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In seismic data processing, data recovery including reconstruction of the missing trace and removal of noise from the recorded data
are the key steps in improving the signal-to-noise ratio (SNR). The reconstruction of seismic data and removal of noise becomes a
sparse optimization problem that can be solved by using sparse regularization. Sparse regularization is a key tool in the solution of
inverse problems. They are used to introduce prior knowledge and make the approximation of ill-posed inverses feasible. It deals
with ill-posedness by replacing an ill-posed inverse problem with a well-posed problem that has a solution close to the true
solution. In the last 2 decades, interest has shifted from linear toward nonlinear regularization methods even for linear inverse
problems. In inverse problems, regularizations serve as stabilizing the solution of ill-posed inverse problems and give a solution
that adequately fits measurements without producing unjustifiably complex artifacts. In this paper, we present a novel sparse
regularization based on a tensor-based dictionary method for inverse problems (seismic data interpolation and denoising). This
regularization avoids the vectorization step for sparse representation of seismic data during the reconstruction process. The key
step in sparsifying signals is the choice of sparsity-promoting dictionary learning. The learning-based approach can adaptively
sparsify datasets but has high computational complexity and involves no prior-constraint pattern information for the dataset.
Many existing dictionary learning methods would be computationally infeasible for the high dimensional seismic data processing.
These methods also destroy the essential information as well as it reduces the discriminability and expressibility of the signal, since
they deal with vectorization. In this paper, the orthogonal tensor dictionary learning that learns a dictionary from the input data by
employing orthogonality and separability is proposed as sparse regularization for the inverse problems. The performance of the
proposed method was validated in seismic data interpolation and denoising individually as well as simultaneously. Numerical
examples of synthetic and real seismic datasets demonstrate the validity of the proposed method. The SNR of the recovered data
confirms that the proposed method is the most effective method than K-singular value decomposition and orthogonal dictionary
learning methods.

1. Introduction

In exploration geophysics, seismic data processing is an
essential task in processing various properties of the earth’s
subsurface. Due to the physical and budget constraint, only
a subset of seismic data is acquired for this process. The
acquired seismic data may be subjected to various noise
contamination, and some important significant traces may
also distort. To increase the resolution of the seismic records,
random noise attenuation and interpolation are the two crit-
ical steps in seismic data processing. Improving the quality of
seismic data by removing random noises and reconstructing
the missing irregular seismic traces play a vital role in

providing high-resolution processing, oil, and gas explora-
tion, multiple suppression, and wave-equation migration [1].
Seismic event detection, migration, and inversion demand a
high quality of seismic data [2]. Different methods have been
proposed for seismic noise attenuation and interpolation
[3–5]. Most methods in seismic noise suppression are applied
in the transform domain in which the signal and noise are
distinguishable [6]. Even though reconstructing the missing
seismic traces (interpolation) and attenuating seismic noise
(denoising) methods are different in their output, they are
nearly identical operations in the process of obtaining clear
seismic data at the final [7].
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Based on the prediction method in the time–spatial t–x
domain [8, 9], the frequency–spatial f–x domain [10, 11]
based on the predictability of linear events without the prior
knowledge of lateral coherence of the events has been pro-
posed. In the frequency–wavenumber, f–x domain [7, 12] has
been proposed by utilizing a convolutional prediction filter
computed from the low-frequency parts to predict the high-
frequency components. These methods are only applied to
the seismic data with linear events and are applied for only
regularly sampled seismic data.

Based on the rank-reduction Cadzow method such as
truncated singular value decomposition (SVD)-based matrix
rank reduction of constant frequency slices for trace inter-
polation [13], multichannel singular spectrum analysis [3],
adaptive rank-reduction based on the energy entropy [14] in
solving rank reduction were proposed. Low-rankmatrix com-
pletion [15, 16], tensor higher order SVD [17], and nuclear-
norm minimization-based matrix completion [18] have been
proposed in seismic data restoration as an extension of Cad-
zow method.

Based on the wave-equation, seismic data restoration uti-
lizes the inherent constraint of seismic data from wave equation
to reconstruct seismic data [1]. Different methods have been
proposed based on the wave-equation method [19]. This
method attains good performance in the restoration of seis-
mic data. However, it depends on only the known velocity
model.

The fourth method is based on dictionary transform, pro-
moting sparsity in seismic data processing. In seismic data
processing, interpolation and denoising are the two inverse
problems in which we can employ sparsity constraints [20].
The sparse dictionary learning (DL) algorithm has been also
proposed to attenuate random noise in a transform-based
denoising framework [21]. Sparse representation represents
input data as the linear combination of basis elements such
that most of the representation coefficients are zero [22]. For a
given signal x2Rn, the sparsest representation is to find a
sparse vector α2Rm such that y¼Dα, where D is the dictio-
nary and each of its columns is an atom. The idea of sparsity
in seismic data processing has been used in two different
ways: fixed (analytic) basis transform and learning (adaptive)
dictionaries.

Fixed basis transforms have been applied in seismic data
processing by using a known set of basis functions to esti-
mate representation coefficients of the input data. Wavelet
multiresolution analysis [23], physical wavelet transforms
[24], Radon transforms [25, 26], Fourier transform [27, 28],
curvelet transforms [29, 30], seislet transforms [31, 32], and
shearlet transform [33] have been proposed. In the non-
subsampled contourlet transform domain, threshold shrink
method [34] for denoising seismic data has been also pro-
posed. In analytic DL approaches, the analytic construction
is employed, and the mathematical model of the signal is
formulated to represent the model. These methods are simple
and have fast computation in creating data features for differ-
ent applications in seismic data processing.

Adaptive/learned DL uses the learned basis functions
from the input data to estimate the missing data and restore

the degraded data by a sparsity-promoting model. Based on
adaptive/learned DL, different methods have been proposed
in image processing. The adaptive DL algorithm has also
been proposed to attenuate automatic coherent noise [35].
This approach can learn the features of both signals and
coherent noise and leave obvious morphological differences
in the dictionary atoms. Principal component analysis (PCA)
[36], generalized PCA [37], method of optimal directions
(MOD) [38, 39], and K-singular value decomposition (K-SVD)
[40] are adaptive/learned dictionary proposed in image sci-
ence. PCA is widely used in statistics for multivariate analysis.
It reduces the dimensionality of the data by preserving the
variability of data variables. K-SVD learns an overcomplete
dictionary from the noisy image patches and uses the learned
dictionary to sparsely represent model and image denoising
[41]. K-SVD has been proposed for signal processing applica-
tions [42] and seismic data denoising [38]. However, the input
data are considered as a vector in K-SVD, and then at each
iteration step, SVD is used to transform the matrix to update
each column of the dictionary [20]. It leads to the redundancy
of dictionaries in which most of the atoms are similar or
contribute little role in the representation of input data. K-
SVD-based sparse representation has also been used in seis-
mic data denoising and compression [43]. In this case, K-SVD
is used to sparsely represent the 4D seismic dataset to find a
representation with as few coefficients as possible while pre-
serving the main characteristics of the data. In the learning
dictionary for sparsity-based seismic data restoration, high
redundancy dictionary leads to a poor sparse approximation
of data. This approach is computationally infeasible when
dealing with seismic data and requires high computational
cost [44]. Data-driven tight frame (DDTF) [45], which learns
dictionary with a prescribed block Toeplitz structure and satis-
fies the perfect reconstruction property for denoising, has been
proposed to reduce the computational complexity of K-SVD.
The high performance of DDTF in interpolation and denois-
ing of high dimensional seismic data was analyzed [46, 47].

The hybrid method, which combines the advantage of
fixed basis and learned-based DL, has been applied in seismic
data processing. A double sparsity method which is based on
seislets and DDTF [48] was proposed. However, most of
these methods deal with vectors leading to loss of seismic
data structure and poor sparse representation. To overcome
this problem, tensor-based DL methods [49, 50] have been
proposed for various sparsity-based restoration. In the tensor
DL method, the input data are treated as tensors instead of
vectors and the dictionary is learned by tensor decomposi-
tion [44]. The DDTF of Kronecker type (KronTF) [20], ten-
sor decomposition [17], and a Kronecker-based dictionary in
dynamic computed tomography [51] have been proposed to
avoid the vectorization of input data and applying a learned
dictionary based on tensor decomposition.

Many existing DL methods would be computationally
infeasible when dealing with high-dimensional seismic data.
Moreover, the vectorization method which likely destroys the
input data’s important information and reduces the discrimi-
nability and expressibility of the obtained representation are
applied to those methods. In this paper, we have proposed the
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orthogonal tensor DL that learns a dictionary from the input
data by employing orthogonality and separability. We use this
method for seismic data denoising and interpolation. The
separability of the dictionary makes the proposed method
highly scalable, and the orthogonality among dictionary atoms
leads to a very efficient sparse coding computation. The scal-
ability and computational efficiency make the proposed
method suitable for processing seismic data in the tensor
domain [44]. The rest part of this paper is organized as fol-
lows. In Section 2, we discussed the basic idea of orthogonal
DL and its construction which greatly simplify the computa-
tion of both dictionary updating and sparse coding for the
sparse representation of input data. In Section 3, orthogonal
tensor-based DL and its property are verified. The orthogonal
tensor DL is applied to seismic data denoising and interpola-
tion problems. The numerical results are also presented in
Section 4. Finally, the conclusion of this paper is addressed
in Section 5.

2. Orthogonal Dictionary Learning

Sparsemodels in representing input data are an active research
area in natural image processing. In a sparse model, the local
input data patches are sparsely approximated by the linear
combination of atoms in which the collection of these atoms
forms a dictionary. The main challenge in sparse representa-
tion is the construction of a dictionary which is computation-
ally feasible in seismic data representation. The orthogonal
dictionary is the one which can greatly simplify the computa-
tion of both dictionary updating and sparse coding for the
sparse representation of input data. In orthogonal DL, we
aim at finding the orthogonal dictionary bD¼ ½A;D� 2Rn×n

whose columns are dictionary atoms such that DTD¼ Im and
ATD¼ 0 to sparsely approximate the given data Y¼fy1; y2;
y3;…; ymg2Rn×m, where n and m are the size of orthogonal
matrices. A2Rn×n−m contains input orthogonal atoms and
D2Rn×m is the set of atoms to be learned from the input data.
The corresponding minimization problem to learn orthogonal
dictionary bD is formulated as follows [52]:

argmin
D2Rn×m;V2Rn×m

⁡ Y − A;D½ �Vk k2F þ λ2 Vk k0; ð1Þ

such that DTD¼ Im and ATD¼ 0, where k:jj2F is the Frobe-
nius norm which is defined as kVjj2F ¼ð∑

i; j
jVi; jj2Þ12, where Vi; j

are the vectors or entries of the matrix V and kVjj0 denotes
the number of nonzero coefficients of V. λ>0 is the parame-
ter that balances the trade-off between the approximation
term and the sparsity term. The solution of Equation (1) is
disposed to increase the elements of bD such thatV to become
as small as possible. To solve Equation (1), we can take the
alternating iterative scheme by decomposing the minimiza-
tion problem into two steps. In this case, the K-SVD algo-
rithm can solve Equation (1) by employing an iterative
strategy that alternates between the two steps such that
Equation (1) is reduced into only one unknown by fixing
one as known.

Step 1 (sparse coding): For a given orthogonal dictionarybD, we need to find the sparse code VðkÞ by solving the fol-
lowing minimization problem:

V kð Þ ¼ argmin
V2Rn×m

⁡ Y − A;Dk
Â Ã

V


 

2

F þ λ2 Vk k0: ð2Þ

To solve the minimization problem in step 1, we formu-
late the following remark which is equivalent to Equation (2).

Remark 1. Assume that bDT bD¼ In, then argminV⁡kY −bDVjj2F þ λ2 kVjj0 has a unique solution which is given by
V∗ ¼TλðbDTYÞ:

Based on Remark 1 and for bDT bD¼ In, Equation (2) has a
unique solution which is given by VðkÞ ¼TλðbDTYÞ, where Tλ

is the hard threshold which is defined as follows:

Tλ xð Þ ¼ x; xj j>λ

0; xj j ≤ λ

(
: ð3Þ

Step 2 (dictionary updating): For a given sparse code V,
we want to update the dictionary bD by solving the minimi-
zation problem:

D kþ1ð Þ ¼ argmin
D2Rn×m

⁡ Y − A;D½ �V kð Þ

 

2
F; ð4Þ

such that DTD¼ Im and ATD¼ 0. The minimization prob-
lem in Equation (4) can be solved by employing the following
remark which is equivalent to step 2.

Remark 2. The optimization problem in step 2 is equivalent
to the following equation:

argmin
V

⁡ Y − AVA þDVDð Þk k2F; ð5Þ

such that DTD¼ Im and ATD¼ 0. This minimization prob-
lem has a unique solution which is given by the following
equation:

D∗ ¼ RHT; ð6Þ

where R and H are the orthogonal matrices defined by the
following SVD:

In − ΦAð ÞYVT
D ¼ RΣHT; ð7Þ

where Σ is the singular value matrix of RHT, and ΦA defined
from Rn to the space spanned by the columns of the dictio-
nary A is an orthogonal projection operator given by: ΦAl¼
AðATlÞ, for all l2Rn. Finally, we adopt the following orthog-
onal DL algorithm.
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3. Orthogonal Tensor Dictionary Learning

In this section, we extend the orthogonal DL that we have
discussed in Section 2 by introducing tensor and learn a
tensor dictionary with separability and orthogonality. In
the conventional DL approach, the extracted image patches
are first transferred into vectors to form training data and
then the K-SVD method is used to learn a vector-based
dictionary [48]. In this strategy, the inherent spatial con-
straints of the input data structures can be lost or distorted
when the dimension of input data is very high. To overcome
this problem, the tensor-based method has been investigated
for DL to achieve better performance in signal/image proces-
sing [53–55]. Tensor is a multidimensional array [56]. An
nth order tensor is denoted as X2Ri1×i2×i3…×in whose ði1;
i2;…; inÞ elements is Xi1; i2;…; in , 1≤ ik ≤ Ik, k¼ 1; 2; 3;…; n.
Let SM ¼fD2RM×Mg be the set of orthogonal square matri-
ces. Then, we aim to learn the set of orthogonal dictionaries
fDi 2 SM; i¼ 1; 2g to be learned from the input data simul-
taneously such that DT

i Di ¼ I, for i= 1,2 and DT
2D1 ¼ 0 in the

tensor domain. In this paper, Y2Rn×m is considered as a
tensor of two dimensions which can be written as follows:

Y¼ V×1D1×2D2; ð8Þ

where D1 and D2 are orthogonal matrices from the set SM
with the sparse coding tensor V and V×1D1×2D2 is the
product of sparse coding tensor V with a matrix Dn; n¼ 1;
2, ×i; i¼ 1; 2 are the tensor mode product operators. We
formulate the following minimization problem to learn these
dictionaries:

argmin
D1;D2;V2RM1×M2×N

⁡ Y − V×1D1×2D2k k2F þ λ2 Vk k0; ð9Þ

where k:jj0 denotes the nonzero elements in the tensor
domain, and k:jj2F is the Frobenius norm of the tensor which
is defined as the square roots of the sum of the absolute
squares of its elements. We decompose the problem in
Equation (9) into two subproblems and solve them separately.

Step 1: For a given dictionariesD1 andD2, we need to find
the sparse tensor VðkÞ by solving the minimization problem:

V kð Þ ¼ argmin
V

⁡ Y − V×1D1×2D2k k2F þ λ2 Vk k0: ð10Þ

To solve for the sparse codingV, we consider the vectorized
version of the tensor representation in Equation (8) in terms of
Kronecker dictionaries which is formulated as follows:

y ¼ vec Yð Þ ¼ D2 ⊗D1ð Þvec Vð Þ; ð11Þ

y ¼ D2 ⊗D1ð Þv; ð12Þ

where ⊗ represents the Kronecker product. As we discussed
in Section 2, we can compute the corresponding sparse cod-
ing V2RM1×M2×N by applying a component-wise hard
thresholding. Then, the solution for the sparse coding V is
given by the following equation:

v kð Þ ¼ Tλ y⊗DT
1 ⊗DT

2ð Þ½ �; ð13Þ

where Tλ is an operator that keeps the coefficients larger than
λ and setting the other coefficients to be zero.

Step 2: For a given sparse coding VðkÞ, we need to update
the dictionaries D1 and D2. The tensor representation Y in
Equation (8) can be unfolded in order to update the two
dictionaries D1 and D2 as follows:

Y 1ð Þ ¼D1V 1ð ÞDT
2

Y 2ð Þ ¼D2V 2ð ÞDT
1
: ð14Þ

Then,D1 andD2 can be updated by solving the following
minimization problem:

argmin
D1

⁡ Y 1ð Þ −D1V 1ð ÞDT
2



 

2
F

argmin
D2

⁡ Y 2ð Þ −D2V 2ð ÞDT
1



 

2
F

: ð15Þ

The dictionary Dn (n= 1, 2) can be updated by using an
alternating least squares method while fixing the sparse cod-
ing VðkÞ. To solve for the above two dictionaries D1 and D2,
we formulate the theorem which is related to the

Input: Training dataset Y, Input orthogonal atoms A.

Output: Learned dictionary D.

1 Initialize the dictionary Dð0Þ

2 For k¼ 0; 1; 2;…;K
3 Compute the sparse coding by using hard threshold

Vk
D ¼TλððDkÞTVÞ,

4 Run the SVD for the following matrix
ðIn −ΦAÞYðVk

DÞT ¼RΣHT:
5 Update the dictionary

Dkþ1 ¼RHT;D : ¼Dkþ1:
6 end for

ALGORITHM 1: Orthogonal DL algorithm.
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minimization problems in Equations (14) and ((15). The
proof of this theorem is given in the appendix section.

3.1. Application to Seismic Data Interpolation and Denoising.
To evaluate the effect of the proposed method on seismic
data processing in terms of quality and computational effi-
ciency, we applied for interpolation (reconstruction of miss-
ing traces) and denoising (attenuation of random noise). Let
u be the complete data for recovery, f be the observed data, R
be the trace sampling matrix which contains only 1 or 0, and
ϵ denotes the amount of noise to be added on the input data.
Let these data be related by the following model:

f ¼ Ruþ ϵ: ð16Þ

When ϵ¼ 0, the model in Equation (16) is the interpola-
tion problem that can reconstruct the missing traces and if R
is identity matrix In and ϵ ≠ 0, it corresponds to the denois-
ing problem. After the orthogonal tensor dictionary learned
from the input seismic data simultaneously, we used it to
propose sparse regularization which promotes sparsity in the
seismic data restoration problem. Based on the learned
orthogonal tensor dictionary model in Section 3, we formu-
late the seismic data restoration problem by employing a new
sparse regularization. Let Bi be an operator which can extract
features of seismic data u, then the following minimization
problem is formulated to reconstruct the missing traces and
denoising seismic data:

argmin
u;D;Vi

⁡∑
i

λ1
2

V ið Þ×1D1×2D2 − Biu


 

2

2 þ V ið Þ

 


0

À Áþ λ2
2

Ru − fk k22;

ð17Þ

with the parameters λ1 and λ2 need to be determined. The
first term in Equation (17) is the regularization term that
corresponds to tensor-based orthogonal DL and the second
term is the fidelity data in the projection domain with the
sampling matrix R and the degraded data f . Basically, we can
write VðiÞ×1D1×2D2 as D1VðiÞDT

2 . Now we can represent
D1VðiÞDT

2 by Dvi and then Equation (17) becomes:

argmin
u;D;vi

⁡∑
i

λ1
2

Dvi − Biuk k22 þ vik k0ð Þ þ λ2
2

Ru − fk k22:

ð18Þ

We employed the alternating direction method of multi-
pliers (ADMM) to solve Equation (18) based on the aug-
mented Lagrangian and the separable paraboloid surrogate
method. ADMM method has been widely applied to solve
different minimization problems in seismic data processing
[57]. The surrogate method makes the cost function separa-
ble so that all traces of seismic data can be updated simulta-
neously. Let c¼Biu−Dvi and h be the two auxiliary
variables used to transform the nonconvex optimization
problem into a convex optimization problem, then we can
rewrite Equation (18) as follows:

Dkþ1; vkþ1
i ; ukþ1; ckþ1

i

È É¼ argmin
u;D;vi;c

⁡∑
i

λ1
2

cik k22 þ vik k0ð Þ þ β

2
Dvi þ ci − Biu −

hi
β





 



2
2

� �
þ λ2

2
Ru − fk k22: ð19Þ

hkþ1 ¼ hk þ β −Dkþ1vkþ1
i − ckþ1

i þ Biukþ1
À Á

: ð20Þ

We split the minimization problem in Equation (19) into
three subproblems, where λ1, λ2, and β are the regularization
parameters. Subproblem 1: updating DL and sparse coding:

Dkþ1; vkþ1
i

È É¼ argmin
D;vi

⁡∑
i

Dvi − Biuk k22 þ
λ1
2

vik k0:

ð21Þ

Subproblem 2: c-subproblem. The optimization problem
for the auxiliary variable c is given by the following equation:

ckþ1
i ¼ argmin

ci

⁡∑
i

λ1
2

cik k22 þ
β

2
Dkvki þ ci − Biuk −

hi
β





 



2
2

� �
:

ð22Þ

Subproblem 3: u-subproblem. The corresponding mini-
mization problem for u is as follows:

ukþ1 ¼ argmin
u

⁡

β

2
∑
i

Dkvki þ cki − Biu −
hi
β





 



2
2

� �
þ λ2

2
Ru − fk k22:

ð23Þ

We have discussed the solution for the one that corre-
sponds to updating DL and sparse coding for subproblem 1
in Section 2. To solve the second subproblem, we apply the
optimality condition for Equation (22):

∂
∂ci

∑
i

λ1
2

cið Þ2 þ β

2
Dkvki þ ci − Biuk −

hi
β

� �
2

� �� �
¼ 0;

ð24Þ
λ1
2

2ckþ1
i

À Áþ β

2
2Dkþ1vkþ1

i þ 2ckþ1
i − 2Biuk − 2

hi
β

� �
¼ 0:

ð25Þ

Then,

ckþ1
i ¼ β

λ1 þ β
Biuk −Dkþ1vkþ1

i þ hi
β

� �
: ð26Þ
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After the dictionary D updated in the iteration process,
the seismic data u should be updated with vi andD. To do so,
the separable paraboloid surrogate method [58] is used to
solve for u as follows:

ukþ1 ¼ argmin
u

⁡

β

2
∑
i

Dkvki þ cki − Biu −
hi
β





 



2
2

� �
þ λ2

2
Ru − fk k22:

ð27Þ

By using separable paraboloid surrogate method, ukþ1 is
given by the following equation:

ukþ1 ¼ uk −

∂
∂u

β
2∑i Dkvki þ cki − Biu −

hi
β




 


2
2

� �
þ λ2

2 Ru − fk k22
� �

∂2
∂u2

β
2∑i Dkvki þ cki − Biu −

hi
β




 


2
2

� �
þ λ2

2 Ru − fk k22
� �


 


; ð28Þ

where

∂
∂u

β

2
∑
i

Dkvki þ cki − Biu −
hi
β





 



2
2

� �
þ λ2

2
Ru − fk k22

� �
 

¼ ∂
∂u

β

2
∑
i

Dkvki þ 2Dkvki c
k
i − 2Dkvki B

T
i u − 2Dkvki

hki
β

� �
− 2cki B

T
i u − 2cki

hki
β

� ���
 

þ BT
i Biu2 þ 2BT

i u
hki
β

� �
þ hki

β

� �2�
þ λ2

2
RTRu2 − 2RTuf þ f2ð Þ

�
:

ð29Þ

Then,

∂
∂u

β

2
∑
i

Dkvki þ cki − Biu −
hi
β





 



2
2

� �
þ λ2

2
Ru − fk k22

� �
¼ β∑

i
BT
i Biu

k
−Dkþ1vkþ1

i − ckþ1
i þ hki

β

� �� �
þ λ2R

T Ruk − f
À Á

:

ð30Þ

The denominator of Equation (28) is the curvature of the
paraboloid which can be obtained as follows:

∂2

∂u2
∑
i

Dkvki þ cki − Biu −
hi
β





 



2
2

� �
þ λ2

2
Ru − fk k22

� �
¼ ∂

∂u
β∑

i
BT
i Biuk −Dkþ1vkþ1

i − ckþ1
i þ hki

β

� �� ��
þ λ2RT Ruk − f

À ÁÁ
¼ β∑

i
BT
i Bi þ λ2RTR:

ð31Þ

Input: Training data set Y, regularization parameters, patch size.

Output: Learning dictionaries D1;D2

1 Initialize Dð0Þ
1 ;Dð0Þ

2 , and uð0Þ; cð0Þ; hð0Þ.
2 For k¼ 0; 1; 2;…;N
3 Update the sparse coding using hard thresholding,

vðkÞ ¼ ½Tλðy⊗DT
1 ⊗DT

2 Þ�;
4 For n¼ 1; 2, Update the dictionaries Dn by running the SVD in Equations (A.18) and (A.20).

5 End for

6 Update, h using Equation (20)

7 Update, c using Equation (26)

8 Solve for u using Equation (33)

9 end for

ALGORITHM 2: Orthogonal tensor dictionary learning algorithm.
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FIGURE 1: Interpolated results: (a) original seismic data; (b) seismic data with 50% with missing traces; (c) interpolation by K-SVDmethod; (d)
interpolation by orthogonal DL method; and (e) interpolation result by the proposed method.
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FIGURE 2: (a) Original seismic data and (b) seismic data with 50% missing trace. Interpolation results using by (c) K-SVD method, (d)
orthogonal DL method, and (e) the proposed method.
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Therefore,

∂2

∂u2
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i

Dkvki þ cki − Biu −
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β





 



2
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2
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� �
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i
BT
i Bi þ λ2RTR:
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Hence,
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i Biu
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FIGURE 3: Difference sections between (a) Figures 2(a) and 2(c), (b) Figures 2(a) and 2(d), and (c) Figures 2(a) and 2(e).

TABLE 1: SNR values of three different methods applied to synthetic data in Figure 2 with different sampling ratio.

Sampling ratio 0.3 0.4 0.5 0.6 0.7 0.8

K-SVD method 23.9923 25.6434 27.8589 29.3336 30.6696 31.1826
Orthogonal DL method 31.7795 32.9216 33.4244 36.3080 38.4702 41.3320
Proposed method 34.6241 36.3963 38.5860 39.9641 42.9120 43.5903
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Finally, we formulate the following algorithm for the
proposed method.

4. Numerical Experiments

The numerical examples and the graphs used in this paper
were simulated by MATLAB and the machine we used to run
the code isDESKTOP-HKHFG0P: Processor: Intel(R) Core(TM)
i7-7500U CPU @ 2.70GHz 2.90GHz and RAM: 8.00GB.

We test the validity of the proposed method to noise free
and noisy synthetic and real seismic datasets. The proposed
method tested on both synthetic and real datasets by the
different percentages of missing traces based on Jittered

undersampled strategy which can help to obtain random
properties as well as control the maximum gap between
adjacent traces to meet the requirements of the compres-
sive sensing theory. Throughout the numerical experi-
ments, the patch size was 8× 8 and the sparsity level was
4. The algorithm in Nazzal et al.’s [59] study is used to
obtain the sparsity level. The regularization parameters are
tuned based on the convergence condition. Accordingly,
the choice of the parameters λ2 ¼ 1 and λ1>0 is trivial.
We empirically search for the optimal value of parameter
λ1 from the smallest set f0:0005; 0:0001; 0:005; 0:01g and
search for the parameter β from the range of ½0:001; 0:2�.
To evaluate the quality of restored seismic data quantitatively,
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FIGURE 4: Single trace comparison of the reconstructed synthetic data: (a) trace from K-SVD result, (b) trace from orthogonal DL, and (c)
trace from the proposed method.
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we introduced the signal-to-noise ratio (SNR) which is defined
as follows:

SNR ¼ 10log10
uk k22

u − vk k22

� �
; ð34Þ

where u denotes the clean seismic data and v denotes the
reconstructed seismic data. We simulate seismic data using
synthetic datasets containing four layers with linear and
curved events and synthetic datasets with six layers contain-
ing parabolic events. The 50% of missing traces is used based
on the random sampling property as shown in Figures 1

and 2. We apply the proposed method to 2D synthetic data
reconstruction with linear and curved events as shown in
Figures 1 and 2, respectively. The result of the proposed
method is compared with the results by K-SVD and orthog-
onal DL. In Figure 1, both K-SVD and orthogonal DL pro-
vide promising results in the reconstruction of missing
traces when the seismic data are with the linear events.
However, the reconstruction results by the K-SVD and
orthogonal DL are not satisfactory when the seismic data
are with the nonlinear events because of the elimination of
some important features of the reconstructed data around
the boundary, as shown in Figures 2(c) and 2(d). The effec-
tiveness of the proposed method in the reconstruction of
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FIGURE 5: Single trace comparison of the reconstructed synthetic data in Figure 3 with the original trace from Figure 3(a). Trace from (a) K-
SVD result, (b) orthogonal DL result, and (c) the proposed method.
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FIGURE 6: (a) Original seismic data with strong noise. (b) Real seismic data with strong noise and 50% missing trace. Simultaneous denoising
and interpolation of seismic data by using (c) K-SVD method, (d) orthogonal DL algorithm, and (e) the proposed method.
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missing seismic traces is presented in Figure 1(e). Further-
more, the residual which is defined as the difference
between the interpolated and original seismic data is pre-
sented in Figure 3 to show the performance of K-SVD,
orthogonal DL, and proposed methods in the reconstruc-
tion of missing traces. For the results by K-SVD and
orthogonal DL, there are some important features of seis-
mic signals left in the residual sections, as observed in
Figures 3(a) and 3(b), respectively. There is no important
information about seismic signals left in the residual sections

as indicated in Figure 3(c). The minor residual indicates that
the important features of the seismic signal are well preserved,
and better interpolated seismic data can also be achieved. For
further comparison, the SNR of the proposedmethod, K-SVD,
and orthogonal DL are given in Table 1. The proposedmethod
clearly shows much better signal preservation and SNR
enhancement while reconstructing the missing seismic traces.
For additional comparison and to see the detail of the interpo-
lated seismic data by the three methods, we plot a single seis-
mic trace from the interpolated data in Figures 4 and 5.
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FIGURE 7: Difference sections between (a) Figures 6(b) and (c), (b) Figures 6(b) and (d), and (c) Figures 6(b) and (e).

Mathematical Problems in Engineering 13



Trace number

Ti
m

e s
am

pl
in

g 
nu

m
be

r

20 40 60 80 100 120 140 160 180

50

100

150

200

250

300

350

400

450

500

ðaÞ
Trace number

Ti
m

e s
am

pl
in

g 
nu

m
be

r

20 40 60 80 100 120 140 160 180

50

100

150

200

250

300

350

400

450

500

ðbÞ

Trace number

Ti
m

e s
am

pl
in

g 
nu

m
be

r

20 40 60 80 100 120 140 160 180

50

100

150

200

250

300

350

400

450

500

ðcÞ
Trace number

Ti
m

e s
am

pl
in

g 
nu

m
be

r

20 40 60 80 100 120 140 160 180

50

100

150

200

250

300

350

400

450

500

ðdÞ

Trace number

Ti
m

e s
am

pl
in

g 
nu

m
be

r

20 40 60 80 100 120 140 160 180

50

100

150

200

250

300

350

400

450

500

ðeÞ
FIGURE 8: (a) Original seismic data. (b) Seismic data with missing traces. Reconstructed data using (c) K-SVD, (d) orthogonal DL, and (e) the
proposed method.
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In the next example, we focused on the real seismic data
to verify the performance of the proposed method in simul-
taneous interpolation and denoising and compare it with the
K-SVD and orthogonal DL methods. In this case, we ran-
domly remove 50% seismic traces and apply the samemethod
with synthetic data. The real data with 50%missing trace and
covered by strong real noise in which detecting the useful
seismic signals are hard, and hard to see some events of seis-
mic data are presented in Figure 6(a). The interpolated and
denoised results are shown in Figure 6(c)–6(e). The proposed
method shows promising performance in removing strong
random noise and interpolating the missing seismic traces.
Because of the special information contained in the tensor DL,
the proposed method achieves better results in the interpola-
tion and denoising of seismic data in terms of visual quality

and preservation of seismic features. As shown in Figures 6(c)
and 6(d), some important parts of the interpolated and
denoised data are deteriorated. The noise sections from the
original data (with strong noise) and the recovered data are
presented in Figure 7. As presented in Figures 7(a) and 7(b),
there are some useful seismic signals left in the noise sections.
As we observe from Figure 7(c), there are no parts of seismic
signals left in the noise sections.

The effectiveness of the proposed method is also verified
by interpolating aliasing seismic data containing different
features. The original seismic data, observed data with 50%
missing traces, and the interpolated results are presented in
Figure 8. The reconstructed results by K-SVD and orthogo-
nal DL are unsatisfactory because of the insertion of artifacts
on some parts of the interpolated results as shown in

0 50 100 150 200 250 300 350 400 450 500
–2,000

–1,500

–1,000

–500

0

500

1,000

1,500

2,000

2,500

Time sampling number (ms)

A
m

pl
itu

de

Original
K-SVD

ðaÞ

0 50 100 150 200 250 300 350 400 450 500
–2,000

–1,500

–1,000

–500

0

500

1,000

1,500

2,000

2,500

Time sampling number (ms)

A
m

pl
itu

de

Original
Orthogonal DL

ðbÞ

0 50 100 150 200 250 300 350 400 450 500
–2,000

–1,500

–1,000

–500

0

500

1,000

1,500

2,000

2,500

Time sampling number (ms)

A
m

pl
itu

de

Original
Proposed method

ðcÞ
FIGURE 9: Reconstructed single trace comparison by (a) K-SVD, (b) orthogonal DL, and (c) proposed method of the interpolated results in
Figure 8.
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FIGURE 10: (a) Original seismic data. (b) Noisy data with SNR= 5.39. The result of random noise attenuation of synthetic seismic data by (c)
K-SVD (SNR= 22.27 dB), (d) orthogonal DL (SNR= 23.51 dB), and (e) the proposed method (SNR= 24.36 dB).
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Figures 8(c) and 8(d), respectively. The performance of the
proposed method in the reconstruction of missing seismic
traces is presented in Figure 8(e). The single trace is extracted
from the reconstructed data by K-SVD, orthogonal DL, and
the proposed method as presented in Figure 9 to compare the
details of the obtained results.

For the next example, we discussed the validity of the
proposed method for removing random noise and compared
it with K-SVD and orthogonal DL. Both synthetic and real
seismic datasets are considered for random noise attenua-
tion. Both synthetic and real seismic datasets are contami-
nated by band-limited Gaussian noise which is spatially
uncorrelated random noise. The synthetic seismic data
with random noise are presented in Figure 10. The denoised
results by K-SVD and orthogonal DL are not satisfactory
because of the elimination of some primary features of seis-
mic data around the boundary and they introduce some
artifacts as presented in Figures 10(c) and 10(d). Since K-
SVD uses the redundancy of the seismic features over the

datasets to attenuate random noise, it is computationally
more expensive than orthogonal DL and proposed methods.
Moreover, the denoising performance of K-SVD, orthogonal
DL, and proposed methods are assessed by using the resi-
duals obtained by subtraction of the denoised results from
the noisy seismic data. In Figures 11(a) and 11(b), K-SVD
and orthogonal DL residuals show some removed important
seismic signals. In Figure 11(c), we observe that almost there
were no important seismic signals left in the residual part.
For further comparison, a single seismic trace extracted from
the denoised results in Figure 10 is displayed in Figure 12,
and the comparison of SNR is presented in Table 2 with the
different noise levels.

Finally, we test the denoising of 2D real data with band-
limited Gaussian noise. The denoised result by the proposed
method is shown in Figure 13(e), and the result is clear and
the primary features of the data are well preserved. The other
two methods cause some damage to the useful seismic signals
and some part of the seismic data left in the residual parts as
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FIGURE 11: The noise sections from the denoised results by (a) K-SVD, (b) orthogonal DL, and (c) the proposed method corresponding to the
one in Figure 10.
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FIGURE 12: Single seismic trace comparison of the denoised results in Figure 10 and the original trace in Figure 10(a). Seismic trace from (a)
original data, (b) noisy data, (c) K-SVD result, (d) orthogonal DL, and (e) the proposed method.
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TABLE 2: SNR values of three different methods applied to real seismic dataset in Figure 10.

Input SNR 5.39 6.65 8.1 9.83 11.9

Real data K-SVD method 22.27 23.13 24.04 26.77 28.76
— Orthogonal DL method 23.51 25.18 26.86 27.74 28.76
— Proposed method 24.36 26.17 28.40 30.47 32.09
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FIGURE 13: Continued.
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FIGURE 13: (a) Real seismic data. (b) Noisy real seismic data (SNR= 2.48). Denoising results by (c) K-SVD (SNR= 16.58), (d) orthogonal DL
algorithm (SNR= 17.55), and (e) the proposed method (SNR= 19.13).
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FIGURE 14: The noise sections from the results by (a) K-SVD method, (b) orthogonal DL algorithm, and (c) the proposed method corre-
sponding to the result in Figure 13.
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FIGURE 15: Trace comparison between original seismic data in Figure 13(a) and denoised results of Figure 13: (a) original trace, (b) noisy trace,
trace from the denoised result by (c) K-SVD, (d) orthogonal DL algorithm, and (e) the proposed method.

Mathematical Problems in Engineering 21



shown in Figures 14(a) and 14(b). In Table 2, the SNR values
of the denoised seismic data for different noise levels are
presented. Furthermore, a single seismic trace comparison
is displayed in Figure 15 to demonstrate the performance
and validity of the proposed method.

5. Conclusion

In this paper, we exploited sparse regularization which pro-
motes sparsity for both seismic data interpolation and denois-
ing. We have proposed a novel method to interpolate and
attenuate random noise of seismic data based on orthogonal
tensor DL. Due to the separability, orthogonality, and imposed
tensor decomposition, the proposed method is computation-
ally efficient and fast for learning the dictionary. The effective-
ness of the proposed method is compared with both K-SVD
and orthogonal DL methods in denoising and interpolation of
seismic data. The numerical experiments demonstrate that the
proposedmethod shows promising results in the denoising and
interpolation of seismic data. Our approach uses the dictionary
which can extract the local features and adapt to seismic data,
with no introduced artifacts on the interpolated and denoised
results. Compared with K-SVD and orthogonal DL methods,
the proposed method is computationally effective. The experi-
mental results and the performance of the methods in seismic
data interpolation and denoising show the effective perfor-
mance of the proposed method on synthetic and real seismic
datasets.

Appendix

Theorem A.1. Let fDi :Di 2 SMi
; i¼ 1; 2; 3;…;Ng be the

set of orthogonal matrices and for the given Y;V2
RM1×M2×M3…×MN×R, the minimization problem:

argmin
E2SMi

⁡ Y − V×1D1×2D2…×i−1Di−1×iE×iþ1Diþ1…×NDNk k2F;

ðA:1Þ

has a unique solution which is given by the following equation:

E¼WXT; ðA:2Þ

with orthogonal matrices W and X such that

WΣXT

¼ Y×NDT
N×N−1DT

N−1…×iþ1DT
iþ1

Â Ã
i V×1D1×21D2…×i−1Di−1½ �Ti ;

ðA:3Þ

where WΣXT is the SVD of E.

Proof. From Theorem 2.1 in Chrétien and Wei’s [60] study,
every tensor X2Rn1×n2×n3…×nR can be written as follows:

X ¼ V Xð Þ×1D1×2D2…×RDR; ðA:4Þ

where each DR 2Rnr×nr is an orthogonal matrix and VðXÞ 2
Rn1×n2×n3…×nr is tensor of the same size with X. Let ⊗ be the
standard Kronecker product for matrices, then:

X rð Þ ¼DrV rð Þ Xð Þ Drþ1 ⊗Drþ2 ⊗…⊗DR ⊗D1…⊗Dr−1ð ÞT;
ðA:5Þ

where VðrÞðXÞ is the mode r matricization of VðXÞ. For
convenience we can use U, V, and A to represent XðrÞ,
DrVðrÞðXÞ, and ðDrþ1 ⊗Drþ2 ⊗…⊗DR ⊗D1…⊗Dr−1Þ,
respectively. Then, by using the r mode unfolding and length
preservation property of orthogonal transform, we can refor-
mulate the minimization problem of this theorem as follows:

argmin
E2SMi

⁡ U − VATk k2F; ðA:6Þ

such that ETE¼ I. We can write the objective function in
Equation (A.6) as follows:

U − VETk k2F ¼ Tr U − VETð ÞT U − VETð Þð Þ; ðA:7Þ

¼ Tr UT
− EVTð Þ U − VETð Þð Þ; ðA:8Þ

¼ Tr UTU − VTVET
− EVTUþ EVTVETð Þ; ðA:9Þ

¼ Tr UTUð Þ þ Tr VTVð Þ − 2Tr UTVETð Þ; ðA:10Þ

¼ Uk k2F þ Vk k2F − 2Tr UTVETð Þ; ðA:11Þ

U − VETk k2F ¼ Uk k2F þ Vk k2F − 2Tr UTVETð Þ; ðA:12Þ

such that ETE¼ I. Since the first two terms in Equation (A.12)
are constant, the minimization problem in Equation (A.12)
becomes:

max
E

2Tr UTVETð Þ; ðA:13Þ

such that ETE¼ I. By considering the SVD of UTV¼PΣQT,
we can rewrite Equation (A.13) as follows:

max
E Tr PΣQTETð Þ;ETE¼ I; ðA:14Þ

¼max
F∗

Tr PΣ F∗ð ÞTð Þ; ðA:15Þ

where F∗ ¼EQ.

¼max
F∗

Tr F∗ð ÞTPΣð Þ; ðA:16Þ

such that ðF∗ÞT ¼ I, since Q is orthogonal. Since Σ is diagonal
matrix, then the maximization problem in Equation (A.16)
is achieved when the diagonal of ðF∗ÞTP is positive and
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maximum. By Cauchy–Schwartz inequality, this is true when
F∗ ¼P such that the diagonal elements are all 1. Therefore,
E¼PQT is the explicit solution for theminimization problem
in Equation (A.6). □

Based on this theorem, we can solve for the dictionaries
D1 and D2 in the same manner. Accordingly, for the mini-
mization problem in Equation (14), the dictionary D1 can be
solved by fixing the dictionary D2 and which is given by the
following equation:

D kþ1ð Þ
1 ¼W1XT

1 ; ðA:17Þ

with the SVD

W1ΣXT
1 ¼ Dk

2

À Á
TY

À Á
Vð ÞT1ð Þ: ðA:18Þ

Similarly, for a fixed D1 and D2 is given by the following
equation:

D kþ1ð Þ
2 ¼W2XT

2 ; ðA:19Þ

with the SVD

W2ΣXT
2 ¼ Y V 1ð ÞD

kð Þ
1

� �
T
: ðA:20Þ
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