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The motivation of this study is to develop effective and economical assistive technologies for people with physical disabilities. The
novelty in this manuscript is the application of the average value-based technique to accurately represent the involved biomechan-
ics of the lower limb joints during the human gait cycle. This mathematical formulation of lower limb joints’ biomechanics forms
the first objective for modeling and final exoskeleton prototype development. To account for modeling the characteristics of human
locomotion, the nth-order linear differential equation with constant coefficients is considered with appropriate modification. The
physical characteristics of an individual are represented by the constant coefficients (P0, P1, P2, and P3) of the modified infinite
series, which are obtained by processing experimental data collected using an optical technique. The differential terms of
the infinite series are replaced by difference terms (δbavg, δ2bavg, and δ3bavg) since the data were captured as a set of digital values.
The work presented here is based on the experimental results of individuals suitably categorized according to their physical nature
like age and other physical structure. The optically monitored positional values of the lower limb joints of the individual subjects
while they are completing the gait cycles are used for getting values of different terms of the model. The data collected through the
conduct of experiments are used for finding the values of the terms of the differential equation. The model is effectively validated
through experimental results. It was determined that the representation’s accuracy fell within the Æ5% acceptable tolerance limit.
The model is prepared for healthy as well as disabled persons, through which the disability is quantified. The resulting model can be
used to develop assistive devices for people with physical disabilities. This results in the rehabilitation process and thereby helps the
reintegration into society, subsequently allowing them to lead a normal life.

1. Introduction

Gait analysis is a methodical examination of human locomo-
tion that gained attention within the area of rehabilitation
engineering [1–3]. The objective of rehabilitation engineering
is to create advanced assistive devices that offer technological
support to individuals with disabilities. The advancement of
intelligent assistive devices aims to reduce the reliance of dis-
abled individuals on others for their daily tasks, thereby

encouraging their reintegration into society [4–6]. Given the
complex and nonlinear equations governing human motion,
muscle dynamics, and interactions with the ground, analyzing
human gait poses a challenging biomechanical problem [7, 8].
Quantifying the extent of disability in numerical terms is
crucial for designing assistive devices that effectively compen-
sate for these limitations. Direct experimentation upon a dis-
abled person is not allowable due to ethical, psychological,
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legal, and social considerations. At the same time, acquiring
accurate quantified information about their condition is
essential. To address this challenge, mathematical modeling
of the human gait cycle comes into play.

Models offer an effective approach to investigating or
evaluating the characteristics of a system, especially when
direct study would be impractical without causing harm,
altering the system, or interfering with its current state. In
other words, modeling techniques in rehabilitation engineer-
ing offer a safe, efficient, and effective means to understand,
design, and implement interventions that enhance the lives
of individuals with disabilities [9, 10].

The process of analyzing models enables one to predict
the potential outcomes that may arise when a system is sub-
jected to different conditions. The field of lower limb robotics
centers on conducting a thorough analytical inquiry and
developing models to understand and study human gait.
The primary aim of gait modeling is to develop a prediction
model that can be applied to the gait patterns exhibited by
individuals from different generations and characteristics.
Mathematical models are developed and utilized to gain a
comprehensive understanding of the underlying principles
governing natural human motions. Understanding the prin-
ciples of human movement is of utmost significance within
the field of rehabilitation engineering.

Various modeling techniques are employed to design and
optimize assistive devices, rehabilitation strategies, and tech-
nologies that aid individuals with disabilities. Some of these
techniques include artificial neural networks (ANNs) [11–13],
mathematical models [14], fuzzy logic [15, 16], and Petri
net/S-net models. Differential equations are also extensively
used to model and analyze the lower limb kinematics, muscle
actions, etc., which include the inverted pendulum model of
stance leg [17], muscle–tendon dynamics [18], joint torque/
dynamics, and forward dynamic simulations [19].

This article discusses a novel methodology for developing
and implementing mathematical models to examine the bio-
mechanics associated with the lower limb by applying the
average value technique. The formulation of a mathematical
model that describes the dynamics of human mobility has
the potential to yield substantial implications for the field of
rehabilitation engineering [20–22]. The specific goal of the
work is the simplification of the design of assistive devices for
the disabled avoiding mental and physical strain. This is the
prime objective of the development of this model. The sug-
gested analytical technique makes the above-specified objec-
tive more attractive. Four cases of different disabilities are
considered and quantification of disability is done through
this modeling technique.

The paper is structured in the following manner: The
average value-based technique is briefly introduced, followed
by a description of the various steps involved in formulating
the mathematical equation. The subsequent sections outline
the steps involved in the determination of the constant
terms, followed by the analysis of the stability of the sug-
gested model. In the final section, the generalized mathemat-
ical equation is provided.

2. Average Value-Based Approach

The ordinary linear differential equation with constant coef-
ficients is the most extensively used mathematical model for
examining the dynamic response [23–27]. The idea of an
average value-based model is obtained from the nth-order
linear differential equations. The dynamic characteristic of a
system, i.e., the input–output function of a system is repre-
sented popularly by an nth-order linear differential equation
with constant coefficients between qi the input function and
qo the output function as follows:

qout ¼ Am
dmq0
dtm

þ Am−1
dm−1q0
dtm−1 þ⋯þ A1

dq0
dt

þ A0q0;

ð1Þ

qinput ¼ Bn
dnqi
dtn

þ Bn−1
dn−1qi
dtn−1

þ⋯þ B1
dqi
dt

þ B0qi;

ð2Þ

where the constants As and Bs represent the physical param-
eters of the system [28–30].

This equation is modified suitably to accommodate the
dynamics of human locomotion. The output can be
expressed as a linear combination of the base average value
and an infinite number of hierarchically chosen variational
terms is an assumption made here. This average value-based
approach can be applied to functions having an average
value. The nondifferential term is changed to a base value
called base average value here, while the differential terms are
changed to deviation variables [31]:

q0 ¼Abase valueþ first variational term

 þ  second variational term

 þ  third variational termþ…:
ð3Þ

The base value contains a coefficient A0 multiplied by an
average value of the variable, the first variational term con-
tains a coefficient A1 multiplied by the first variational part of
the variable and the second variational term contains another
coefficient A2 multiplied by the second variational part of the
variable, and this process extends to infinity. While general-
izing the model, these coefficients should be defined as con-
stant values representing the physical parameters of the
system, and the variable is the output of the system (in the
case of an engineering system). In the case of a disabled per-
son, physical parameters mean both—the counterpart of
physical parameters of the engineering system along with
psychological aspects of the subject. The extension of varia-
tional terms that must be taken into account relies on the level
of accuracy that the researcher demands from the analysis.

Human locomotion is a complicated process that involves
synchronous action of three subsystems (hip, knee, and
ankle). The synchronous action of joints and sequential action
of the legs result in linear displacement. The output, then, is
the linear displacement expressed in terms of joint angular
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displacement, velocity, acceleration, and jerkwhen the human
body is regarded as the system:

P0bavg þ P1 δbavg þ P2 δ2bavgþ
 P3 δ3bavg ¼ Linear displacement;

ð4Þ

where P0, P1, P2, and P3 are the constants that represent the
physical parameters of the person and bavg represents the base
term, δbavg represents the first derivative of displacement,
δ2bavg represents the second derivative of displacement,
δ3bavg represents the third derivative of displacement. In other
words, bavg represents the displacement, δbavg represents the
velocity, δ2bavg represents the acceleration, and δ3bavg repre-
sents the jerk.

The steps for developing this average value-based repre-
sentation are described in the paragraphs that follow. As
mentioned in the previous section, the developed mathemat-
ical model will act as a reference for the design of rehabilita-
tive devices.

3. Data Collection

Gait analysis was conducted through the video analysis on
300 healthy individuals at the National Institute of Technol-
ogy, Calicut, India, using a video camera having a resolution
of 16.1 megapixels with 10x optical zoom, and a 25mm wide
lens which was placed perpendicular to the plane of move-
ment. Data were collected from these 300 healthy individuals
between the ages of 20 and 35 with an average weight of 65Æ
5 kg and an average height of 1.70Æ 0.15m. The average
thigh and shank measurements were 42 and 45 cm, respec-
tively. This experiment includes optically monitoring and
recording of [32–36] the variation in the angle at the lower
limb joints and the analysis of the captured videos using
Kinovea software. The camera records the positions of the
joints at every 0.025 s for a total duration of 20 s. The sche-
matic for the optical data collecting method for the positional
analysis of the human leg is shown in Figure 1. Here, a single
gait cycle is 1.325 s duration, of which the stance phase and
swing phase, respectively, lasted 800 and 525ms. According
to an experiment performed on the participants who walked

on a flat surface, the linear displacement was 14.4m, the
average time required to cover this displacement was 20 s,
the number of gait cycles that occurred during this time was
15 on average, and the linear displacement in one gait cycle
was ∼0.954m (dataset is provided in Supplementary File).

Two female and two male patients (physically disabled
individuals) were selected additionally for the study. Affected
participants ranged in age from 21 to 24 years, in height from
5 to 5.7 feet, and in weight from 47 to 56 kg (Table 1). All
afflicted subjects were able to walk without the aid of
crutches. Subject 1 had a bent left foot but a straight right
leg, Subject 2 had both legs affected by polio, Subject 3 had a
longer left leg than a shorter right one, and Subject 4 had
affliction in both legs (both legs bent). Except for the polio-
affected person, the rest of the patients possessed the afflic-
tions by birth.

4. Formulation of Mathematical Representation

This section details the algorithm for the determination of
the variable terms in Equation (4). The whole dataset is
divided into primary sets of equal number of elements.
The nondifferential term (here referred to as the base
term) is determined from the primary set. From the primary
set, secondary sets are formulated, which are used to calcu-
late the first variational term. The secondary sets are further
subdivided into tertiary sets from which the second varia-
tional term is calculated. The third variational term is
obtained by forming the quaternary sets from the tertiary
sets [27, 37–42]. Further subsets must be generated if higher
order differential terms are needed.

Camera

Walking path

Filmed video is analyzed in Kinovea

Markers
Capturevideo

Equivalent
representation

Captured lower
limb kinematics

Average value-based
modeling on the

captured kinematics

P0 P1 P2

Coefficients that best represent
the lower limb dynamics

Database formulationData collection using
optical technique

Model development

FIGURE 1: Overview of the data collection and the performed analysis.

TABLE 1: Characteristics of the subjects participated in the study.

Category Age (years) Weight (kgs) Height (m)
Gait cycle
duration (s)

Heathy 20–35 65Æ 5 1.7Æ 0.15 1.3
Patient 1 21 51 1.52 1.7
Patient 2 21 47 1.74 2.45
Patient 3 22 55 1.65 1.7
Patient 4 24 56 1.66 1.6

Mathematical Problems in Engineering 3



4.1. Formulation of Primary Sets and Calculation of Base
Term. The initial term in the mathematical representation
is the nondifferential term, also known as the base value
(bavg), which is obtained by calculating the mean of the pri-
mary set. Table 2 shows the base values of each primary set.
This term represents the base value, i.e., the nondifferential
term of the dynamic characteristics.

4.2. Formulation of Secondary Sets and Calculation of First
Variational Term. The primary sets are further classified into
“s” subsets called secondary sets. First, the means of each
secondary set are calculated. The mean of the difference
between the secondary set means and the corresponding
primary set’s mean makes up the first variational term:

δbavgA¼ Mean of AV − AS1V

À Á
; AV − AS2V

À Á
;

AV − AS3V

À Á
;…; AV − ASsV

À Á
;

ð5Þ

where AV represents the primary set mean and AS1V , AS1V ;
…;ASsV , etc., represent the mean of secondary sets. Thus, the
first variational terms are calculated and are shown in
Table 3.

4.3. Formulation of Tertiary Sets and Calculation of Second
Variational Term. Tertiary sets are the next level of the divi-
sion from the secondary sets after the determination of the
first variational term.

Before calculating the second variational term, the means
of each tertiary set are computed. The second variational
term is the mean of the difference between the means of
the tertiary sets and the respective secondary sets, as shown
in Equation (6):

δ2bavgA¼Mean of   AS1V − AT11V

À Á
;…; AS1V − AT1tV

À Á
;

Â

AS2V − AT21V

À Á
;…; AS2V − AT2tV

À Á
;

 …; ASsV − ATs1V

À Á
;…; ASsV − ATstV

À ÁÃ
;

ð6Þ

where s represents the number of secondary sets, t represents
the number of tertiary sets, AS1V is the mean of the first
secondary set, and AT11V is the mean of the first tertiary set
of the first secondary set. The second variational term of each
set is given in Table 4.

4.4. Formulation of Quaternary Sets and Calculation of Third
Variational Term. The quaternary sets are formed which are
the subdivisions of the tertiary sets. The first step in deter-
mining the third variational term is to compute the mean of
each quaternary set. The third variational term is the mean of
the difference between the quaternary sets’ and correspond-
ing tertiary sets’ mean values:

δ3bavgA ¼Mean of   AT11V − AQ111V

À Á
;…; AT11V − AQ11qV

À Á
;

Â

AT12V − AQ121V

À Á
;…; AT12V − AQ12qV

À Á
;…;

AT1tV − AQ1t1V

À Á
;…; AT1tV − AQ1tqV

À Á
…;

ATstV − AQst1V

À Á
;…; ATstV − AQstqV

À ÁÃ
;

ð7Þ

where t represents the number of tertiary sets, q represents
the number of quaternary sets, AT11V is the mean of the first
tertiary set, and AQ11qV is the mean of the first quaternary set
of the corresponding tertiary set. The third variational term
of each set is given in Table 5.

TABLE 2: Base mean values (bavg) of primary sets for both legs (this represents the nondifferential term of the dynamic characteristics).

Set

bavg of left leg bavg of right leg

Joints’ dynamics Joints’ dynamics

Hip Knee Ankle Hip Knee Ankle

Primary set A 164.615 168.235 97.985 163.13 167.855 97.101
Primary set B 163.735 165 97.461 164.22 164.93 97.75
Primary set C 163.255 164.45 97.176 164.62 165.19 97.988
Primary set D 164.47 165.03 97.899 164.585 163.855 97.967

TABLE 3: First variational terms (δbavg) of each set.

Set

δbavg of left leg δbavg of right leg

Joints’ dynamics Joints’ dynamics

Hip Knee Ankle Hip Knee Ankle

A 2.7919 5.218 1.662 3.274 6.416 1.949
B 2.512 3.92 1.495 2.058 3.956 1.225
C 2.816 6.91 1.676 2.456 7.348 1.462
D 2.336 5.034 1.39 2.558 4.626 1.523

TABLE 4: Second variational terms (δ2bavg) of each set.

Set

δ2bavg of left leg δ2bavg of right leg

Joints’ dynamics Joints’ dynamics

Hip Knee Ankle Hip Knee Ankle

A 7.82 12.84 4.655 7.54 12.33 4.488
B 7.97 16.23 4.749 8.62 15.74 5.131
C 7.51 14.88 4.469 8.28 14.02 4.929
D 8.48 15.54 5.048 8.40 15.55 5.001
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Table 6 shows the different terms of the asymmetrical
gait cycle. The algorithm utilized for the calculation is pro-
vided in Figure 2 for better clarity.

5. Average Value-Based
Mathematical Representation

The modified differential equation can be written in general
form as follows:

P0bavg þ P1 δbavg þ P2 δ2bavgþ
 P3 δ3bavg ¼ Linear displacement:

ð8Þ

The distance covered during the primary set’s time is the
linear displacement. The video is recorded for a time period
of 20 s. The total distance covered in the 20 s is 14.4m, and
each primary set’s covered time was 5 s. Thus, 3.6m have
been covered here.

The equations governing the gait dynamics of the left
limb as shown in Equations (9)–(20). They incorporate the
base value, the first variational term, the second variational
term, and the third variational term.

With three variational terms:
Left knee:

168:235 P0 þ 5:218 P1 þ 12:84 P2 þ 4:505 P3 ¼ 3:6;

ð9Þ

165 P0 þ 3:92P1 þ 16:2325 P2 þ 3:85 P3 ¼ 3:6; ð10Þ

164:45 P0 þ 6:91 P1 þ 14:8845P2 þ 4:6 P3 ¼ 3:6;

ð11Þ

165:03P0 þ 5:034 P1 þ 15:5425 P2 þ 3:87 P3 ¼ 3:6:

ð12Þ

The equations were solved and the values for the constants
P0, P1, P2, and P3 were obtained.

Left hip:

164:615 P0 þ 2:7919 P1 þ 7:82P2 þ 2:525 P3 ¼ 3:6;

ð13Þ

163:735 P0 þ 2:512 P1 þ 7:97749 P2 þ 2:135 P3 ¼ 3:6;

ð14Þ

TABLE 5: Third variational terms (δ3bavg) of each set.

Set

δ3bavg of left leg δ3bavg of right leg

Joints’ dynamics Joints’ dynamics

Hip Knee Ankle Hip Knee Ankle

A 2.525 4.505 4.242 2.46 4.575 4.133
B 2.135 3.85 3.587 2.25 5.14 3.78
C 2.385 4.6 4.007 2.48 5.35 4.166
D 2.33 3.87 3.914 2.315 5.735 3.889

TABLE 6: The base term and the variational terms of asymmetrical
gait.

Joint bavg δbavg δ2bavg
Right knee 151.8 1.72 9.54
Left knee 154.6 1.88 8.58
Right hip 157.4 9.76 8.21
Left hip 153.9 6.96 12.14
Right ankle 93.69 5.81 4.886
Left ankle 90.381 1.024 5.681

Capture the video

Analyze the video using software

Obtain the joint angle variations

Split the dataset into “P” sectors

Calculate the average of each
primary sector

Split each primary sector
into “S” sectors

Calculate the average of
each secondary sector

Determine the difference of
average of each secondary

sector and average of
corresponding primary sector

Primary sectors

Secondary sectors

This is δbavg

Calculate the average of the 
differences obtained

Subdivide each secondary
sector into “T” sectors

Calculate the average of each
tertiary sector

Determine the difference of
average of each tertiary
sector and average of

corresponding secondary sector

Determine the average of all “T” × “S”
differences obtained

This is δbavg

Tertiary sectors

This is δ2bavg

FIGURE 2: Flow diagram of average value-based method.
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163:255 P0 þ 2:816 P1 þ 7:50749 P2 þ 2:385 P3 ¼ 3:6;

ð15Þ

164:47 P0 þ 2:336 P1 þ 8:48P2 þ 2:325 P3 ¼ 3:6:

ð16Þ

Left ankle:

97:985 P0 þ 1:662 P1 þ 4:655 P2 þ 1:503 P3 ¼ 3:6;

ð17Þ

97:461 P0 þ 1:495 P1 þ 4:749 P2 þ 1:271 P3 ¼ 3:6;

ð18Þ

97:176 P0 þ 1:676 P1 þ 4:469 P2 þ 1:42 P3 ¼ 3:6;

ð19Þ

97:899 P0 þ 1:39 P1 þ 5:048 P2 þ 1:387 P3 ¼ 3:6:

ð20Þ

The equations for the right leg are as follows:
Right knee:

167:855 P0 þ 6:416 P1 þ 12:33 P2 þ 4:575 P3 ¼ 3:6;

ð21Þ

164:93 P0 þ 3:956 P1 þ 15:7425P2 þ 5:14P3 ¼ 3:6;

ð22Þ

165:19P0 þ 7:348 P1 þ 14:02P2 þ 5:345 P3 ¼ 3:6;

ð23Þ

163:855 P0 þ 4:626 P1 þ 15:5475P2 þ 5:735 P3 ¼ 3:6:

ð24Þ

Right hip:

163:13 P0 þ 3:274 P1 þ 7:54P2 þ 2:46P3 ¼ 3:6;

ð25Þ

164:22 P0 þ 2:058 P1 þ 8:62P2 þ 2:25P3 ¼ 3:6;

ð26Þ

164:62 P0 þ 2:456 P1 þ 8:28P2 þ 2:478 P3 ¼ 3:6;

ð27Þ

164:585 P0 þ 2:558 P1 þ 8:4025 P2 þ 2:315 P3 ¼ 3:6:

ð28Þ

Right ankle:

97:101 P0 þ 1:949 P1 þ 4:488 P2 þ 1:464 P3 ¼ 3:6;

ð29Þ

97:75P0 þ 1:225 P1 þ 5:131 P2 þ 1:339 P3 ¼ 3:6;

ð30Þ

97:988 P0 þ 1:462 P1 þ 4:929 P2 þ 1:476 P3 ¼ 3:6;

ð31Þ

97:967 P0 þ 1:523 P1 þ 5:001 P2 þ 1:378 P3 ¼ 3:6:

ð32Þ

With two variational terms:
Left knee:

168:235 P0 þ 5:218 P1 þ 12:84P2 ¼ 3:6; ð33Þ

165 P0 þ 3:92P1 þ 16:2325 P2 ¼ 3:6; ð34Þ

164:45 P0 þ 6:91 P1 þ 14:8845P2 ¼ 3:6; ð35Þ

165:03P0 þ 5:034 P1 þ 15:5425 P2 ¼ 3:6: ð36Þ

The equations were solved and the values for the constants
P0, P1, and P2 were obtained.

Left hip:

164:615 P0 þ 2:7919P1 þ 7:82P2 ¼ 3:6; ð37Þ

163:735 P0 þ 2:512 P1 þ 7:97749 P2 ¼ 3:6; ð38Þ

163:255 P0 þ 2:816 P1 þ 7:50749 P2 ¼ 3:6; ð39Þ

164:47P0 þ 2:336 P1 þ 8:48 P2 ¼ 3:6: ð40Þ

Left ankle:

97:985 P0 þ 1:662 P1 þ 4:655 P2 ¼ 3:6; ð41Þ

97:461 P0 þ 1:495 P1 þ 4:749 P2 ¼ 3:6; ð42Þ

97:176 P0 þ 1:676 P1 þ 4:469 P2 ¼ 3:6; ð43Þ

97:899 P0 þ 1:39P1 þ 5:048 P2 ¼ 3:6: ð44Þ

The equations for the right leg are as follows:
Right knee:

167:855 P0 þ 6:416 P1 þ 12:33P2 ¼ 3:6; ð45Þ

164:93P0 þ 3:956 P1 þ 15:7425 P2 ¼ 3:6; ð46Þ
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165:19P0 þ 7:348 P1 þ 14:02 P2 ¼ 3:6; ð47Þ

163:855 P0 þ 4:626 P1 þ 15:5475 P2 ¼ 3:6: ð48Þ

Right hip:

163:13 P0 þ 3:274 P1 þ 7:54P2 ¼ 3:6; ð49Þ

164:22 P0 þ 2:058 P1 þ 8:62P2 ¼ 3:6; ð50Þ

164:62 P0 þ 2:456 P1 þ 8:28P2 ¼ 3:6; ð51Þ

164:585 P0 þ 2:558 P1 þ 8:4025 P2 ¼ 3:6: ð52Þ

Right ankle:

97:101 P0 þ 1:949 P1 þ 4:488 P2 ¼ 3:6; ð53Þ

97:75P0 þ 1:225 P1 þ 5:131 P2 ¼ 3:6; ð54Þ

97:988 P0 þ 1:462 P1 þ 4:929 P2 ¼ 3:6; ð55Þ

97:967 P0 þ 1:523 P1 þ 5:001 P2 ¼ 3:6: ð56Þ

6. Results and Discussion

The values for the constants P0, P1, P2, and P3 are deter-
mined by solving Equations (9)–(32) (i.e., considering up to
third variational term). For the left knee, the values for P0, P1,
P2, and P3 were 0.01915, 0.01418, 0.02371, and 0.00016,
respectively. For the right knee, the values were 0.01943,
0.00264, 0.01256, and 0.03625. For the hip, the values were
determined to be 0.04031, −0.4537, −0.2671, and 0.1269 for
the left hip, and 0.03103, −0.05906, −0.1241, and −0.1352
for the right hip. When the ankle joint is considered, 0.0672,
−0.7476, −0.4414, and 0.20755 for the left ankle and 0.0521,
−0.0993, −0.2082, and −0.22588 for the right ankle. The
values obtained are shown in Table 7.

The values for the constants P0, P1, and P2 are deter-
mined by solving Equations (33)–(56) (i.e., considering up
to the second variational term). For the left knee, the values
for P0, P1, and P2 were 0.01914, 0.01422, and 0.02374, respec-
tively. For the right knee, the values were 0.0168, 0.02553,
and 0.04666. For the hip, the values were determined to be

0.03006, −0.1557, and −0.1163 for the left hip and 0.01575,
0.09302, and 0.09465 for the right hip. For the left ankle, the
values for P0, P1, and P2 were 0.05056, −0.26157, and
−0.1953, respectively. For the right ankle, the values were
0.02646, 0.15627, and 0.15901. The values obtained are
shown in Table 8. The equations for validation are as follows:

163:51 P0 þ 5:296 P1 þ 15:2225 P2 þ 4:59 P3 ; ð57Þ

166:715 P0 þ 8:608 P1 þ 12:81P2 þ 5:205 P3 ; ð58Þ

163:415 P0 þ 2:818 P1 þ 7:665 P2 þ 2:255 P3 ; ð59Þ

164:47P0 þ 2:336 P1 þ 8:48 P2 þ 2:33 P3 ; ð60Þ

97:271 P0 þ 1:677 P1 þ 4:562 P2 þ 1:342 P3 ; ð61Þ

97:899 P0 þ 1:39P1 þ 5:048 P2 þ 1:387 P3 : ð62Þ

Equation (57) is the equation of left knee joint,
Equation (58) is the equation of right knee joint, Equation (59)
is the equation of left hip joint, Equation (60) is the equation
of right hip joint, Equation (61) is the equation of left ankle
joint, and Equation (62) is the equation of right ankle joint.
The values of P0, P1, and P2 shown in Tables 7 and 8 are
substituted and the error is calculated and shown in Table 9.
It could be seen fromTable 9 that there is not much difference
in errors with and without considering the third variational
term. Hence for the easiness of calculation, till the second
variational term can be considered.

The gait cycle is completed in 1.3 s for healthy subjects
and 1.6–2.45 s for afflicted ones. Because of practical and
statutory constraints, only four patients could be examined.
This study reveals that each affliction has its unique charac-
teristics and a general affliction characteristic specification
seems difficult. The experimental observations produced a
quantified way for declaring the disability of the abovemen-
tioned cases. The disability is defined in terms of the dis-
placement magnitude ratio between hip/knee, hip/ankle, and
knee/ankle. These ratios are obtained by comparing the same
with the counterpart of the healthy subject (this value is
taken on an average basis upon the results of 300 subjects).
The ratio of the displacement magnitude of hip/knee,
hip/ankle, and knee/ankle are shown in Table 10. Table 11

TABLE 7: Obtained values of constants with three variational terms.

Limb details P0 P1 P2 P3
Left leg

Hip 0.04031 −0.4537 −0.2671 0.1269
Knee 0.01915 0.01418 0.02371 0.00016
Ankle 0.0672 −0.7476 −0.4414 0.20755

Right leg
Hip 0.03103 −0.05906 −0.1241 −0.1352
Knee 0.01943 0.00264 0.01256 0.03625
Ankle 0.0521 −0.0993 −0.20826 −0.22588

TABLE 8: Obtained values of constants with two variational terms.

Limb details P0 P1 P2
Left leg

Hip 0.03006 −0.1557 −0.1163
Knee 0.01914 0.01422 0.02374
Ankle 0.05056 −0.26157 −0.1953

Right leg
Hip 0.01575 0.09302 0.09465
Knee 0.0168 0.02552 0.04666
Ankle 0.02646 0.15627 0.15901
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shows the difference in the ratio of healthy and afflicted
subjects. The percentage of affliction is calculated using the
ratio values as follows:

Percentage of affliction¼
Ratio of healthy subjects − Ratio of disabled subjectð Þ

Ratio of healthy subjects
:

ð63Þ

The percentage of affliction corresponding to each
afflicted subject is shown in Table 12.

Equation (8) represents the dynamic properties of
human locomotion. Therefore, the researchers may confi-
dently assert that, on average, the dynamic characteristics
of a healthy individual are accessible for various physical
attributes such as height, weight, and so on. The dynamic
characteristics of the impaired person can also be obtained.
By determining physical attributes such as weight, height,
etc., it becomes possible to compare them with those of a
healthy individual. Through this comparison, clinical specia-
lists can potentially measure the extent of disability in the
individual with disabilities. This greatly aids the rehabilita-
tion engineer in designing appropriate assistive equipment.
This demonstrates the practical significance of the model.

TABLE 9: Comparison of the error of the model formulated with two variational terms and three variational terms.

Joint
Error

Up to the second variational term Up to the third variational term

Left knee 0.032961 0.032861
Right knee 0.01738 0.0135
Left hip 0.01725 0.00538
Right hip 0.010363 0.0021046
Left ankle −0.0115 0.000819
Right ankle 0.0103 0.000853

TABLE 10: Various joint angle displacement magnitude ratios (hip to knee (H/K), hip to ankle (H/A), knee to ankle (K/A)) of healthy and
afflicted patients.

Subject
Right leg Left leg

H/K ratio H/A ratio K/A ratio H/K ratio H/A ratio K/A ratio

Healthy 1.0093 1.68 1.699 1.0068 1.68 1.7026
Patient 1 1.0281 1.9518 1.9058 0.9718 1.951 2.0418
Patient 2 0.987 1.771 1.8051 1.0255 1.646 1.608
Patient 3 0.9499 1.549 1.634 0.9607 1.6039 1.675
Patient 4 0.965 1.998 2.061 0.9954 1.999 2.009

TABLE 11: Difference in ratios of hip to knee (H/K), hip to ankle (H/A), and knee to ankle (K/A) of both legs of afflicted patients.

Subject
Right leg Left leg

H/K ratio H/A ratio K/A ratio H/K ratio H/A ratio K/A ratio

Afflicted 1 −0.01875 −0.27162 −0.20586 0.034968 −0.27029 −0.33912
Afflicted 2 0.02764 −0.09077 −0.10515 −0.01915 0.033497 0.094203
Afflicted 3 0.059371 0.130485 0.065893 0.046043 0.076051 0.027721
Afflicted 4 0.044246 −0.31484 −0.36813 0.011297 −0.31962 −0.30725

TABLE 12: Calculated percentage of the affliction of afflicted subjects in hip/knee (H/K) ratio, hip/ankle (H/A) ratio, and knee/ankle (K/A)
ratio of both legs of each subject.

Subject
Right leg Left leg

H/K ratio H/A ratio K/A ratio H/K ratio H/A ratio K/A ratio

Afflicted 1 −1.856 −16.17 −12.11 3.474 −16.08 −19.92
Afflicted 2 2.74 −5.403 −6.186 −1.9021 1.99 5.533
Afflicted 3 5.889 7.767 3.876 4.575 4.527 1.628
Afflicted 4 4.385 −18.74 −21.654 1.122 −19.02 −18.045
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6.1. Stability Analysis. The stability of the model is assessed
by replicating the analysis using a distinct dataset compris-
ing individuals from the same age group who exhibit com-
parable physical traits and health conditions. Since it is clear
from the comparison table (Table 9) that the difference in
error that is produced by taking into account up to two
variational terms as opposed to taking into account up to
three variational terms is insignificant, the validation is
performed by just taking into account up to two variational
terms. The output obtained and the error are given in
Tables 13 and 14.

7. Generalization of Mathematical Equation

Once the constants have been determined, the linear differ-
ential equation can be expressed in matrix form, with k being

the constant term added which needs to be determined for
each individual and D representing the linear displacement.

Rewriting Equation (4) results in the following equations:

P0 P1 P2 P3ð Þ

X

δbavg

δ2bavg

δ3bavg

0
BBBB@

1
CCCCA

þ k¼ D; ð64Þ

X ¼ 1
Nm

∑
Nm

im¼1
Xim ; ð65Þ

where Nm is the total number of elements of primary set, Xim
is the element in the set, and X is the bavg.

TABLE 13: Validation of the joints’ dynamics (right leg).

Joint bavg δbavg δ2bavg Output Error Mean of the error

Right knee

166.845 5.914 12.74 3.54755 0.05245

0.02103

166.515 4.622 15.548 3.64006 −0.04006
162.985 4.986 14.88 3.5589 0.0411
165.485 8.958 11.05 3.52354 0.07646
167.765 4.342 12.13 3.49443 0.10557
166.715 8.608 12.81 3.61739 −0.01739
162.88 5.326 15.732 3.60556 −0.00556
164.47 8.254 14.242 3.63746 −0.03746
169.745 3.746 12.025 3.50757 0.09243
165.465 6.788 14.195 3.61457 −0.01457
164.61 6.662 15.243 3.64589 −0.04589
162.01 8.602 13.165 3.55477 0.04523

Right hip

163.51 2.752 7.855 3.57478 −0.02522

0.00534

164.59 2.732 8.085 3.6117 0.0117
164.62 2.686 7.842 3.5849 −0.0151
163.835 3.152 7.677 3.60026 0.00026
163.255 2.816 7.507 3.54378 −0.05622
164.47 2.336 8.48 3.61036 0.01036
164.62 2.286 8.5 3.60997 0.00997
164.21 2.738 7.977 3.59605 −0.00395
164.62 2.456 8.28 3.60496 0.00496
164.22 2.058 8.62 3.59382 −0.00618
163.13 3.274 7.54 3.58754 −0.01246
164.585 2.178 8.695 3.61783 0.01783

Right ankle

97.327 1.638 4.676 3.6252 −0.0252

−0.0070725

97.97 1.626 4.812 3.5885 0.0115
97.988 1.599 4.668 3.6151 −0.0151
97.521 1.876 4.57 3.5998 0.0002
97.176 1.676 4.469 3.6562 −0.0562
97.899 1.39 5.048 3.61031 −0.01031
97.988 1.36 5.06 3.59 0.01
97.744 1.63 4.749 3.6038 −0.0038
97.988 1.462 4.929 3.59501 0.00499
97.75 1.225 5.131 3.60622 −0.00622
97.101 1.949 4.488 3.6125 −0.0125
97.967 1.296 5.176 3.58223 0.01777
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Ai ¼
1
Nsi

∑
Nsi

si¼1
Xsi ; ð66Þ

where Nsi is the number of elements in the ith secondary set
and Ai is its mean.

δbavg ¼
1
w

∑
w

i¼1
X − Aið Þ; ð67Þ

where w is the number of secondary sets.
Secondary sets are further divided into subsets known as

tertiary sets. Suppose each secondary set is subdivided intom
tertiary sets:

Bij ¼
1
Ntj

∑
Ntj

j¼1
Xtj ; ð68Þ

where Bij is the mean of the tertiary set and Ntij is the number
of elements in the tertiary set considered corresponding to
the ith secondary set.

δ2bavg ¼
1
w

∑
w

i¼1

1
m

∑
m

j¼1
Ai − Bij

À Á
; ð69Þ

wherem is the number of tertiary sets and w is the number of
secondary sets.

Tertiary sets are further divided into subsets known as
quaternary sets. Suppose each tertiary set is subdivided into p
quaternary sets:

TABLE 14: Validation of the joints’ dynamics (left leg).

Joint bavg δbavg δ2bavg Output Error Mean of the error

Left knee

166.785 4.658 14.493 3.60334 −0.00334

0.01049

162.705 5.786 15.988 3.57676 0.02324
166.89 4.852 14.143 3.59981 0.00019
166.335 6.902 13.192 3.59575 0.00425
168.81 7.212 11.157 3.59923 0.00077
163.51 5.296 15.222 3.56703 0.03297
166.3 5.41 14.142 3.59642 0.00358
164.095 4.634 16.337 3.59528 0.00472
165.245 3.076 14.835 3.5595 0.0405
167.735 7.192 12.05 3.59957 0.00043
162.385 5.642 15.968 3.56812 0.03188
167.35 8.48 12.17 3.61335 −0.01335

Left hip

164.405 2.132 8.665 3.60302 0.00302

0.01073

163.195 3.016 7.453 3.56996 −0.03004
163.855 2.336 8.137 3.61613 0.01613
164.62 2.928 7.73 3.59428 −0.00572
164.56 2.638 8.182 3.58507 −0.01493
163.415 2.818 7.665 3.58274 −0.01726
163.51 2.752 7.855 3.57378 −0.02622
164.59 2.852 7.775 3.59998 −2E−05
163.62 2.654 7.882 3.5892 −0.0108
164.605 2.784 8.04 3.5802 −0.0198
164.62 2.756 7.675 3.62746 0.02746
163.23 2.836 7.88 3.54937 −0.05063

Left ankle

97.86 1.269 5.518 3.5915 0.0085

−0.005815

97.14 1.795 4.436 3.6245 −0.0245
97.533 1.39 4.844 3.5783 0.0217
97.988 1.743 4.601 3.6002 −0.0002
97.952 1.57 4.871 3.6095 −0.0095
97.271 1.677 4.562 3.6116 −0.0116
97.327 1.638 4.676 3.628 −0.028
97.97 1.698 4.628 3.5946 0.0054
97.393 1.58 4.692 3.60544 −0.00544
97.979 1.657 4.786 3.61431 −0.01431
97.988 1.64 4.568 3.5668 0.0332
97.161 1.688 4.69 3.64503 −0.04503
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Cijp ¼
1
Nqp

∑
Nqp

p¼1
Xqp ; ð70Þ

where Cijp is the mean of the quaternary set and Nqijp is the
number of elements in the quaternary set considered corre-
sponding to the ith secondary set and jth tertiary set.

δ3bavg ¼
1
w

∑
w

i¼1

1
m

∑
m

j¼1

1
q
∑
q

p¼1
Bij − Cijp

À Á
; ð71Þ

where q is the number of quaternary sets,m is the number of
tertiary sets, and w is the number of secondary sets. Here, k is
taken as zero as the psychological parameters are not considered.

8. Conclusion

The purpose of this research was to develop a mathematical
model of lower limb joint dynamics that might be applied to
the development of assistive devices for people with physical
disabilities. The variation of lower limb joint angles for dif-
ferent subjects of different heights, weights, and ages was
recorded, analyzed, and tabulated considering time as the
independent variable. The novelty in this manuscript is the
application of the average value-based technique to accu-
rately represent the biomechanics of the lower limb joints
during the human gait cycle. Real-time analysis of various
gait cycles (without making any assumptions) obtained from
the walking profiles of various subjects ensures the robust-
ness and practicality of the adopted modeling process.

The average value-based mathematical representation is
a modified version of the nth ordinary linear differential
equation. The nth ordinary linear differential equation can
be used to express a system’s dynamic properties as an
input–output function with constant coefficients [24, 43].
This has been modified to take into account the dynamics
of the disabled individual. An infinite series’ nondifferential
term is denoted by the average of the primary set, bavg. The
primary set is further split up into secondary sets to calculate
the first variational term (δbavg). The subset split can be
performed as many times as the required number of variational
terms. The degree of accuracy that the researcher seeks deter-
mines how many variational terms must be taken into account.
In this study, the representation with three variational terms and
two variational terms was developed. The error was calculated
considering the second variational term and the third variational
term. It was observed that the difference in error was very low.
Hence, for ease of calculation, dynamics can be represented by
considering up to the second variational term.

Constant terms (P0, P1, P2,…, etc.) are used to reflect the
subject’s physical characteristics. A set of equations is devel-
oped to determine the value of constant terms. The equations
were developed and solved using Python software and thereby
the constant term values were determined. The obtained con-
stant values are substituted in Equation (4). The developed
mathematical model will serve as a foundation for developing
rehabilitation-related assistive technology. Biomechanics and
motor control methods utilized during functional motions

can be better understood with the help of models. They pro-
vide insights into mechanisms of afflicted movement due to
disability. Using models, rehabilitation interventions such as
orthoses, prostheses, robotic devices, and therapy activities
can be fine-tuned for each patient. Models facilitate accurate
performance predictions for emerging rehabilitative technol-
ogy and aid in establishing design parameters that align with
user capabilities.

The limitations of the current study include the fact that
the developed model is not applicable to all age groups and
that the study focuses only on physical aspects and overlooks
psychological parameters. However, both psychological and
physical factors have an impact on dynamics. It is not
included in the current model-building process in order to
reduce the complexity involved. The addition of a constant
term, as discussed in the previous section, may, however,
make up for this flaw. The objective of this study was limited
to an accurate mathematical representation of the lower limb
dynamics during a human gait cycle. The results of this
modeling procedure will be used in future studies to develop
the prototype of an intelligent human lower limb exoskeleton.
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