ, θ, i, j) deletes
the tasks in σ from i to j and replace them with the symbols of
the macrotask θ in S′.

3.3. Splitting Procedures

3.3.1. First Splitting. In the processing of Sk, the subsequences
to consider are those delimited by a given task symbol T
along Sk. This search is started using the first symbol of Sk;
then, a list of sequences S′ is formed by all the subsequences
of Sk starting with T.

The algorithm to split the sequence S in shorter subse-
quences delimited by the apparition of the first task is pre-
sented below.

Remark. The computational complexity ofAlgorithm1 isO(|S|).

Example 3. Consider, the log S= {S1} on Σ= {A, B, C, D, E, F,
G, H, I, J}: S1=ABCHIJDEFG DJABBCABCDEGHIJDEGD
JDEFGABCDEFGABBCHIJHIJ obtained from the execution
of the model is depicted in Figure 3(a). Then, splitSeq(S1, A)
gets S′= {ABCHIJDEFGDJ, ABBC, ABCDEGHIJDEGDJDE
FG, ABCDEFG, ABBCHIJHIJ}.

3.3.2. Determining Macrotasks. Afterward, the subtrace σ1 of
S′ with the smallest alphabet is chosen and added to the
macrotask θ1; such a subtrace is replaced by θ1 in S′.

Based on A(σ1) in θ1, the remainder subtraces σr that
have the same alphabet can be found and then added to θ1.

A B C

D E

F

H G

i o

FIGURE 2: Workflow net of Example 1.

Mathematical Problems in Engineering 3

The replacing of θ1 in S′ may split the remaining subtraces
and then create new subsequences.

This operation is performed again on S′ without consid-
ering θ1, then obtaining θ2, which is included in S′ as
explained before. In every iteration, new macrotasks θs are
created and replaced in S′. This process is performed until S′
is formed only by macrotasks. The traces in all the macro-
tasks form the event log.

Now, the procedures (Algorithms 2 and 3) to replace a
macrotask θ in S′ and delete the corresponding subsequences
are presented below.

Remark. The computational complexity of Algorithm 2 is
O(|S′|.|σ|).

Example 4. Consider S′= {σ1, σ3, σ3, σ4, σ5}, where σ1=ABC
HIJDEFGDJ, σ2=ABBC; σ3=ABCDEGHIJDEGDJDEFG;

σ4=ABCDEFG; σ5=ABBCHIJHIJ and the shortest subtrace
σ= σ2 from Example 3.We replace σwith θ1 in every apparition
in S′ and split the subsequence where σ was replaced. So, we
obtain S′= { θ1, HIJDEFGDJ, θ1, θ1, DEGHIJDEGDJDEFG, θ1,
DEFG, θ1, HIJHIJ} and θ1= {ABBC, ABC}.

The procedure below (Algorithm 3) summarises the split-
ting process.

Remark. The computational complexity of Algorithm 3 is
O(|S′|.|σ|).

Example 5. Consider the log S= {ABCHIJDEFGDJABBC
ABCDEGHIJDEGDJDEFGABCDEF GABBCHIJHIJ} from
Example 3. We will briefly describe how the splitting tech-
nique works.

Input: S, T //The log S and the first task T.

Output: S′ // A list of the sub-sequences whose first task is T

1. σ←∅; S′←∅;
2. ∀ ti2 S:

3. If ti≠T then:

4. σ← σ ∙ ti
5. else If i≠ 1 then:

6. S′← S′∪ {σ}; // σ is appended to S′

7. σ←T;

8. S′← S′∪ {σ}

9. Return S′

ALGORITHM 1: FirstSplit.

Input: S′, σ, θ

Output: S′, θ

1. σ′←∅; start← 0; end← 0; first← 0;

2. ∀ σi2 S′:

3. start← 0

4. ∀ tj2 σi: // tracking the symbols of σi
5. If tj2A(σ) then

6. If first= 0 then

7. start← j; first← 1;

8. σ′← σ′ ∙ tj
9. else

10. If A(σ’)=A(σ): //All the tasks in A(σ) are in A(σ’).

11. end← j – 1

12. θ← θ∪ {σ′} //Def. 12. A new sub-trace is appended to the macro-task θ

13. S′← delSet(S′, σi, θ, start, end) //Def. 12

Deletes the tasks in σi from start to end and replace them with θ in S′.

14. else: σ′←∅
15. Return S′, θ

ALGORITHM 2: ReplaceSeq.

4 Mathematical Problems in Engineering

(1) The first splitting is:
S′= {ABCHIJDEFGDJ; ABBC; ABCDEGHIJDEGDJDEFG;
ABCDEFG; ABBCHIJHIJ}
(2) Then, we get the shortest alphabet subtrace σ= σ2=

ABBC; the macrotask θ1=ABBC is created and all
the apparitions of the tasks in the alphabet of θ1 are
replaced by the macrotask in S′, creating new sub-
traces and adding the apparitions to θ1; this is:

S′= {θ1; HIJDEFGDJ; θ1; θ1; DEGHIJDEGDJDEFG; θ1;
DEFG; θ1; HIJHIJ}, where θ1= {ABBC, ABC}.
(3) Next, the shortest subtrace is σ=DEFG; then themacro-

task θ2=DEFG is created, we replace it in S′, yielding:
S′= {θ1; HIJ; θ2; DJ; θ1; θ1; DEGHIJDEGDJ; θ2; θ1; θ2; θ1;
HIJHIJ}.
(4) Then, the shortest subtrace is σ=DJ; then the macro-

task θ3=DJ is created, we replace it in S′, producing:
S′= {θ1; HIJ; θ2; θ3; θ1; θ1; DEGHIJDEG; θ3; θ2; θ1; θ2; θ1;
HIJHIJ}

ε1

ε2

ε3

A B C

D

E

F

H I J

G

x

ðaÞ

ε1

ε2

ε3

A B C

D

E

F

H I J

G

ðbÞ
FIGURE 3: (a) Extended WFN obtained from λ and (b) cyclic PN corresponding to S.

Sequence S Split method

Classification
method

Test WFN

PIPE

PIPE

Rediscovered
WFN N´

Event log λ

FIGURE 4: Testing scheme.

Input: S

Output: S′

1. T←∅; σ←∅; S′←∅; i← 1;

2. T← τ(x1, S); //Def.10 Gets the first task in S.

3. S′← FirstSplit(S, T);//Alg.1 Splits S in every apparition of T.

4. While ∃ tj in A(S’)| tj2A(S) then

5. σmin← First (S′); // Def.10 Gets the first sub-sequence in S′.

6. ∀ σ 2 S′:

7. If |A(σ)|< |A(σmin)| then

8. σmin← σ;

9. θi← σmin; // The macro-task is the sub-sequence with the smallest alphabet.

10. (S′, θi)← replaceSeq(S′, σmin, θi); //Alg. 2 Replaces all σ in S′.

11. i← i+ 1;

12. Return S′

ALGORITHM 3: SplitSequences.

Mathematical Problems in Engineering 5

(5) Next, the shortest subtrace is σ=HIJ then the macro-
task θ4=HIJ is created; we replace it in S′, obtaining:

S′= {θ1; θ4; θ2; θ3; θ1; θ1; DEG; θ4; DEG; θ3; θ2; θ1; θ2; θ1;
θ4; θ4}.
(6) Then, the shortest subtrace is σ=DEG; then, the

macrotask θ5=DEG is created; we replace it in S′,
creating:

S′= {θ1; θ4; θ2; θ3; θ1; θ1; θ5; θ4; θ5; θ3; θ2; θ1; θ2; θ1; θ4; θ4}.
(7) Finally, the set of macrotask is {θ1, θ2, θ3, θ4, θ5},

whose subtraces form the event log λ= {ABBC, ABC,
DEFG, DJ, HIJ, DEG}, which is replayed by the WFN
(without the transition x) shown in Figure 3(a). This
WFN is easily transformed into the cyclic PN shown in
Figure 3(b).

Property. Algorithm 3 processes efficiently an event sequence
S yielding a set S′ which contains subsequences corresponding
to the segmentation of S.

Proof. The procedure builds iteratively S′ and converges
toward a set including only macrotasks. The concatenation

of the subsequences represented by the macrotasks in the
order they are obtained yields the sequence S. Since all the
involved algorithms are polynomial-time, the processing is
efficient. □

4. Implementation and Tests

The algorithms to split a long trace into several traces have
been implemented as a software tool. Besides to test the
software over sequences and verify the correct splitting, an
extended test scheme, described below, is defined.

4.1. Testing Scheme. The correctness of the splitting proce-
dure is verified in a controlled manner through a rediscovery
scheme, using artificial event logs, which are generated as
follows. First, a known extended WFN that may contain
silent transitions is created and executed in the PN editor
PIPE [17]; this WFN contains a transition te that allows
the cyclic behaviour in the net to get long sequences. Then,
the obtained string is processed to delete the apparition of the
task te in the log and silent transitions labelled with ε. Finally,

ðaÞ ðbÞ ðcÞ

A B C

D E

F

H G

i o

ðdÞ
FIGURE 5: Test 1: (a) ExtendedWFN in PIPE, (b) artificial event log, (c) splitting the sequence, and (d)WFNobtained using the classificationmethod.

6 Mathematical Problems in Engineering

the long string is saved in a text file, which is the input of the
implemented method.

The developed tool processes the text file that contains
the long sequence and splits it into several traces, which are
saved in a text file; such traces represent the behaviour of the
initial WFN. This text file can be used as input to a discovery
process technique [18] to obtain a WFN, which is compared
to that used to generate the log. The discovered WFN is an
XML file, which can be drawn by PIPE. The followed test
scheme is shown in Figure 4.

4.2. Experiments. Several case studies using WFN with dif-
ferent structure and size were conducted using the software
tool. The following examples are more significant due to
their structure rather than the size.

4.2.1. Test 1. An execution of the software tool is presented in
Figure 5. In Figure 5(a), the extended WFN edited in PIPE is
shown; the artificial log is drawn from such a net. The artifi-
cial log composed by one sequence of length 1,045 is shown

in Figure 5(b). In Figure 5(c), the split log with 11 traces
obtained by the execution of the implemented tool is dis-
played. Then, the WFN discovered by applying the classifi-
cation method to the split log is displayed in Figure 5(d).

4.2.2. Test 2. A second test is presented in Figure 6. In
Figure 6(a), the extended WFN is shown. The artificial log
with length of 3,937 is shown in Figure 6(b). In Figure 6(c),
the obtained log with six traces as result of the execution of
the implemented tool is displayed. The WFN obtained using
the split log and the classification method is displayed in
Figure 6(d).

4.2.3. Test 3. In Figure 7, a third test is presented. In Figure 7(a),
the extended WFN is shown. The artificial log with length of
10,093 is shown in Figure 7(b). In Figure 7(c), the obtained
log with eight traces as result of the execution of the imple-
mented tool is displayed. The WFN obtained using the split
log and the classification method is displayed in Figure 7(d).

ðaÞ ðbÞ ðcÞ

A B

G

H

DC E I

F

i o

ðdÞ
FIGURE 6: Test 2: (a) Extended WFN in PIPE, (b) artificial event log, (c) splitting the sequence, and (d) WFN obtained using classification
method.

Mathematical Problems in Engineering 7

5. Conclusions

A technique for splitting long event sequences exhibiting the
behaviour of cyclic processes has been presented. The result
of the processing is an event log from which a WFN can be
discovered. Long event sequences are drawn from highly
repetitive processes, such as automated manufacturing sys-
tems where the initial state is known, but the delimitation of
jobs or cases is not specified.

Although, there are discovery methods that deal with the
sequences of cyclic processes, this preprocessing technique
allows applying many discovery algorithms that build WFN,
particularly those that deal with silent transitions [18–20]. In
this paper, the method in [18] has been used in the tests to
rediscover the models that generate the long sequences.

The event logs obtained from the splitting technique
contain traces capturing silent behaviour represented in the
discovered WFN by silent transitions of types skip, redo,
switch, and finalise. However, these traces cannot always
lead to discover initialise silent transitions; it is a pending
research.

Data Availability

No underlying data were collected or produced in this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

ðaÞ ðbÞ ðcÞ

A B C D

E F

ε1

ε3

G H

I J K

L

M

i o

ðdÞ
FIGURE 7: Test 3: (a) Extended WFN in PIPE, (b) artificial event log, (c) splitting the sequence, and (d) WFN obtained using classification
method.

8 Mathematical Problems in Engineering

Acknowledgments

Author, Yolanda Alvarez-Pérez is supported by the CONACYT,
Mexico. Ph.D. Grant No. 778009.

References

[1] W. van der Aalst, T. Weijters, and L. Maruster, “Workflow
mining: discovering process models from event logs,” IEEE
Transactions on Knowledge and Data Engineering, vol. 16,
no. 9, pp. 1128–1142, 2004.

[2] A. P. Estrada-Vargas, E. López-Mellado, and J.-J. Lesage, “A
black-box identification method for automated discrete-event
systems,” IEEE Transactions on Automation Science and
Engineering, vol. 14, no. 3, pp. 1321–1336, 2017.

[3] A. K. A. de Medeiros, B. F. van Dongen, W. M. P. van der
Aalst, and A. J. M. M. Weijters, Process Mining: Extending the
α-algorithm to Mine Short Loops, Technische Universiteit
Eindhoven, 2004.

[4] J. Li, D. Liu, and B. Yang, “Process mining: extending
α-algorithm to mine duplicate tasks in process logs,” in
Advances in Web and Network Technologies, and Information
Management: APWebWAIM 2007, K. C.-C. Chang, W. Wang,
and L. Chen, et al., Eds., vol. 4537 of Lecture Notes in
Computer Science, pp. 396–407, Springer, Berlin, Heidelberg,
2007.

[5] L. Wen, W. M. P. van der Aalst, J. Wang, and J. Sun, “Mining
process models with non-free-choice constructs,”Data Mining
and Knowledge Discovery, vol. 15, pp. 145–180, 2007.

[6] D. Wang, J. Ge, H. Hu, B. Luo, and L. Huang, “Discovering
process models from event multiset,” Expert Systems with
Applications, vol. 39, no. 15, pp. 11970–11978, 2012.

[7] M. Dotoli, M. P. Fanti, A. M. Mangini, and W. Ukovich,
“Identification of the unobservable behaviour of industrial
automation systems by petri nets,” Control Engineering Practice,
vol. 19, no. 9, pp. 958–966, 2011.

[8] S. J. Leemans, D. Fahland, and W. M. Van Der Aalst,
“Discovering block-structured process models from event logs
containing infrequent behaviour,” in BPM 2013 International
Workshop, pp. 66–78, Springer international publishing,
Beijing, China, 2014.

[9] R. P. Jagadeesh Chandra Bose and W. M. Van der Aalst,
“Abstractions in process mining: a taxonomy of patterns,” in
Business Process Management BPM 2009, U. Dayal, J. Eder,
J. Koehler, and H. A. Reijers, Eds., Lecture Notes in Computer
Science, pp. 159–175, Springer, Berlin, Heidelberg, 2009.

[10] J. DeWeerdt, S. vanden Broucke, J. Vanthienen, and B. Baesens,
“Active trace clustering for improved process discovery,” IEEE
Transactions on Knowledge and Data Engineering, vol. 25,
no. 12, pp. 2708–2720, 2013.

[11] S. Schneider and L. Litz, “Automatic partitioning of DES models
for distributed fault diagnosis purposes,” IFAC Proceedings
Volumes, vol. 47, no. 2, pp. 21–26, 2014.

[12] J. Li, R. J. C. Bose, and W. M. van der Aalst, “Mining context-
dependent and interactive business process maps using execution
patterns,” in Business Process Management Workshops: BPM
2010, M. zur Muehlen and J. Su, Eds., vol. 66 of Lecture Notes in
Business Information Processing, pp. 109–121, Springer, Berlin,
Heidelberg, 2011.

[13] J. Saives, G. Faraut, and J.-J. Lesage, “Identification of discrete
event systems unobservable behaviour by Petri nets using
language projections,” in 2015 European Control Conference
(ECC), pp. 464–471, IEEE, Linz, Austria, 2015.

[14] E. López-Mellado and T. Flores-Tapia, “Refining discovered
Petri nets by sequencing repetitive components,” in ATAED@
Petri Nets/ACSD, pp. 131–138, 2017.

[15] C.-L. Goh and E. Sumita, “Splitting long input sentences for
phrase-based statistical machine translation,” in Proceedings of
the 17th Annual Meeting of the Association for Natural
Language Processing, pp. 802–805, Processing society of Japan,
2011.

[16] G. Bernard, A. Senderovich, and P. Andritsos, “Cut to the
trace! process-aware partitioning of long-running cases in
customer journey logs,” in Advanced Information Systems
Engineering: CAiSE 2021, M. La Rosa, S. Sadiq, and E. Teniente,
Eds., Lecture Notes in Computer science, pp. 519–535,
Springer, Cham, 2021.

[17] N. J. Dingle, W. J. Knottenbelt, and T. Suto, “PIPE2: a tool for
the performance evaluation of generalised stochastic petri
nets,” ACM SIGMETRICS Performance Evaluation Review,
vol. 36, no. 4, pp. 34–39, 2009.

[18] Y.Álvarez-Pérez and E. López-Mellado, “Automated modelling
of discrete-event processes. Discovering Petri nets including
silent transitions by classifying event traces,” International
Journal of Modelling and Simulation, pp. 1–22, 2023.

[19] L. Wen, J. Wang, W. M. P. van der Aalst, B. Huang, and
J. Sun, “Mining process models with prime invisible tasks,”
Data & Knowledge Engineering, vol. 69, no. 10, pp. 999–1021,
2010.

[20] Q. Guo, L. Wen, J. Wang, Z. Yan, and P. S. Yu, “Mining
invisible tasks in non-free-choice constructs,” in Business
Process Management: BPM 2016, H. R. Motahari-Nezhad,
J. Recker, andM.Weidlich, Eds., pp. 109–125, Springer, Cham,
2015.

Mathematical Problems in Engineering 9

