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It is difficult to give a fractional global threshold (FGT) that works well on all images as the image contents are totally different. This
paper describes an interesting use of fractional calculus in the field of digital image processing. In the proposed method, the
fractional global threshold-based edge detector (FGTED) is established using the Riemann–Liouville fractional integral operator.
FGTED is used to find the microedges in minimum time for any input digital images. The results demonstrate that the FGTED
outperforms conventional techniques for detecting microtype edges. The image with a higher entropy was produced by the FGT
value-based approach. Tables and images are used to summarize the output performance analysis of various images using structural
similarity index measure, F-score (F-measure), precision and recall, signal-to-noise ratio, peak signal-to-noise ratio, and computa-
tional time. The FGTED can be used to detect very thin or microtype edges more accurately in minimum time without training or
prior knowledge.

1. Introduction

Fractional calculus is concerned with the mathematical investi-
gation and application of integrals and derivatives of arbitrary
order [1]. Given the usefulness and significance of fractional
calculus in the analysis of real-world problems, the properties
and applications of a variety of fractional integral operators have
been studied by a large number of researchers such as McBride
[2], Kilbas and Sebastian [3], Kiryakova [4], Baleanu et al. [5],
Gaur Sanjay et al. [6, 7], etc. It has been recently found that the
application of fractional calculus can be useful for image pro-
cessing, particularly to enhance the quality of edge detection
for the images [8–10]. Edge detection is one of the fundamen-
tal tasks in digital image processing. It plays a prominent role
in image analysis, pattern recognition, and other deep-level
processing [11, 12].

Edges are a collection of pixels where the intensity of each
pixel fluctuates dramatically [13]. To identify, segment and
recognize an item in an image, edge detection is a very useful
and difficult job in computer vision. It is also used in a system
for feature identification, compression, and picture retrieval

[14–16]. The process of edge detection consists of four main
steps: localization, detection, enhancement, and smoothing.
The quality of edges diminishes in noisy environments and, in
certain cases, after the noise has been suppressed, blurring the
image’s major transitions. Edge detection necessitates some
sort of smoothing since it relies on differentiating the image
function, which amplifies all high-frequency components. Low
pass filters are the most commonly employed for this [15].

During the last four decades, the topic of fractional cal-
culus, which deals with the study of arbitrary order integrals
and derivatives, has grown in relevance and interest. It is mostly
owing to its wide range of possible applications in science, engi-
neering, and technology. Various authors have investigated var-
ious expansions of several fractional integration operators and
their applications in recent years.

Pu et al. [17] investigated a fractional differential approach
to the digital processing field for enhancement. The authors
have proposed six fractional multiscale differential masks for
the enhancement of images. Traditional integral differential-
based algorithms perform worse than the suggested fractional
differential-based method. They discovered it to be ideal for
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real-time HDTV, legibility of subsequent bionic medical images
(for example, X images, cell pictures, mammography, PET,
MRI, CT, and plutonic images), improved bank ticket qual-
ity, and improving remote sensing image, among other
applications.

For the numerical solution of fractional differential equations,
Diethelm et al. [18] described anAdams-type predictor–corrector
approach. They have analyzed the results for both linear and
nonlinear problems. Finally, it was recommended that their
approach can be extended to multiterm equations using more
than one differential operator.

Sarikaya and Yaldiz [19] developed a novel Hermite–
Hadamard type fractional integral inequalities utilizing a
wide class of fractional integral operators. They also applied
fractional integral inequalities to develop inequalities of
the Hermite–Hadamard type, employing the well-known
Riemann–Liouville fractional integral (RLFI) operators.

Ntouyas et al. [20] studied Polya–Szego type integral inequal-
ities using the RLFI operator and utilized them to show various
Chebyshev-type fractional integral inequalities affecting the
integral of the product of two functions and the product of
two integrals. Khmag et al. [21], Khmag [22], and Khmag and
Kamarudin [23] studied clustering-based natural image denois-
ing using a dictionary learning approach in the wavelet domain
and semisoft thresholding approach and natural image deblur-
ring using a neural network.

Martin et al. [24] have proposed a Berkeley Segmentation
Dataset 500 (BSDS500), which is regarded as the standard
benchmark for the detection of the edges. Initially, the given
database was designed for investigating natural edge detec-
tion, which includes object contours, its interior, and bound-
aries. This dataset includes five hundred natural-type images
with regressive annotated boundaries collected from differ-
ent users. The abovementioned dataset is used in this paper

to compare the performance of the fractional global threshold-
based edge detector (FGTED) method with the existing pre-
vailed edge detectors.

The Riemann–Liouville fractional calculus integral oper-
ator as left-sided fractional integrals is explained in Section 2.

2. RLFI Operator

The fractional order integral operators are efficient tools to
describe the complex phenomenon in much better ways due
to their nonlocal nature and having a tendency to preserve
hereditary properties related to the image. Since the gray-
level values have a high correlation with the neighboring
pixels so the fractional order operators are more efficient
to describe the hereditary relation and give better neighbor-
ing gray-level information. There are several forms of the
fractional integrals for a continuous function f(t) have been
given by various authors [25]. One of which, known as the
Riemann–Liouville fractional calculus operator, has been
studied extensively for applications in the area of image pro-
cessing [8–11].

Further, the left-sided Riemann–Liouville fractional cal-
culus operator, defined by Kilbas et al. [1] for ς2C,ℜ(ς)> 0,
is applied as follows:

Iς0þf
À Á

xð Þ ¼ 1
Γ ςð Þ

Z
x

0

f tð Þ
x − tð Þ1−ς dt  x>0;R ςð Þ>0ð Þ; ð1Þ

where Γ (ς) is the Gamma function, the above integrals
are called left-sided fractional integrals. When ς= n N,
Equation (1) can be solved by the well-known nth integral
formula by Cauchy as given below:
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ð2Þ

Riemann–Liouville fractional integration of the power
functions (t − a)ρ−1,R (ρ)> 0 is then used to generate power
functions of the same form, as given below:

Iςaþ x − að Þρ−1ð Þ tð Þ ¼ Γ ρð Þ
Γ ρþ ςð Þ t − að Þρþς−1 R αð Þ>0ð Þ:

ð3Þ

This paper emphasizes upon the need to detect the edge
in digital images by introducing a fractional global threshold
(FGT) value. Further, the investigation demonstrated an
interesting application of the RLFI operator [1] for edge
detection in image processing. The edge detection based on

noninteger integration of the general statistical average
improves the detection selectivity of an edge detector.

3. Edge Detection by Global Thresholding

The proposed methodology for edge detection consists of
three steps: preprocessing and normalization of an image,
computation of global threshold by RLFI operator, binarisa-
tion, and removal of isolated pixels. A block diagram of the
working is shown in Figure 1.

After the camera captures the image (Input Image), it is
routed via the preprocessing unit, which processes the raw
image. Preprocessing focuses on two fundamental opera-
tions: grayscale conversion and contrast stretching, which
allows the system to perform consistently well for all images.
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Furthermore, the edge identification procedure is aided if
the RGB color input picture is transformed to a 256 grayscale
image using the YIQ color space used by the NTSC color
system [5], as shown in the following equation:

P i; jð Þ ¼ 0:299 R i; jð Þ þ 0:587G i; jð Þ þ 0:114 B i: jð Þ:
ð4Þ

Here R(i, j), G(i, j), and B(i, j) are the red, green, and blue
intensities of the (i, j)th pixel of the color image, respectively.

In the next step, the filtered image P(i, j) is normalized in
the range 0–1 using the following equation:

t i; jð Þ ¼ P i; jð Þ
Max P i; jð Þð Þ : ð5Þ

Further, the left-sided Riemann–Liouville fractional cal-
culus operator for a continuous function f (x) is defined by
Kilbas et al. [1] for ς2C, ℜ(ς)> 0 is applied as follows:

Iς0þf
À Á

tð Þ ¼ 1
Γ ςð Þ

Z
t

0

f xð Þ
t − xð Þ1−ς dx  t>0ð Þ: ð6Þ

Riemann–Liouville fractional integration of the power
function (x− a)ρ− 1, (ρ)> 0 is then used to generate power
functions of the same form as given below:

Iςaþ t − að Þρ−1ð Þ xð Þ ¼ Γ ρð Þ
Γ ρþ ςð Þ x − að Þρþς−1;   R ςð Þ>0ð Þ:

ð7Þ

Now, if f (t) represents the general statistical average, then
by virtue of Equation (6), it can be written as follows:

Iς0þf
À Á

tð Þ ¼ 1
Γ ςþ 2ð Þ

1
N

∑
N

k¼0
tςþ1
k ;   R ςð Þ>0ð Þ: ð8Þ

The result of Equation (8) is applied to evaluate FGT for
image t(i, j) as follows:

FGT¼ 1
Γ ςþ 2ð Þ

1
m × n

∑
m

i¼0
∑
n

j¼0
tςþ1 i; jð Þ;  for 0<ς ≤ 1ð Þ:

ð9Þ

Now, the FGT is used to convert normalized t(i, j) into
binary image b(i, j) with the help of computed FGT as
follows:

b i; jð Þ ¼ 1; t i; jð Þ ≥ FGT

0; t i; jð Þ<FGT

(
: ð10Þ

Now Algorithm 1 removes the unwanted pixels, leaving
only boundary pixels, and cleans the uncoordinated or broken
edges from the binary images (consider n=∞, to remove the
pixels that do not belong to the boundary so that it shrinks to a
significantly connected stroke, and other portion with holes
shrinks to a ring halfway between the outer boundary and the
hole). Finally, the edges of the image are mixed by combining
detected edges in the high-frequency as well as low-frequency
portion.

The smaller value of ςl would result in detecting more
fine edges in the higher changes in intensity portion of the
image. On the other hand, a higher value ςh could detect edges
in the lower change of intensity. A tradeoff could be achieved
by choosing two different values of ς, which is similar to the
feature’s synthesis step in the Canny edge detector. Thus,
we have two different values of ς, ςh> ςl (through the

Input image

Preprocessing

Computation of FGT

Binary conversion by FGT

Removal and cleaning of isolated pixels and
merging of the edges for ςh and ςl

Output edge image

FIGURE 1: Block diagram of FGTED.
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experimental results for different values of ς, we found that
ςl= 0.08 and ςh= 0.35). Algorithm 1 merges the detected
edges for higher and lower values of ς; depending on the
satisfaction of connectivity criteria, the edges are linked,
which results in the direction of the majority of edges in
the image.

4. Results Analysis

The FGTED technique is performed in Matlab-2023(a) with
Intel(R) Core(TM) i3-3220 CPU @ 3.30GHz, and it outper-
forms traditional approaches. The performance of the FGTED
was carried out on the Berkeley Segmentation Dataset and
Benchmark (BSDS 500), which is composed of 500 images
that have manually annotated ground truth contours for
each image. Edge detection accuracy is evaluated using six
standard measures: structural similarity index measure (SSIM),
F-score (F-measure), precision and recall (PR), signal-to-noise
ratio (SNR), peak signal-to-noise ratio (PSNR), and computa-
tional time (CT).

The results are shown in Figure 2 for the images, which
are randomly selected as experimental samples to compare it
with the existing traditional approaches. Figure 2(a)–2(e)
illustrates the comparative outcomes produced by several
conventional techniques and the proposed FGTED on ran-
domly selected images from BSD500. Figure 2(a) shows the
ground truth image, Figure 2(b) shows the edges detected by
the Prewitt edge detector, Figure 2(c) shows edges detected
by the Sobel edge detector, Figure 2(d) shows the edges
detected by Canny edge detector, and finally, Figure 2(e)
shows edges detected by the FGTED.

From visual perceptions, Figure 2(e) presents better results
than Figure 2(a)–2(d) for both the input images. The FGTED
is capable of detecting very thin or microtype edges. The FGT

value-based approach yielded a higher entropy image in com-
parison with the previously existing methods. The results of
the statistical performance parameter are summarized and
compared in Tables 1–6.

The visual comparison in Figure 2 also shows that the
images depicted by the proposed edge detector are much
better for the outer shape of the object than the other images
obtained by the different existing edge detectors. The values
of different parameters are shown in Tables 1–6, which also
support the inferred results.

The output performance analysis of various images was
also done using SSIM, F-score (F-measure), PR, SNR, PSNR,
and CT, as shown in Tables 1–6. The achieved results are as
follows:

(1) The SSIM, F-measure, SNR, and PSNR are better for
FGTED for all the images shown in Tables 1, 2, 4,
and 5. The result shows that FGTED performs better
compared to all three edge detectors, viz. Prewitt,
Sobel, and Canny.

(2) Results in Table 3 show the PR score, which is com-
paratively better than Prewitt and Sobel but lacking
for some images compared to Canny, which can be
further improved by adaptively changing the thresh-
old as per need of the local region.

(3) Table 6 compares the total computation time of all
the edge detectors, which also shows that the pro-
posed edge detector is very fast compared to its other
rivals.

This shows that the proposed FGTED detects the edges
very fast, with significant improvement in the performance
parameters compared to the other rival edge detectors.

Input: Binary image: b of size m× n; Set of neighbor pixels N= 4, ςl= 0.08 and ςh= 0.35.

Output: Optimized edges: oe of size m× n; Set of operations to be executed oe.

1. if ς= ςl
2. for all {i and j2N}

3. if b4 (i, j)= 1

4. then oel(i, j)= 0;

5. else oel(i, j)= 1;

6. end if

7. end for

8. else if ς= ςh
9. for all {i and j2N}

10. if b4 (i, j)= 1

11. then oeh (i, j)= 0;

12. else oeh (i, j)= 1;

13. end if

14. end for

15. end if

16. then oe= oel ∪ oeh

ALGORITHM 1: Removal and cleaning of the isolated pixels and merging of detected edges.
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BSD
no. Ground truth Prewitt Sobel Canny FGTED

(a) (b) (c) (d) (e)
18

90
80

42
04

9
11

80
35

16
30

14
13

50
69

18
90

11
18

90
80

FIGURE 2: Experimental results using popular edge detectors and FGTED, where (a) ground truth images, (b) detected edges by the Prewitt
edge detector, (c) detected edges by the Sobel edge detector, (d) detected edges by the Canny edge detector, (e) detected edges by FGTED.

Mathematical Problems in Engineering 5



5. Conclusion

In this article, a novel FGTED is presented for computing
microedges in minimum time without training or prior
knowledge. It is concluded that Prewitt, Sobel, and Canny
edge detectors eliminate very thin or microtype edges, while
the proposed FGTED technique takes it into consideration.
Figure 2(a)–2(d) shows the edges obtained by different clas-
sical edge detection techniques, whereas Figure 2(e) is the
edge images detected by the FGTED. The FGTED technique
exhibits better performance parameters for texture based
images than the other prevailed methods. By the visual per-
ceptions, the above results clearly indicate the superiority of
the FGTED technique over the existing techniques. Hence, it
is concluded that the FGTED works well for the detection of
strong edges in comparison with the classical techniques.
However, it is observed that the region near the hat-brim
for BSD image no. 189,080 has broken edges, whereas for
135,069, it detected false edges around the birds. The scope of
improvement is possible by applying local or adaptive
thresholds using a fractional approach.

This technique gives improved results in minimum time, if
intensity variations are correlated. Due to the fast speed for
computing edges as well as fine outer boundary detection, this
approach can be used in real-time applications where fast pro-
cessing is required in object detection. The authors also suggest
that the presented FGTED is a pathway for future innovations
in FGT to get better edge detection for more digital images.

TABLE 1: The statistical comparison for SSIM with the competitors
on BSD500.

SSIM

BSD image no. Prewitt Sobel Canny FGTED

189080 0.504131 0.504158 0.504166 0.50419
42049 0.761943 0.762464 0.762506 0.762484
118035 0.741948 0.742701 0.742881 0.742713
163014 0.758939 0.75914 0.759262 0.759174
135069 0.944962 0.94487 0.944853 0.944872
189011 0.708242 0.708713 0.708748 0.708742
189080 0.791261 0.792347 0.792349 0.792357

TABLE 2: The statistical comparison for F-measure with the compe-
titors on BSD500.

F-measure

BSD image no. Prewitt Sobel Canny FGTED

189080 0.008162 0.006528 0.005235 0.0069
42049 0.007377 0.004583 0.002448 0.004921
118035 0.00751 0.011472 0.011971 0.011988
163014 0.017671 0.007557 0.008561 0.008767
135069 0.013496 0.002132 0.002489 0.002131
189011 0.006133 0.00362 0.003774 0.003615
189080 0.007898 0.003522 0.001376 0.003809

TABLE 3: The statistical comparison for PR parameter with the
competitors on BSD500.

PR parameter

BSD image no. Prewitt Sobel Canny FGTED

189080 12.07686 12.24877 15.72025 12.77581
42049 15.79185 15.83617 17.56378 15.77747
118035 11.18474 11.3226 13.3159 11.496811
163014 8.212761 8.638463 12.18637 14.13212
135069 15.08391 15.43197 18.56275 18.93553
189011 5.640497 5.693151 7.525693 5.812116
189080 7.694744 7.715008 9.937986 8.16019

TABLE 4: The statistical comparison for SNR parameter with the
competitors on BSD500.

SNR (dB)

BSD image no. Prewitt Sobel Canny FGTED

189080 −43.0911 −43.4553 −42.8961 −43.3736
42049 −44.5938 −46.1048 −45.3154 −46.0563
118035 −43.2846 −43.0518 −42.3015 −43.0003
163014 −40.2579 −44.2129 −43.3452 −43.9134
135069 −42.2813 −46.5587 −45.5488 −46.4761
189011 −42.0332 −44.6548 −44.3711 −44.564
189080 −40.7244 −45.5497 −45.1886 −45.4726

TABLE 5: The statistical comparison for PSNR parameter with the
competitors on BSD500.

PSNR (dB)

BSD image no. Prewitt Sobel Canny FGTED

189080 17.21255 17.21302 17.22229 17.21321
42049 17.97196 17.97413 17.98742 17.97416
118035 19.91756 19.91801 19.92993 19.91838
163014 18.78931 18.7844 18.78903 18.7848
135069 23.97576 23.97446 23.98405 23.97474
189011 20.67956 20.68491 20.69077 20.68498
189080 20.97487 20.97869 20.98875 20.97871

TABLE 6: The statistical comparison for computational time with the
competitors on BSD500.

Time (s)

BSD image no. Prewitt Sobel Canny FGTED

189080 0.0504131 0.0504158 0.05282 0.025675
42049 0.0761943 0.0762464 0.01472 0.008680
118035 0.0741948 0.0742701 0.00896 0.010783
163014 0.0758939 0.075914 0.00804 0.007771
135069 0.0944962 0.094487 0.00784 0.005339
189011 0.0708242 0.0708713 0.00480 0.004217
189080 0.0791261 0.0792347 0.00691 0.007127

6 Mathematical Problems in Engineering



Data Availability

No data were used to support this study.

Conflicts of Interest

There are no conflicts of interest regarding the publication of
this article.

References

[1] A. A. Kilbas, H. M. Srivastava, and J. J. Trujiilo, Theory and
Applications of Fractional Differential Equations, Elsevier,
Amsterdam, 2006.

[2] A. C. McBride, “Fractional powers of a class of ordinary
differential operators,” Proceedings of the London Mathemati-
cal Society, vol. s3-45, no. 3, pp. 519–546, 1982.

[3] A. A. Kilbas and N. Sebastain, “Generalized fractional
integration of Bessel function of first kind,” Integral Transforms
and Special Functions, vol. 19, no. 12, pp. 869–883, 2008.

[4] V. Kiryakova, “Abrief story about the operators of the generalized
fractional calculus,” Fractional Calculus and Applied Analysis,
vol. 11, no. 2, pp. 203–220, 2008.

[5] D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional
Calculus Models and Numerical Methods, Series on Complexity,
Nonlinearity and Chaos, World Scientific, 2012.

[6] B. C. Gaur Sanjay, S. Mehta, and J. Vajpai, “Adaptive local
thresholding for edge detection,” International Journal of
Computer Applications, pp. 15–18, 2014.

[7] B. C. Gaur Sanjay and J. Vajpai, “An innovative fuzzy logic
based approach for edge detection,” International Journal Of
Engineering Research & Technology (Ijert) Etrasct, vol. 2,
no. 3, 2014.

[8] J. M. Blackledge, Diffusion and Fractional Diffusion Based
Image Processing, pp. 233–240, EG UK Theory and Practice of
Computer Graphics, 2009.

[9] B. Mathieu, P. Melchior, A. Oustaloup, and C. Ceyral,
“Fractional differentiation for edge detection,” Signal Proces-
sing, vol. 83, no. 11, pp. 2421–2432, 2003.

[10] J. You, S. Hungnahally, and A. Sattar, “Fractional discrimina-
tion for texture image segmentation,” International Confer-
ence on Image Processing, vol. 1, pp. 220–223, 1997.

[11] J. Canny, “A computational approach to edge detection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. PAMI-8, no. 6, pp. 679–698, 1986.

[12] H. Jeong and C. I. Kim, “Adaptive determination of filter
scales for edge detection,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 14, no. 5, pp. 579–585,
1992.

[13] R. C. Gonzalez and R. E. Woods, Digital Image Processing,
pp. 692–794, Prentice Hall, 3rd edition, 2013.

[14] M. B. Ahmad and T.-S. Choi, “Local threshold and Boolean
function based edge detection,” IEEE Transactions on Consumer
Electronics, vol. 45, no. 3, pp. 674–679, 1999.

[15] M. Basu, “Gaussian-based edge-detection methods—a survey,”
IEEE Transactions on Systems, Man and Cybernetics, Part C
(Applications and Reviews), vol. 32, no. 3, pp. 252–260, 2002.

[16] S. B. C. Gaur and J. Vajpai, “Comparison of edge detection
techniques for segmenting car license plates,” Special Issue of
International Journal of Computer Applications on Electronics,
Information and Communication Engineering, vol. 5, pp. 8–
12, 2011.

[17] Y.-F. Pu, J.-L. Zhou, and X. Yuan, “Fractional differential
mask: a fractional differential-based approach for multiscale

texture enhancement,” IEEE Transactions on Image Proces-
sing, vol. 19, no. 2, pp. 491–511, 2010.

[18] K. Diethelm, N. J. Ford, and A. D. Freed, “A predictor–corrector
approach for the numerical solution of fractional differential
equations,”Nonlinear Dynamics, vol. 29, no. 1/4, pp. 3–22, 2002.

[19] M. Z. Sarikaya and H. Yaldiz, “On hermite-hadamard type
inequalities for φ-convex functions via fractional integrals,”
Malaysian Journal of Mathematical Sciences, vol. 9, no. 2,
pp. 243–258, 2015.

[20] S. K. Ntouyas, P. Agarwal, and T. Jessada, “On Polya-Szegö
and Chebyshev types inequalities involving the Riemann–
Liouville fractional integral operators,” Journal of Mathemati-
cal Inequalities, vol. 10, no. 2, pp. 491–504, 2016.

[21] A. Khmag, A. R. Ramli, and N. Kamarudin, “Clustering-based
natural image denoising using dictionary learning approach in
wavelet domain,” Soft Computing, vol. 23, no. 17, pp. 8013–
8027, 2019.

[22] A. Khmag, “Additive Gaussian noise removal based on
generative adversarial network model and semi-soft thresh-
olding approach,” Multimedia Tools and Applications, vol. 82,
no. 5, pp. 7757–7777, 2023.

[23] Khmag and N. Kamarudin, “Natural image deblurring using
recursive deep convolutional neural network (R-DbCNN) and
second-generation wavelets,” in 2019 IEEE International Confer-
ence on Signal and Image Processing Applications (ICSIPA),
pp. 285–290, IEEE, Kuala Lumpur, Malaysia, 2019.

[24] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of
human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecological
statistics,” Proceedings of the IEEE International Conference on
Computer Vision, vol. 2, pp. 416–423, 2001.

[25] A. Nandal, H. Gamboa-Rosales, A. Dhaka et al., “Image edge
detection using fractional calculus with feature and contrast
enhancement,” Circuits, Systems, and Signal Processing,
vol. 37, no. 9, pp. 3946–3972, 2018.

Mathematical Problems in Engineering 7




