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We propose and demonstrate a new methodology to stabilize systems with complex dynamics like the supply chain. This method
is based on the accumulated deviations from equilibrium (ADE). It is most beneficial for controlling system dynamic models
characterized by multiple types of delays, many interacting variables, and feedback processes. We employ the classical version of
particle swarm optimization as the optimization approach due to its performance in multidimensional space, stochastic properties,
and global reach. We demonstrate the effectiveness of our method based on ADE using a manufacturing-supply-chain case study.

1. Introduction

The current world economic climate has led to highly volatile
markets and fluctuating demands for manufactured goods.
Consequently, demand forecasting and inventory control
have become major concerns for supply chain managers.
In recent papers [1–3], the authors demonstrated that
the classical supply-chain approach to forecasting future
inventory demand [4] is not enough to avoid huge swings
in finished goods and in-process inventories. The authors
implied that a new approach to modeling supply chain
behavior based on a deep understanding of the structure
of the problem, the causalities among the system variables,
and the different types of time delays is needed. This echoes
results from [5] who said “behavioral functions that underlie
market actions can be more successfully interpreted through
nonlinear decision functions” and “that theory should be
drawn from actual causality relationships”. Modeling such
nonlinear decisions and causal relationships is the focus of
systems dynamics (SD). We believe that system dynamics
combined with elements from nonlinear control theory,
calculus, and optimization can be used to understand,
monitor, and stabilize supply-chain behavior.

System dynamics models of supply chains provide a
mathematical interpretation of the intricate relationships
between numerous variables. Sets of those variables can form

feedback loops based on the causality structure of the
problem. These intermingled feedback loops can act simul-
taneously, but at different times, they may have diverse
effects. Therefore, transitions from a regime to another are
widespread. Most system dynamics models used for supply
chains are complex and nonlinear [6]. Nonlinearities due
to the multiplying effect of multiple causal variables upon
another variable are “quite common in SD and difficult to
tackle” [7]. The number of variables and feedback loops, the
discontinuities, and time delays increases the level of com-
plexity [8]. Time delays being added to “negative feedback
loops increases the tendency for the system to oscillate” as
stated by Sterman [9]. Therefore, this level of complexity
makes more difficult the task to design stable supply chains.

Instability is a major cause for poor performance in
supply chains [4, 10]. Traditional methods in structural
analysis can be used to investigate and stabilize supply chains
using SD modeling. One of these methods is loop knockout
[10]. Loop knockout is a brute force method that relies on
testing various feedback loops. This analysis of the different
feedback loops is used to visualize the long-term effects of
changes that could be implemented in order to stabilize the
supply chain. This method can be effective for very simple
models. However, it is not enough for medium to higher
levels of complexity. Another method is eigenvalue analysis.
Eingenvalue analysis is used to characterize the modes of
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behavior [11–13]. The analysis is based on the linearization
of the mathematical description at infinitesimal points and
then study the evolution of the eigenvalues and their elas-
ticities [14]. The utilization of this method cannot be easily
generalized to nonlinear models. Furthermore, methods in
structural analysis rely on sensitivity analysis to determine
the parameter values of the stabilization policies. Therefore,
we propose a new alternative to stabilize the supply chain
modeled as a dynamic system based on the ADE.

According to [15], the concept of stability is linked to the
notion of equilibrium points—“an equilibrium point (EP) is
stable if all solutions starting at nearby points stay nearby;
otherwise it is unstable”. He also described the notion of
asymptotic stability which occurs when all solutions tend
to the EP as time goes to infinity. In nonlinear control
theory, stability of equilibrium points can be determined
by (1) linearization around the EP and the values of
the associated eigenvalues or (2) Lyapunov functions [15]
when linearization is inadequate to approximate the global
behavior of the system [16].

Note, however, that it is not always easy to find or
construct a Lyapunov candidate function for a specific
system. Because of this, we propose the use accumulated
deviations from equilibrium. It is very well known from
optimization-based control theory that minimizing the
deviations of controlled variables from some desired level
can have the effect of generating stable solutions (see the
Appendix). We have developed a methodology based on this
idea—stability analysis based on the accumulated deviations
from the equilibrium (SADE)—in order to optimize and
stabilize nonlinear systems. The optimization engine for this
methodology is particle swarm optimization (PSO).

We will use the SADE methodology together with
the concept of asymptotic stability to minimize oscillatory
behaviors of specific control (state) variables—such as in-
process or finished goods inventory. If necessary, stability can
be extended to the whole system by using a weighted average
function that includes all state variables. This also allows
higher weights to be assigned to those variables considered
more important. Since our methodology does not require
linearization of the system or eigenvalue calculations, it can
be applied as a general procedure to linear or nonlinear
dynamic systems. This method is novel from the perspective
of SD modeling.

The paper is organized as follows. In Section 2, we
describe the SADE methodology including the optimization
problem and PSO implementation. In Section 3, we give
details about the supply-chain case study and relevant sys-
tems dynamics literature. Those details include the definition
of the optimization problem, procedures for testing policy
robustness, and the respective comparison with a local search
algorithm. We conclude this paper with further discussion of
some key points and proposed future work.

2. Sade Methodology

2.1. Description. The SADE methodology and its general
functioning are shown in Figure 1. The supply chain
environment represents the actual participants, structure,

strategies, policies, objectives, variables, constraints, and
parameters of the real system. This environment captures
all of different scenarios of the supply chain (SC) over
time. These scenarios, together with the associated decisions,
produce changes in the behavior of the supply chain. By
behavior, we mean the observed patterns in the state variables
over time.

The SD model replicates the dynamic behavior of the
supply chain environment. We chose the SD modeling
approach based on the advice in [5]—it can capture the
causal relationships, feedback processes, and multiple time
delays necessary to track accurately behavioral evolution
of the system. As exogenous events occur in the SC envi-
ronment, their impacts on the behavior of the system are
predicted using the SD simulation. If those predicted impacts
do not show any instability patterns, no actions are taken.
Otherwise, a new management policy must be found to
remove the instability or minimize its impact.

This new policy is found using a PSO algorithm. That
algorithm modifies the set of parameters that constitute
the current policy until the ADE is minimized. In every
iteration of the algorithm, the parameter set is sent to the SD
model in order to calculate, through simulation, the value
of the ADE (objective function). Simulation is used due to
the difficulty of solving the complex dynamic equations by
analytical methods. The optimization problem and the PSO
algorithm are described in Sections 2.2 and 2.3.

Once the best setting of parameters (stabilization policy)
is obtained, then it is implemented in the actual supply chain.

2.2. Optimization Problem. The SD model can be described
by an equation of the form ẋ(t) = f(x(t), p), where x(t) is the
vector of state variables (dimension n) and p is a vector of
adjustable parameters (dimension q) with lower and upper
bounds pL and pU , respectively.

We can formulate an optimization problem that will find
the parameter vector p∗ that causes the state variable xs
to become asymptotically stable (see the Appendix) around
the equilibrium point x

eq
s (p∗). We will find this optimal

parameter vector by minimizing the ADE (see the Appendix
for the mathematical definition of ADE) for predetermined
time horizon T and making use of Theorem 1 (see the
Appendix). That is, we will find the vector that makes ADE
converge. The optimization problem is then stated as

minimize
p

J
(

p
) =

m∑

s=1

{

ws

∫ T

0

∣
∣
∣xs(t)− x

eq
s

∣
∣
∣dt

}

,

where ws ≥ 0,
m∑

s=1

ws = 1,

subject to ẋ(t) = f
(

x(t), p
)

x(0) = x0

pL ≤ p ≤ pU

x(t) ∈ Rn, p ∈ Rq, pL ∈ Rq, pU ∈ Rq,

t ∈ [0,T].

(1)
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Figure 1: General procedure of the SADE methodology.
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Figure 2: Stock and flow diagram for the objective function.

The objective function J(p) is defined as the weighted
average value of the ADE, and T is the time horizon. The use
of weights, ws, means that J(p) will support the simultaneous
stabilization of any subset of m state variables (m ≤ n). This
allows higher weights to be assigned to the variables that are
considered more important.

If we do not know the equilibrium point x
eq
s in advance,

we can modify J(p) to include it as a variable (as) in the
parameter vector. This step is supported by the results of
Theorem 2 (see the Appendix).

The objective function defined in (1) can be incorporated
very easily into any SD formulation by adding a “stock and
flow” piece to the model that is linked to the state variables
of interest as illustrated in Figure 2. Then, we define the
variables DE and ADE as

DE = w1∗ABS (State Var. 1− a1)

+ w2∗ABS (State Var. 2− a2) + · · ·
+ wm∗ABS (State Var. m− am),

ADE = INTEG (DE, 0).

(2)

2.3. PSO Algorithm. Particle swarm optimization (PSO) was
invented in the mid-1990s by Kennedy and Eberhart [17].
PSO is conceptually simple and can be implemented in
a few lines of code. In comparison with other stochastic
optimization techniques like genetic algorithms (GAs) or
simulated annealing, PSO has fewer complicated operations

and fewer defining parameters [18]. PSO has also been
shown to be more computationally efficient than GAs
when applied to unconstrained nonlinear problems with
continuous variables Hassan et al. [19].

The specific algorithm we use is called “local best
PSO” [20]. This algorithm is based on a social network
composed of neighborhoods related to each particle. The
algorithm maintains a swarm of particles, where each particle
represents a candidate solution to the optimization problem.
These particles move across the search space communicating
good positions to each other within the neighborhood and
adjusting their own position and velocity based on these
good positions. For this purpose, each particle keeps a
memory of its own best position found so far and the
neighborhood best position among all the neighbor particles.
The goodness of a position is determined by using a fitness
function. A typical stopping condition of the algorithm is
when the maximum number of iterations has been exceeded.
The basic elements of the algorithm are defined as follows.

(i) Particle. A particle i is represented by a np-dimensional
real-valued vector pi. This vector is composed of particle
positions pi j ; that is, pi = [pi1, pi2, . . . , pinp ]. Each particle
position corresponds to one of the parameters of the
parameter vector defined in the optimization Section 2.2.

(ii) Swarm Size. It is the number of particles in the swarm,
and it is denoted by N .

(iii) Fitness Function. It is a mathematical function used to
quantify how good the solution represented by a particle is.
For a particle i, the fitness function is the objective function
J(pi) as defined in Section 2.2.

(iv) Personal Best Position. As a particle moves through the
search space, it compares its fitness value at the current
position to the fitness value it has ever attained so far, which
is called the personal best position. For each particle i, the
personal best position can be expressed as the real-valued
vector yi = [yi1, yi2, . . . , yinp], and it is determined so that
J(yi) ≤ J(pi), i = 1, . . . ,N .
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(v) Neighborhood Size. Defines the extent of the social
iteration within the swarm [20]. Selection of neighborhoods
was done based on particle indexes. Each particle has a
neighborhood associated to, where Bi defines the set of
indexes for the neighbors of particle i.

(vi) Neighborhood Best Position. It is the best position among
all the personal best positions in the neighborhood. It is
denoted by the real-valued vector ŷi = [ ŷi1, ŷi2, . . . , ŷinp], and
it is determined so that J(ŷi) ≤ J(y j), j ∈ Bi.

(vii) Global Best Position. It is the best position among all the
personal best positions achieved so far in the entire swarm. It
is denoted by the real-valued vector g = [g1, g2, . . . , gnp ], and
it is determined so that J(g) ≤ J(yi), i = 1, . . . ,N .

(viii) Particle Velocity. It is the velocity of the moving particle
i represented by the real-valued vector vi = [vi1, vi2, . . . , vinp ].
This vector reflects both the experiential knowledge of
the particle and socially exchanged information from the
particle’s neighborhood [20]. The experiential knowledge of
a particle is generally referred as the cognitive component,
which quantifies the performance of particle i relative to past
performances. It is represented by the term c1r1(yi − pi).
The socially exchanged information is referred as the social
component of the velocity equation. It is represented by the
term c2r2(ŷi − pi).

(ix) Acceleration Coefficients. The acceleration coefficients,
c1 and c2, together with the random vectors r1 and r2,
control the stochastic influence of the cognitive and social
components on the overall velocity of a particle [20]. The
constants c1 and c2 are also referred to as trust parameters,
where c1 expresses how much confidence a particle has
in itself, while c2 expresses how much a particle has in
its neighbors. The random vectors are defined as r1 =
[r11, r12, . . . , r1np ] and r2 = [r21, r22, . . . , r2np ], where r1 j and
r2 j are uniformly distributed random numbers in [0, 1].

(x) Inertia Weight. It is a parameter “w” that is used to
control the influence in the new velocity of a particle by its
previous velocity (flight direction). Thus, it influences the
tradeoff between the global and local exploration abilities
of the particles [21]. For initial stages of the search process,
where global exploration is required, it is recommended to
set a large inertia weight, while for the last stages, the inertia
weight should be reduced for better local exploration. A
decrement function for decreasing the inertia weight at the
iteration k can be given by w(k) = αw(k′), where α = 0.98
and k′ is the last iteration when the inertia changed. A
parameter “iteration lag” is defined to set the number of
iterations since the last change in the fitness function that
are required to change the inertia weight.

The steps of the algorithm are described in the following
lines.

Step 1. Initialization

(i) Set iteration k = 0.

(ii) Generate N particles pi(0) = [pi1(0), pi2(0), . . . ,
pinp(0)], i = 1, . . . ,N , where pi j(0) is randomly
selected according to a uniform distribution in the
interval [pLj , p

U
j ], j = 1, . . . ,np .

(iii) Generate velocities vi(0) = [vi1(0), vi2(0), . . . ,
vinp(0)], i = 1, . . . ,N , where vi j(k) is randomly
selected according to a uniform distribution in the
interval [0, vmax, j], j = 1, . . . ,np , where vmax, j = pUj −
pLj .

(iv) Evaluate the fitness of each particle using J(pi(0)), i =
1, . . . ,N .

(v) Set the initial value of the personal best position
vector as yi(0) = pi(0), i = 1, . . . ,N .

(vi) Determine the neighborhood best position vector
ŷi(0) using the formula J(ŷ(0)) = min{J(y j(0))}, j ∈
Bi.

(vii) Determine the global best position g(0) using the
formula J(g(0)) = min{J(yi(0))}, i = 1, . . . ,N .

(viii) Set the initial value of the inertia weight w(0).

Step 2. Iteration updating: set k = k + 1.

Step 3. Weight updating: if the fitness function has not
decreased in a number of iterations equal to the “iteration
lag,” then update the inertia weight using w(k) = αw(k′).

Step 4. Velocity updating: calculate the velocity of particle i
by using

vi(k) = w(k)vi(k − 1) + c1r1(k)
[

yi(k)− pi(k)
]

+ c2r2(k)
[

ŷi(k)− pi(k)
]
.

(3)

Step 5. Position updating: based on the updated velocities,
each particle changes its position according to the following
equation:

pi(k) = vi(k) + pi(k − 1). (4)

Step 6. Personal best updating: determine the personal best
position visited so far by each particle.

(i) Evaluate the fitness of each particle using J(pi(k)), i =
1, . . . ,N .

(ii) Set

yi(k) =
⎧
⎨

⎩

⎧
⎨

⎩

yi(k − 1) if J
(

pi(k)
) ≥ J

(
yi(k − 1)

)
,

pi(k) if J
(

pi(k)
)
< J
(

yi(k − 1)
)
.

(5)
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Step 7. Neighborhood best updating: determine the neigh-
borhood best position ŷi(k) visited so far by the whole swarm
by using the formula

J
(

ŷi
) = min

{
J
(

y j

)}
, j ∈ Bi. (6)

Step 8. Global best updating: determine the global best
position g(k) visited so far by the whole swarm by using the
formula

J
(

g(k)
) = min

{
J
(

yi(k)
)}

, i = 1, ..,N. (7)

Step 9. Stopping criteria: if the maximum number of
iterations is achieved, then stop, g∗ = g(k) is the optimal
solution; otherwise, go to Step 2.

2.4. Differences between Our Approach and Current PSO
Applications in Supply Chain Management. The contribution
of our approach is the development of the ADE as objective
function in order to solve the problem of instabilities in
the supply chain. PSO has been selected as the mechanism
to find a solution. The current PSO applications in supply
chain management are very different from our approach.
The current PSO applications emphasized straight forward
solutions to static supply chain problems without regards to
stability, robustness, and system dynamics [22–26].

2.5. Comparisons with Other Optimization Algorithms. Initial
comparisons were performed against Genetic Algorithms,
PSO, PHC, and methods based on eigenvalue analysis.
However, the best scheme was based on the combination
of PSO and PHC. Our major contribution is the utilization
of ADE. Therefore, PSO and PHC solve the problem very
efficiently (timeliness and performance-based) [27]. Our
further research work will make emphasis on the utilization
of other algorithms.

3. Supply Chain Case Study

Our case study focuses on inventory and labor concerns in
a manufacturing supply chain. The nonlinear SD model of
this supply chain is a simplified version of Sterman’s original
model [9]. It has two submodels: inventory (Figure 3) and
labor (Figure 4).

The inventory management sector (Figure 3) is repre-
sented by two state variables: inventory and work in process
inventory. The variable work in process inventory represents
all the stages of the production process, where intermediate
inventory is created. The variable Inventory represents the
finished goods inventory. This model assumes that orders are
filled as they arrive and the ones that cannot be filled imme-
diately are lost as customers seek other sources of supply.
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Table 1: Current policy.

Parameter Value Unit

Manufacturing cycle time 8 Weeks

Inventory adjustment time 12 Weeks

Average duration of employment 100 Weeks

Average time to fill vacancies 8 Weeks

Labor adjustment time 19 Weeks

Vacancy adjustment time 4 Weeks

WIP adjustment time 6 Weeks

Minimum order processing time 2 Weeks

Safety stock coverage 2 Widgets

The labor sector (Figure 4) is represented by two state
variables: vacancies and labor. The stock of vacancies is the
supply line or order of workers that have been placed but
not yet filled. This states that workers cannot be instantly
hired. Hiring takes time: positions must be authorized, and
vacancies must be created. The labor force is a stock of
people, which is increased by the hiring rate and decreased
by the quit rate. This last rate includes voluntary quits and
retirements, excluding the possibility of layoffs.

The supply-chain behavior is impacted by interac-
tions between inventory-management policies and labor-
adjustment policies. To capture the impact of these policies,
the model uses four state variables and several parame-
ters. Two of those parameters—productivity and standard
workweek—have constant values of 0.25 widgets/person and
40 hours/week, respectively. The remaining nine parameters
(see Table 1) are considered variables that managers can set
to design stabilization policies. The current values for these
parameters are shown in Table 1. The goal is to find a policy
that maintains the inventory and labor state variables at
equilibrium and avoids large oscillations in the inventory.

Customer orders are arriving at the rate of 10000
widgets/week. After the system remains in equilibrium for
the first five weeks, customer orders experience a linear
increment for the next fifty weeks until reaching 20% of its
original value, where they remain constant. The resulting
behavior of the variables inventory and labor (Figure 5)
shows several oscillatory fluctuations. These fluctuations are
caused by delays in production.

3.1. Optimization Problem. In order to determine a stabi-
lization policy for these two state variables, we solved the
following optimization problem using our proposed global
search algorithm (PSO). The algorithm was run at the fifth
week using the setting mentioned below:

(1) number of iterations = 150,

(2) swarm size = 30 particles,

(3) neighborhood size = 4,

(4) inertia weight = 0.5,

(5) iteration lag = 5,

(6) cognitive coefficient = 1.2,

(7) social coefficient = 1.2.

Table 2

Parameter Empirical rule of choice

Swarm size From 20 to 40 [28]

Inertia weight In ]0, 1[ [21]

Cognitive coefficient Suggestion 1.43 [28]

Social coefficient Suggestion 1.43 [28]

These parameter values were chosen after doing some
initial experiments with the empirical rules selected to guide
the choice (see Table 2).

The new parameter set associated to the stabilization
policy is shown in Table 3. The objective function (ADE) was
improved by 82%. It took 189 seconds to calculate this policy
after 150 iterations of the algorithm (the algorithm was
executed on a 1.86 GHz Pentium PC with 1 GB of memory).

Let x1 = inventory, x2 = labor, x3 = work in process
inventory, and x4 = vacancies.

The minimization problem considered the first two state
variables as the variables of interest. The following weights
were assigned w1 = 0.6, w2 = 0.4 to represent the concern of
management in the inventory

minimize
2∑

s=1

{

ws

∫ 200

0
|xs(t)− as|dt

}

,

subject to ẋ(t) = f
(

x(t), p
)
,

xT
0 =

[
40000 1000 80000 80

]
,

1 ≤ Manufacturing Cycle Time ≤ 50,

1 ≤ Inventory Adjustment Time ≤ 50,

50 ≤ Average Duration of Employment ≤ 150,

1 ≤ Average Time to Fill Vacancies ≤ 50,

1 ≤ Labor Adjustment Time ≤ 50,

1 ≤ Vacancy Adjustment Time ≤ 50,

1 ≤ WIP Adjustment Time ≤ 50,

1 ≤ Minimum Order Processing Time ≤ 50,

1 ≤ Safety Stock Coverage ≤ 50,

10000 ≤ a1 ≤ 150000,

100 ≤ a2 ≤ 10000.
(8)

Figure 6 shows the behavior of the state variables when
the stabilization policy is applied at the fifth week. It clearly
shows the convergence of the ADE with minimal oscillation.
Two main actions have been taken to respond to the change
in customer orders. First, the increment in production has
been achieved by decreasing the manufacturing cycle time.
Second, by decreasing the time to adjust, labor will help to
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Table 3: Parameter values for policy using PSO algorithm.

Parameter Value Unit

Manufacturing cycle time 1.98 Weeks

Inventory adjustment time 12.24 Weeks

Average duration of employment 76.67 Weeks

Average time to fill vacancies 1.22 Weeks

Labor adjustment time 2.04 Weeks

Vacancy adjustment time 23.85 Weeks

WIP adjustment time 21.94 Weeks

Minimum order processing time 4.28 Weeks

Safety stock coverage 3.50 Widgets

a1 (EP for Inventory) 93359 Widgets

a2 (EP for Labor) 1200 People

Inventory
Labor People

Widgets

Widgets/week

Inventory-workforce model55000
1500

20000

42500
1150

14000
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800

8000
0 20 40 60 80 100 120 140 160 180 200

Time (week)
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People
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Widgets/week

People
Widgets

Widgets/week

People
Widgets

Widgets/week

Figure 5: Behavior of state variables for the current policy.

approach production more closely to the desired production
rates. As a result, the EP of the inventory variable has
increased from 40000 units to 93359 units. The EP for the
labor variable remains not far from its original value of 1000
people. Stabilization of both variables has been achieved in
approximately 80 weeks.

3.2. Testing for Policy Robustness. The stabilization policy was
tested by generating a sudden change in weeks 80 and 100
in the customer orders and showing the system’s response
to this change. The different percentage changes in customer
orders and responses are shown in Table 4. Figure 7 depicts
the robust behavior of the inventory and labor variables
to the changes. These variables showed a sharp increase or
decrease in their levels necessary to adapt to the changes
before reaching new equilibrium points. Stability returns
approximately in week 130.

3.3. Comparing Polices with a Local Search Algorithm. This
methodology does not require to find the global optimum
to obtain satisfactory reduction in instability. Using a local
search algorithm, we can obtain a quick convergence of the
ADE in just few seconds. Although the time to find the

Inventory-workforce model
104000

2000
600000

52000
1400

300000

0
800

0

Inventory
Labor People

Widgets

People
Widgets

People
Widgets

People
Widgets

ADE

0 20 40 60 80 100 120 140 160 180 200

Time (week)

Figure 6: Behavior of state variables with policy that uses PSO
algorithm.

optimal solution is an important factor in selecting a search
algorithm, the quality of such solution in terms of oscillation
reduction has to be analyzed. For that reason, we decided
to compare the results obtained by solving the optimization
problem using our global search algorithm PSO (Figure 6)
and the ones obtained by using the local search algorithm
Powell hill climbing (PHC) [29].

We tested two starting EPs for the PHC algorithm. In the
first test (PHC1) it was used the original EP of the model (for
the inventory and labor variables) as the starting point which
was (a1,a2) = (40000, 1000). For the second test (PHC2),
we used the EP obtained by the PSO algorithm, which was
(a1,a2) = (93359, 1200). In both tests it took around 15
seconds to find the solution. We can see from Figure 8 that
after some fluctuations policy PHC1 achieves stabilization of
the inventory and labor variables approximately in 70 weeks.
Policy PCH2 stabilizes the system in 120 weeks at a lower EP
that the one it started.

Comparing the policies obtained by PCH and PSO, we
can see that the second one (PSO) shows less fluctuations
before reaching the EP due to the higher inventory level.
Both algorithms generate the same EP for the labor variable.
However, the policy with PSO gets that by increasing the
manpower smoothly after a small trough, while the policies
with PCH obtains the stability after several decreasing
fluctuations.

4. Conclusions

This paper proposes a methodology, based on the ADE, to
eliminate or minimize oscillatory behaviors of the supply
chain. Our approach utilizes the modeling flexibilities of
system dynamics to model the supply chain and the potential
of the PSO algorithm to scan the search space to solve the
stabilization problem.

We tested our methodology by increasing and decreasing
the customer orders in a manufacturing supply chain. We
showed that our approach can stabilize the behavior of the
state variables despite these fluctuations. We concluded that
after a sudden perturbation of the system the stabilization
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Table 4: New EPs reached after the system was perturbed.

Percentage
change in
customer orders

Sudden change
(week)

New EP for
inventory
(widgets)

New EP for
labor (people)

−10% 80 84024 1079

−5% 100 88692 1139

+5% 100 98027 1260

+10% 80 102695 1320

110000
110000
110000
110000

30000
30000
30000

30000
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Inventory: −5%

Inventory: 5%
Inventory: 10%
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Widgets
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Figure 7: Behavior of state variables after a sudden change in customer orders.

policy remains stable requiring a period of adaptation to the
changes before reaching new EPs.

We compared the results of our proposed approach that
uses the global search algorithm PSO with the ones obtained
by the local search algorithm PHC. Because PSO does not
depend on the starting point of the state variables, it provides
a more expanded and deeper search of the space to find
the EP. We concluded that the PSO algorithm provided a
better solution than the PHC algorithm in terms of fewer
oscillations. PHC achieved faster stability when started from
the original EP of the model.

5. Future Work

We propose to test the performance of this local best PSO
algorithm using a real-size model of the supply chain. It will
be interesting to compare the results of this algorithm with
the ones obtained with other evolutionary algorithms such
as GAs and PSO variations and hybrids.

Currently, this methodology is focused in generating
stabilization policies at the strategic and tactical levels of
the supply chain where SD modeling is more suitable. We
propose to extend this research to the operational level by
developing a methodology that will propagate stability from
the higher to the lower level of the supply chain. We plan
to meet this challenge by using hybrid simulation (SD and
discrete event simulation) to model the different levels of
the supply chain and a hierarchical approach to coordinate
between the policies obtained at these levels.

Appendix

Related Definitions and Theorems

Here, we present some important definitions and theorems
that provide the support to understand our methodology.

Definition 1. The point xeq ∈ Rn is said to be an equilibrium
point of the differential equation ẋ(t) = f(x(t))(ẋ(t) =
∂x(t)/∂t) if it has the property that once the corresponding
system reaches xeq at time teq, it will remain at xeq for all
future time; in other words, f(x(t)) = 0 for all t ≥ teq.

Definition 2. Consider the system defined by ẋ(t) =
f(x(t)); x(0) = x0, where x(t) ∈ Rn; f : Rn → Rn; x(t) =
[xs(t)] = [x1(t), x2(t), . . . , xn(t)]T , s = 1, . . . ,n. The state
variable xs is defined to be stable (around the EP x

eq
s ) if it

is bounded; that is, there is a finite number Ms such that
|xs(t) − x

eq
s | ≤ Ms (the symbol |c| represents the absolute

value of c). If this condition holds for all state variables, then
the system is said to be stable.

Definition 3. Consider the system defined by ẋ(t) =
f(x(t)); x(0) = x0, where x(t) ∈ Rn; f : Rn → Rn; x(t) =
[xs(t)] = [x1(t), x2(t), . . . , xn(t)]T , s = 1, . . . ,n. The state
variable xs is defined to be asymptotically stable (around
the EP x

eq
s ) if it is both stable (satisfies Definition 2), and

additionally, we have Limt→∞(xs(t)− x
eq
s ) → 0. If these two

conditions hold for all state variables, then the system is said
to be asymptotically stable.
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Figure 8: Two stabilization policies using PHC algorithm.

Definition 4. Consider the system defined by ẋ(t) =
f(x(t)); x(0) = x0, where x(t) ∈ Rn; f : Rn → Rn; x(t) =
[xs(t)] = [x1(t), x2(t), . . . , xn(t)]T , s = 1, . . . ,n. For the state
variable xs, the accumulated deviations from its EP x

eq
s is

defined as
∫∞

0 |xs(t)− x
eq
s |dt.

Theorem 1. Consider the system defined by ẋ(t) =
f(x(t)); x(0) = x0, where x(t) ∈ Rn; f : Rn → Rn; x(t) =
[xs(t)] = [x1(t), x2(t), . . . , xn(t)]T , s = 1, . . . ,n. The state
variable xs is asymptotically stable (around the EP x

eq
s ) if∫∞

0 |xs(t)− x
eq
s |dt converges.

Theorem 2. Consider the system defined by ẋ(t) =
f(x(t)); x(0) = x0, where x(t) ∈ Rn; f : Rn → Rn; x(t) =
[xs(t)] = [x1(t), x2(t), . . . , xn(t)]T , s = 1, . . . ,n. If

∫∞
0 |xs(t)−

as|dt converges, then as = x
eq
s .
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