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Nonlinear torsional vibration differential equation of the nested arc-shaped short spring dual mass flywheel (DMF) is established,
considering the piecewise linear stiffness and damping of the spring. The first-order approximate analytical solution under
sinusoidal excitation and the amplitude–frequency characteristic function are obtained by means of the average method which
verified by the Runge–Kutta (R–K) method. The effects of the parameters of input excitation, inertia, and piecewise linear stiffness
and damping of DMF on the resonant amplitude, resonant frequency band, and equivalent linear natural frequency of the system
are analyzed. The results show that the amplitude–frequency characteristic curve bending and jumping with the changes of
excitation frequency and the peak of resonant amplitude can be obviously reduced by increasing the inertia of the primary flywheel
and decreasing the inertia of the secondary flywheel. The complex nonlinear dynamic phenomena such as Period 1, quasi-periodic,
and chaos are obtained by analyzing the forced vibration response under the different excitation frequencies.

1. Introduction

The torsional vibration of the engine input can be effectively
attenuated through matching the DMF in the vehicle power-
train system [1–4]. The researches on the DMF have been
deepened from single-stage stiffness to multistage stiffness,
from linear to nonlinear.

Liu [5] established the calculation and analysis model of
multi-degree-of-freedom torsional vibration system in idle state,
and simplified the system into a linear system. Song et al. [6]
built the torsional vibration models of vehicle powertrain
matched theDMF, the effects ofmoment of inertia and torsional
stiffness of theDMF on the inherent characteristics of the system
were explored. Hou et al. [7] optimized the inertia and torsional
stiffness of the DMF, and the problems of booming vibration
and shift shock were solved through the verification of the actual
vehicle. The above researches mainly focused on the single-stage
torsional stiffness and linearity of the DMF.

With the continuous improvement of NVH quality of
vehicle, the single-stage stiffness DMF can not meet the
requirements better. The piecewise variable stiffness DMF,

which is more and more widely used, can adjust the stiffness
adaptively with the torsion angle changing [8–12]. Jiang and
Chen [13] studied the design method for circumferential arc
spring DMF based on a multi-mass torsional vibration model
under idle and normal driving conditions. Song et al. [14]
proposed the design theory of double-stage piecewise variable
stiffness DMF based on friction, and studied the effect of tor-
sional stiffness on the first and second-order resonant speed of
the transmission system. Long et al. [15] studied the nonlinear
vibration characteristics of circumferential long arc spring
DMF with clearance angle, and explored the effect of DMF
parameters on the amplitude–frequency characteristics of the
system. However, the forced vibration response analysis of the
system did not be further explored. Zeng et al. [16, 17] analyzed
the effects of input excitation and DMF parameters on the
nonlinear characteristics of a DMF powertrain by establishing
a nonlinear vibration differential equation. The nonlinear
forces generated by varying stiffness were considered in the
study. The nonlinear factors in vibration system mainly
include nonlinear stiffness and nonlinear damping. The above
researches on the DMF mainly focused on the variable
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stiffness, however the damping was linearized or ignored
when the model built.

Wang et al. [18] studied the dynamic response of the
nonlinear suspension system of the quarter truck model using
the incremental harmonic balance method. Shao et al. [19]
analyzed the vibratory power flow, and discussed the influ-
ence of nonlinear stiffness and damping on the power flow of
vibration isolation system using the harmonic balance
method. Ruan et al. [20] established the active vibration iso-
lation system model with piecewise damping and dynamic
equation and verified the correctness of the theoretical solu-
tion of the system response by the fourth-order Runge–Kutta
(R–K) method. The nonlinear damping of vibration systems
had been deeply studied in the literatures above, but there are
few studies on the nonlinear piecewise damping of the DMF
systems.

In order to improve the torque output of the DMF and
match the engine with higher power and torque, the nested
arc-shaped short spring DMF is studied in this paper. The
nonlinear torsional vibration model of the DMF is established
considering the piecewise stiffness and piecewise damping of the
spring. The torsional vibration differential equation is derived by
the average method. The nonlinear amplitude–frequency char-
acteristics of the system are solved and verified by the R–K
method, and the forced vibration response under different
excitation frequencies of the system are analyzed. The effects
of inertia and piecewise stiffness of the DMF on the
amplitude–frequency characteristics and the complex non-
linear dynamic phenomena of the system are explored, and
then the intrinsic nature of the nonlinear vibration charac-
teristic of the DMF is revealed.

2. Structure and Principle of DMF

The nested arc-shaped short spring DMF with spring seats
which have the function of overload protection, is mainly
composed of the gear ring, primary flywheel, arc-shaped
springs, spring seats, transmission flange, and secondary fly-
wheel, as shown in Figure 1.

The primary flywheel is connected to the output end of
the engine crankshaft, and the secondary flywheel is arranged
on one side of the clutch. The output torque of the engine
crankshaft is transferred through the damping springs which
consist of inner and outer arc springs and spring seats, and the
fluctuation of the output torque is reduced.

A set of arc-shaped springs consists of an internal and
external arc spring as shown in Figure 2. When the relative
angular of the primary and secondary flywheels is less than
θ0(θ0—angular clearance), the torsional stiffness of the DMF
depends on the first-stage stiffness k1. When the torsion
angular is greater than θ0, the internal and external springs
are connected in parallel, and the torsional stiffness of the
DMF depends on the second-stage stiffness k2(k2= k1+ k3).
After the spring seats contacting, the internal and external
arc springs are no longer compressed to realize the overload
protection of the internal and external arc springs. The piece-
wise linear stiffness characteristics (while θ＞ 0°) of the
DMF are shown in Figure 3.

3. Torsional Vibration Model of DMF

The DMF regulating characteristics of the fluctuation of the
engine excitation can be analyzed based on the relative rota-
tion angle θ of the primary and secondary flywheel.

a b c d e f g
FIGURE 1: Schematic of the main structure of the DMF. (a) Gear ring,
(b) primary flywheel, (c) arc-shaped springs, (d) spring seats, (e)
transmission flange, (f ) plate, and (g) secondary flywheel.
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FIGURE 2: Schematic of the structure of the arc springs.
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FIGURE 3: Piecewise linear stiffness characteristics.
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According to the structure and working principle of the
DMF, it is simplified into a semidefinite torsional vibration
system as shown in Figure 4.

In Figure 4, J1—inertia of primary flywheel, J2—inertia of
secondary flywheel, θ1; θ̇1—relative angular and angular veloc-
ity of primary flywheel, θ2; θ̇2—relative angular and angular
velocity of secondary flywheel, T—excitation torque, F(θ)—
function of the nonlinear torsional elastic force, and f ðθ̇Þ:—func-
tion of nonlinear damping force.

According to Figure 4 and Newton’s second law, the
nonlinear differential equation of torsional vibration of the
DMF is obtained as follows:

J1θ̈1 þ f θ̇
À Áþ F θð Þ ¼ T sin υt

J2θ̈2 − f θ̇
À Á

− F θð Þ ¼ 0

(
; ð1Þ

where v—excitation frequency, t—time, θ; θ̇; θ̈—relative angu-
lar, angular velocity, and angular acceleration of the DMF.

In Figure 5, c1—damping coefficient of external arc
spring, c3—damping coefficient of internal arc spring, c2—
parallel damping coefficient, c2= c1+ c3.

According to the characteristic curves of the piecewise
linear stiffness shown in Figure 3, and considering the piece-
wise linear damping characteristics [21] of internal and
external (while θ̇＞ 0) arc springs shown in Figure 5, the
function of the nonlinear torsional elastic force F(θ) and
nonlinear damping force f ðθ̇Þ: are expressed as follows:

F θð Þ ¼
k1θ −θ0 ≤ θ ≤ θ0

k2θ þ k1 − k2ð Þθ0 θ0 ≤ θ

k2θ − k1 − k2ð Þθ0 θ ≤ −θ0

8><
>:  ; ð2Þ

f θ̇
À Á¼

c1θ̇ −θ0 ≤ θ ≤ θ0

c2θ̇ θ0 ≤ θ

c2θ̇ θ ≤ −θ0

8><
>: : ð3Þ

Substituting θ= θ1− θ2 into Equation (1), and
Equation (1) is transformed as follows:

J θ̈ þ f θ̇
À Áþ F θð Þ ¼ T0sin υt; ð4Þ

where

J ¼ J1J2= J1 þ J2ð Þ ; ð5Þ

T0 ¼ TJ2= J1 þ J2ð Þ : ð6Þ

4. Approximate Analytical Solution of
Nonlinear Amplitude–Frequency
Characteristics

In order to solve Equation (4), the average method by Chen
[21] is used, and Equation (4) is transformed as follows:

F θð Þ ¼ k2θ þ h θð Þ; ð7Þ

where

h θð Þ ¼
k1 − k2ð Þθ −θ0 ≤ θ ≤ θ0

k1 − k2ð Þθ0 θ0 ≤ θ

− k1 − k2ð Þθ0 θ ≤ −θ0

8><
>: : ð8Þ

Substituting Equation (7) into Equation (4), and trans-
forming the semidefinite torsional vibration system into
a single-degree-of-freedom system, the nonlinear terms
and excitation are multiplied by a small parameter ε, then
the dynamic equation of the DMF are expressed as
follows:

J θ̈ þ k2θ ¼ ε T0sin υt − h θð Þ − f θ̇
À ÁÀ Á

: ð9Þ

Equation (9) is simplified as follows:

θ̈ þ ω2θ ¼ ε TPsin υt − g θð Þ − f θ̇
À Á

=J
À Á

; ð10Þ

where

ω¼ ffiffiffiffiffiffiffiffiffi
k2=J

p
 ; ð11Þ

TP ¼ T0=J ; ð12Þ
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FIGURE 4: Simplified torsional vibration model of the DMF.
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FIGURE 5: Function expression of nonlinear damping force.
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g θð Þ ¼
k1 − k2ð Þθ=J −θ0 ≤ θ ≤ θ0

k1 − k2ð Þθ0=J θ0 ≤ θ

− k1 − k2ð Þθ0=J θ ≤ −θ0

8><
>: : ð13Þ

In order to study the resonance of ν approaching ω,
assuming that

ω − υ¼ εσ; ð14Þ

where σ—tuning parameter.
Assuming the first approximate solution of the system as

follows:

θ ¼ a sin υt þ φð Þ
dθ=dt ¼ aω cos υt þ φð Þ

(
: ð15Þ

As shown in Equation (15), a, θ are functions of t.
According to the average method, Equation (15) is trans-
formed into a standard equation as follows:

da
dt

¼ −
ε

ω
g a sinψð Þ þ f aυ cosψð Þ=J − TPsin υt½ �cosψ

dφ
dt

¼ ω − υþ ε

aω
g a sinψð Þ þ f aυ cosψð Þ=J − TPsin υt½ �sinψ

8>><
>>: ;

ð16Þ

where

ψ ¼ υt þ φ : ð17Þ

Equation (16) shows that the derivatives of a and θ are
proportional to ε, so they are functions of changing slowly.
The first approximation KB [21] transformation is used, and
y and ϑ are introduced as new variables.

a¼ y þ εU t; y; ϑð Þ
φ¼ ϑþ εV t; y; ϑð Þ

(
: ð18Þ

And the derivatives of y and ϑ are as follows:

dy=dt ¼ εY1 yð Þ þ ε2Y∗ t; y; ϑ; εð Þ
dϑ=dt ¼ εZ1 yð Þ þ ε2Z∗ t; y; ϑ; εð Þ

(
; ð19Þ

where Y1, Z1 do not contain t, and U, V, Y∗, Z∗, are ϑ’s
periodic functions with a period of 2π and a periodic func-
tion of t in Equation (19).

Substituting Equation (15) into Equation (16) and con-
sidering Equation (19), yields:

εY1 þ ε2Y∗ þ ε
∂U
∂t

þ ε
∂U
∂y

εY1 þ ε2Y∗ð Þ þ ε
∂U
∂ϑ

εZ1 þ ε2Z∗ð Þ ¼ εF1 þ ε2⋯

εZ1 þ ε2Z∗ þ ε
∂V
∂t

þ ε
∂V
∂y

εY1 þ ε2Y∗ð Þ þ ε
∂V
∂ϑ

εZ1 þ ε2Z∗ð Þ ¼ εF2 þ ε2⋯

8>><
>>: ; ð20Þ

where

F1 ¼ −
1
ω

g y sinψð Þ þ f yυ cosψð Þ=J − TPsin υt½ �cosψ

F2 ¼ ω − υþ 1
yω

g y sinψð Þ þ f yυ cosψð Þ=J − TPsin υt½ �sinψ

8>><
>>: :

ð21Þ

Making the coefficients of the first term of ε at both ends
of Equation (20) equal, we obtain:

Y1 þ ∂U=∂t ¼ F1

Z1 þ ∂V=∂t ¼ F2

(
: ð22Þ

In order to satisfy the condition that Y1 and Z1 do not
contain t, we obtain:

Y1 ¼
1
2π

Z
2π

0
F1dψ ¼ −

1
2πω

Z
2π

0
f yυ cosψð Þcosψdψ=J − TP

ωþ υ
sinφ

Z1 ¼ ω − υþ 1
2πωy

Z
2π

0
g y sinψð Þsinψdψ −

TP

y ωþ υð Þ cosφ

8>><
>>: :

ð23Þ

The approximation relation of 2ω ≈ ωþ υ is applied in
Equation (23), and only the first term of ε is taken into
account in Equation (19), and substituting Y1 and Z1 into
Equation (19), we obtain:

dy
dt

¼ −
ε

2πω

Z
2π

0
f yυ cosψð Þcosψdψ=J − εTP

ωþ υ
sinφ

dϑ
dt

¼ ω − υþ ε

2πωy

Z
2π

0
g y sinψð Þsinψdψ −

εTP

y ωþ υð Þ cosφ

8>><
>>: :

ð24Þ
In order to get the integral of Equation (24), θ is substi-

tuted into Equation (13), and the corresponding integral
bounds are given as follows:
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g y sinψð Þ ¼

k1
J
−
k2
J

� �
y sinψ 0 ≤ ψ ≤ ψ0

k1
J
−
k2
J

� �
y sinψ0 ψ0 ≤ ψ ≤ π − ψ0

k1
J
−
k2
J

� �
y sinψ π − ψ0 ≤ ψ ≤ π

8>>>>>>>><
>>>>>>>>:

 ;

ð25Þ

f yυ cosψð Þ ¼
c1yυ cosψ 0 ≤ ψ ≤ ψ0

c2yυ cosψ ψ0 ≤ ψ ≤ π − ψ0

c1yυ cosψ π − ψ0 ≤ ψ ≤ π

8><
>: ; ð26Þ

where

ψ0 ¼ arcsin θ0=yð Þ: ð27Þ

The equivalent linear attenuation index δe(y) is given as
follows:

δe yð Þ ¼ 1
πωy

Z
π

0
f yυ cosψð Þcosψdψ=J ¼ c2

2J
1þ χ α;Zð Þð Þ;

ð28Þ

where

χ α;Zð Þ ¼ 2 α − 1ð Þ
πZ

Z arcsin
1
Z
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1
Z2

r !
 ; ð29Þ

α¼ c1=c2;Z ¼ y=θ0: ð30Þ

The equivalent linear natural frequency ωe(y) (backbone
curve equation) is given as follows:

ωe yð Þ ¼ ωþ 1
πωy

Z
π

0
g y sinψð Þsinψdψ ¼ ωþ k2

2ωJ
χ β;Zð Þ;

ð31Þ

where

χ β;Zð Þ ¼ 2 β − 1ð Þ
πZ

Z arcsin
1
Z
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1
Z2

r !
 ; ð32Þ

β ¼ k1=k2: ð33Þ

Substituting Equations (28) and (31) into Equation (24),
we obtain:

dy
dt

¼ −ε δe yð Þ þ TP

ωþ υ
sinφ

� �
dϑ
dt

¼ ε ωe yð Þ − υð Þ − εTP

y ωþ υð Þ cosφ

8>>><
>>>:

: ð34Þ

The approximation relation of ωþ υ ≈ 2υ is applied in
the first equation of Equation (34), and making Equation (34)
equal to zero, then the expression of v is obtained as follows:

υ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
e yð Þ − 2δ2e yð Þ Æ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
e yð Þ − 2δ2e yð Þð Þ2 − ω4

e yð Þ − λ2ð Þ
pq

;

ð35Þ

where

λ¼ TP=y : ð36Þ

5. Calculation and Analysis of DMF

5.1. Analysis of Amplitude–Frequency Response Characteristics.
Table 1 presents the basic parameters of the nested arc-shaped
short spring DMF with spring seats which have the function of
overload protection.

The amplitude–frequency characteristic curve of DMF is
shown in Figure 6, which is obtained by taking the parame-
ters shown in Table 1 into Equation (35) and under the
excitation torque T= 60N·m. In Figure 6, the solid line
represents the steady response, the dashed line represents
the unsteady response, and the dotted line represents the
backbone curve.

Equation (31) shows that the relationship between the equiv-
alent natural frequency ωe(y) and the relative angular θ is non-
linear. It can be seen from Figure 6 that the backbone curve and
the amplitude–frequency characteristic curve appear with the
inflection point at θ0, and the amplitude–frequency response
curve bends to the right and jumps with the excitation frequency
v changing slowly.

The amplitude of the relative angular θ gradually
increases along the amplitude–frequency characteristic curve
from Point A to Point B, and to Point C, with the excitation
frequency v changing slowly from low to high, then reaches
Point D. The amplitude will suddenly jump from Point D to
Point E if the excitation frequency v continues to increase,

TABLE 1: Basic parameters.

Parameter Value

J1 0.17 kg·m2

J2 0.15 kg·m2

k1 6N·m/(degree)
k3 14N·m/(degree)
c1 0.06N·ms/(rad)
c3 0.08N·ms/(rad)
θ0 18°
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then decrease gradually along the amplitude–frequency char-
acteristic curve.

If the excitation frequency v reduces slowly from high to
low, the amplitude of the relative angular θ gradually
increases along the amplitude–frequency characteristic curve
from Point E to Point H. If the excitation frequency v reduces
continuously, the amplitude will suddenly jump from Point
H to Point C and then decreases along the direction from
Point B to Point A.

According to the amplitude–frequency characteristic
curve of DMF, there are jumping and lagging phenomena
which lead to the instability of the system such as DH seg-
ment of the curve, with the excitation frequency v changing
continuously and slowly.

To verify the accuracy of the analytical solution, the R–K
method is used to calculate the frequency response charac-
teristics of the DMF. The results are shown in Figure 6. In
Figure 6, “o” denotes the frequency response result obtained
by the frequency reducing slowly from high to low. It can be
seen from Figure 6 that the numerical calculation results are
consistent with the analytical solutions, which shows that it is
feasible to analyze the amplitude–frequency characteristics of
the DMF by means of average method.

5.1.1. Effect of Excitation Torque on Amplitude–Frequency
Characteristics. The amplitude–frequency characteristics of
the DMF are studied and obtained as shown in Figure 7,
under different excitation values such as T= 30N·m, T=
60N·m, and T= 90N·m. Figure 7 shows that the backbone
curve does not change, and the corresponding response
amplitude in the steady range increases at the same fre-
quency, and the resonant frequency band becomes wider
and the peak of resonant amplitude becomes larger, with
the increase of excitation torque.

5.1.2. Effect of Inertia on Amplitude–Frequency Characteristics.
The amplitude–frequency response curves corresponding to dif-
ferent inertia of the primary flywheel such as J1= 0.16 kg·m2,

J1= 0.36 kg·m2, and J1= 0.56 kg·m2 are obtained, as shown in
Figure 8.

It can be seen from Figure 8 that the backbone curve
and the amplitude–frequency characteristic curves are shifted
to the left and the inflection bends to the left simultaneously,
the peak of resonant amplitude is reduced, and the resonant
frequency band is narrowed, with the increase of J1.

The amplitude–frequency response curves correspond-
ing to different inertia of the secondary flywheel such
as J2= 0.08 kg·m2, J2= 0.13 kg·m2, and J2= 0.18 kg·m2 are
obtained, as shown in Figure 9.

It can be seen from Figure 9 that the backbone curve
and the amplitude–frequency characteristic curves are shifted
to the left and the inflection bends to the left simultaneously,
the peak of resonant amplitude is increased, and the resonant
frequency band is widened, with the increase of J2.
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FIGURE 6: Amplitude–frequency characteristic curve of DMF.
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5.1.3. Effect of Torsional Stiffness on Amplitude–Frequency
Characteristics. The amplitude–frequency response curves
corresponding to different first-stage stiffness such as k1= 4
N·m/(degree), k1= 6N·m/(degree), and k1= 10N·m/(degree)
are obtained, as shown in Figure 10.

It can be seen from Figure 10 that the backbone curve
and the amplitude–frequency characteristic curves are
shifted to the right, and the inflection bends to the right
simultaneously (the bending to the right is not obvious),
the peak of resonant amplitude is reduced but not obviously,
and the resonant frequency band is narrowed, with the
increase of k1.

The amplitude–frequency response curves correspond-
ing to different second-stage stiffness such as k2= 12N·m/
(degree), k2= 16N·m/(degree), and k2= 20N·m/(degree) are
obtained, as shown in Figure 11.

It can be seen from Figure 11 that the backbone curve
and the amplitude–frequency characteristic curves are
shifted to the right and the inflection bends to the right
simultaneously (the bending to the right is not obvious)
with the increase of k2, and the peak of resonant amplitude
is reduced, but the resonant frequency band changing is not
obvious.

5.1.4. Effect of Angular Clearance on Amplitude–Frequency
Characteristics. The amplitude–frequency response curves
corresponding to different angular clearances such as θ0=
6°, θ0= 12°, and θ0= 18° are obtained, as shown in
Figure 12. It can be seen from Figure 12 that the resonant
frequency band becomes narrow, but the influence on the
peak of the resonant amplitude is not obvious, with the
increase of θ0.
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5.1.5. Effect of Piecewise Damping on Amplitude–Frequency
Characteristics. The amplitude–frequency response curves
corresponding to damping coefficient of external arc spring
such as c1= 0.06N·ms/(rad), c1= 0.16N·ms/(rad), and c1=
0.26N·ms/(rad) are obtained, as shown in Figure 13. It can
be seen from Figure 13 that the peak of resonant amplitude is
reduced obviously and the unstable region becomes smaller
with the increase of c1.

The amplitude–frequency response curves correspond-
ing to damping coefficient of internal arc spring such as
c3= 0.08N·ms/(rad), c3= 0.18N·ms/(rad), and c3= 0.28
N·ms/(rad) are obtained, as shown in Figure 14. It can be
seen from Figure 14 that the peak of resonant amplitude is
reduced obviously and the unstable region becomes smaller
with the increase of c3, which is similar to that of c1.

5.2. Analysis of Nonlinear Forced Vibration Response. The
nonlinear forced vibration response of the DMF system is
analyzed by taking the excitation frequencies of v= 30 rad/s,
v= 80 rad/s, v= 100 rad/s, and v= 140 rad/s, respectively.

The time domain angular displacement and frequency
spectrum and phase trajectory and Poincaré section are ana-
lyzed under the excitation frequency of v= 30 rad/s and
shown in Figure 15. The system response consists of super-
harmonic forced vibration under the frequencies of 62.89
rad/s≈ 2 v and 188.7 rad/s≈ 6 v. The phase trajectory is a
closed loop and the Poincaré Section 1 point, there is a
period 1 motion while θ varying with t.

The time domain angular displacement and frequency
spectrum and phase trajectory and Poincaré section are ana-
lyzed under the excitation frequency of v= 80 rad/s and
shown in Figure 16. The system response consists of a
steady-state forced vibration under the frequency of 79.77
rad/s≈ v and vibrations under the frequency of 62.38 rad/s,
amplitude of 15.64° and frequency of 46.02 rad/s, amplitude
of 2.121°. The phase trajectories are superposed ellipses, and
the points on the Poincaré section can form a closed loop,
there is a quasi-periodic motion while θ varying with t.

The time domain angular displacement and frequency
spectrum and phase trajectory and Poincaré section are ana-
lzsed under the excitation frequency of v= 100 rad/s and
shown in Figure 17. The system response consists of vibra-
tions under the frequency of 56.76 rad/s, amplitude of 5.098°
and frequency of 62.89 rad/s, amplitude of 40.33°, and fre-
quency of 69.03 rad/s, amplitude of 23.91°. The phase trajec-
tories are superimposed approximate ellipses with diffusing
outwards, and the points on the Poincaré section can not
form a closed loop, there is a chaotic motion while θ varying
with t.

The time domain angular displacement and frequency
spectrum and phase trajectory and Poincaré section are ana-
lyzed under the excitation frequency of v= 140 rad/s and
shown in Figure 18. The system response consists of vibra-
tions under the frequency of 29.66 rad/s, amplitude of 4.261°
and frequency of 62.38 rad/s, amplitude of 2.481°. The phase
trajectories are superimposed approximate ellipses with dif-
fusing outwards, and the points on the Poincaré section can
form a closed loop, there is a quasi-periodic motion while θ
varying with t.

In summary, Figures 15–18 show the nonlinear forced
vibration responses of the DMF system under different exci-
tation frequencies. It can be seen that there are vibrations of
periodic 1 motion, and quasi-periodic motion and chaotic
motion while θ varying with t.

6. Conclusions

The nonlinear amplitude–frequency characteristics of the
DMF system are solved by means of the average method,
considering the nonlinear factors of the piecewise linear stiff-
ness and damping of the DMF. The influences of the param-
eters of the DMF on the nonlinear amplitude–frequency
characteristics and the forced vibration response under dif-
ferent excitation frequencies of the system are analyzed.
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FIGURE 17: Time domain angular displacement, frequency spectrum, phase trajectory, and Poincaré section (v= 100 rad/s).
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(1) The torsional vibration of the DMF system has obvi-
ous nonlinear characteristics due to the nonlinear
factors, such as the amplitude–frequency character-
istic curve bending and jumping with the changing of
excitation frequency.

(2) The peak of resonant amplitude of the system can be
obviously reduced by increasing the inertia of the
primary flywheel and decreasing the inertia of the
secondary flywheel. The primary flywheel inertia
and the first-stage stiffness have obvious influence
on the resonant frequency band of the system.

(3) The nonlinear forced vibration response of the sys-
tem includes periodic 1 motion, quasi-periodic
motion, and chaotic motion with the excitation fre-
quency changing.

(4) The parameters of the DMF can be optimized by
nonlinear amplitude–frequency analysis when the
DMF structure is designed.
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