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A numerical scheme based on discontinuous Galerkin method is proposed for the two-dimensional shallow water flows. The
scheme is applied to model flows with shock waves. The form of shallow water equations that can eliminate numerical imbalance
between flux term and source term and simplify computation is adopted here. The HLL approximate Riemann solver is employed
to calculate the mass and momentum flux. A slope limiting procedure that is suitable for incompressible two-dimensional flows
is presented. A simple method is adapted for flow over initially dry bed. A new formulation is introduced for modeling the net
pressure force and gravity terms in discontinuous Galerkin method. To validate the scheme, numerical tests are performed to model
steady and unsteady shock waves. Applications include circular dam break with shock, shock waves in channel contraction, and
dam break in channel with 45◦ bend. Numerical results show that the scheme is accurate and efficient to model two-dimensional
shallow water flows with shock waves.

1. Introduction

Free surface flows that take place in rivers, oceans, and
estuaries are of great importance to human activities.
Numerical models for the open channel flows have been
of great interests to hydraulic researchers and engineers.
In practice, numerical models for flows with shock waves
present difficulties in capturing shock wave and preserving
conservative properties of the flow equations. Many shock-
capturing methods have been developed in previous studies
[1, 2]. The first-order upwind approximate Riemann solvers
are commonly used to deal with discontinuous flows. How-
ever, the first-order schemes are known to generate oscil-
lation around discontinuities. To deal with the unphysical
oscillations, these methods are extended to high-resolution
schemes based on the concept of Total Variation Diminishing
(TVD) [3, 4].

In recent years, discontinuous Galerkin (DG) finite
element method has gained popularity in modeling shallow
water flows [5, 6]. The DG method is a combination of the
finite volume method and the finite element method. In
DG method, higher-order spatial accuracy can be achieved

by employing higher-order interpolation functions. Since
DG method allows discontinuous solutions across element
boundaries, it provides better solution strategy for problems
involving shocks and discontinuities. In addition, the explicit
solution for one element at a time in the DG method is
efficient in practical problems as calculation for a large global
matrix is avoided, especially in case of nonlinear problems
that require iterative solution [7].

Various upwind schemes can be applied to solve for the
numerical flux across the boundaries of an element with
discontinuities. These include Roe’s flux function [8], HLL
(Harten-Lax-van Leer) flux function introduced by Harten
et al. [9], HLLE (Harten-Lax-van Leer-Einfeldt) flux pro-
posed by Einfeldt [10], and HLLC (Harten-Lax-van Leer-
Contact) flux presented by Toro et al. [11]. In this study, the
HLL flux function is used for two-dimensional shallow water
flows.

In this paper, a numerical model based on DG method is
presented for two-dimensional (2D) shallow water flows. In
contrast to the previous studies based on the DG scheme, the
net pressure force and the gravity terms are combined in this
paper. A discretization scheme is adapted for the combined
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term that eliminates numerical imbalance between the pres-
sure force term and gravity term and simplifies computation.
The flux terms are approximated using HLL flux function.
A modified HLL flux function is used to handle flow over
dry bed. It is well known that when higher-order numerical
schemes are used, nonphysical oscillations are generated
around discontinuities and steep gradients. TVD slope
limiters are widely used to minimize these oscillations and
stabilize numerical schemes. To achieve oscillation-free solu-
tions, a four-step slope-limiting procedure in DG method is
adapted for the two-dimensional incompressible flows. The
governing equations are first introduced, and then the DG
formulation is briefly described. The implementation of HLL
flux function and treatment of the source term are discussed.
The Total Variation Diminishing (TVD) method for time
integration scheme and slope limiter is presented. Finally,
several numerical examples are presented to test the present
numerical scheme for shallow water flows with shock waves
and flow over dry bed.

2. Governing Equations

The vector form of the depth-averaged, two-dimensional,
shallow water flow equations can be written as

∂U
∂t

+
∂E(U)
∂x

+
∂G(U)
∂y

= S, (1)

where the vectors of conserved variables, fluxes in the x and y
directions, and the sources term can be written, respectively,
as follows:
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(2)

where h = water depth, Z = water surface level, qx = hu,
and qy = hv are the unit width flow rates in the x and y
directions, respectively, u and v are the velocity components
in the x and y directions, respectively, g = gravitational
acceleration and n = Manning’s roughness coefficient. Since
the net hydrostatic pressure is included in the source term,
the numerical treatment of this new source that accounts for
an accurate estimate of numerical flux will be given later.

The two-dimensional shallow water equations are
derived by integrating the Navier-Stokes equations along the
depth of the fluid body. Several assumptions are made such
as hydrostatic pressure distribution and uniform velocity
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Figure 1: Configuration of triangular elements in DG method.

profile in the vertical direction. The advantage is that free
surface location is determined as part of the solution.
The two-dimensional shallow water flow equations can be
applied in situations where vertical acceleration may be
neglected, and the horizontal extent is much greater than the
depth of flow [12, 13].

3. Formulation of Discontinuous
Galerkin Method

For F as a function of E and G, (1) can be written in vector
form as

∂U
∂t

+∇ · F = S. (3)

For the main element (0) and the three surrounding elements
(1, 2, and 3), a typical mesh configuration of triangular
elements in DG method is shown in Figure 1. A node is
composed of multiple vertices. The number of vertices at a
node depends on the number of elements joining the node.

The Discontinuous Galerkin formulation is written for
each element. The variation of variables within an element
is represented by the values of the variables at the vertices
and shape functions (Û = N jU j), where N j is a diagonal
matrix of basis function. Equation (3) is multiplied by the
weight function, which is the same as basis function for the
Galerkin method, and the resulting equation is integrated
over an element. The integration by parts of the flux term
results in the following equation
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(4)
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where F̂ · n is the numerical flux across the boundaries of
an element and n is the outward unit normal vector at the
element boundary. Since discontinuous elements are con-
nected through the numerical flux across a common bound-
ary, the accuracy with which the numerical flux is calculated
is crucial to the DG method.

4. Evaluation of Numerical Flux

Since the discontinuous elements are allowed in discontinu-
ous Galerkin method, a generalized local Riemann problem
can be solved for the numerical flux. The numerical flux in
(4) can be evaluated using upwind numerical flux functions
[14, 15]. In this study, the HLL flux function is adopted.

For nx and ny , as the components of the unit normal
vector in the x and y directions, respectively, the rotational
invariance of the flux yields

F · n = Enx + Gny = T−1E(TU), (5)

where T is the rotation matrix. Defining Q = TU, the numer-
ical flux F̂ can be obtained through the evaluation of numeri-
cal flux Ê. The Ê(Q) follows the same functional relationship
between Ê and Q as, is that, between Ê(U) and U.

The numerical flux, Ê, computed from HLL flux func-
tion, is given by

Ê(Q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(QL), if 0 ≤ SL,

SRE(QL)− SLE(QR) + SLSR(QR −QL)
SR − SL

if SL ≤ 0 ≤ SR,

E(QR), if 0 ≥ SR,

(6)

where subscripts L and R stand for the left- and right-
hand side of the element boundary. To determine the
wave speed, the average velocities along the left and right
boundaries under consideration are determined. The normal
component, un, of these velocities is determined. The wave
speeds are given by [16]:
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For flow over an initially dry bed, the wave speed for right-
hand dry bed and left-hand dry bed boundaries are given,
respectively, as:

SL = unL −
√
ghL, SR = unL + 2

√
ghL,

SL = unR − 2
√
ghR, SR = unR +

√
ghR.

(8)
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Figure 2: Configuration of circular dam break test.

5. Source Term Treatment

The water level slopes in the source term can be determined
with Green’s theorem as follows [17]:
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= Z01(xn2 − xn1) + Z02(xn3 − xn2) + Z03(xn1 − xn3),
(9)

where Z0 j is the water level at the boundary of element 0 and
element j and Ω0 is the area of the element 0. The value of Z0 j

is determined by first calculating the average water surface
elevation at the center of the element under consideration
and its surrounding elements and then interpolating the
water surface elevation at the boundary using distance
weighting. Numerical results show that this treatment can ac-
count for the net pressure force terms efficiently and accu-
rately.

6. Time Integration

The Total Variation Diminishing (TVD) scheme is chosen to
eliminate numerically generated oscillations near shocks and
steep gradients. The TVD Runge-Kutta time integration and
the slope limiter are used here to achieve the TVD property.
Former studies have shown that, to conserve the TVD
property, the Runge-Kutta time integration scheme should
be one order higher than the shape functions [18–20]. For
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Figure 3: Computed water surface at 0.8 s after dam removal.
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Figure 4: Computed water surface contour at 0.8 s after dam
removal.

the linear shape functions adopted in this work, the second-
order two-stage TVD Runge-Kutta scheme is employed.
Thus, for the linear elements used in this study, the scheme
is second order accurate in space and time [21]. Equation (3)
can be written in the following form

∂U
∂t
= L(U). (10)

To advance the solution from time step n to n+1, the second-
order TVD Runge-Kutta scheme, as given by Gottlieb and
Shu [22], can be written as:

U[1] = Un + ΔtL(Un),

Un+1 = 1
2

Un +
1
2

U[1] +
1
2
ΔtL

(
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)
.

(11)
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Figure 5: Computed velocity field at 0.8 s after dam removal.
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7. Slope-Limiting Procedure

A slope-limiting procedure developed by Tu and Aliabadi
[23] for compressible flows is modified for application to
incompressible flows. The limiting procedure includes the
following four steps. Firstly, the average solution of the
conserved variables at the element centroid is computed by
determining the arithmetic mean of the solutions at each
vertex of an element as follows:

U0 = 1
3

3∑

i=1

U0i, U ∈ U. (12)

Secondly, the unlimited gradient in each element is com-
puted using the interpolation functions and the vertex
solutions as given below:

∂U
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=
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∂Nj
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∂U

∂y
=
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∂Nj

∂y
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Figure 7: Computed water surface contour at 2 s.
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Figure 8: Computed velocity field at 2 s.

Thirdly, limited gradient in the element under consideration
is calculated by taking the weighted average of the unlimited
gradient of the surrounding elements as follows:

(∇U)l
0 = w1(∇U)1 + w2(∇U)2 + w3(∇U)3, (14)

where the weighted factors are given by:

w1 = g2g3 + ε

g2
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,
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Figure 9: Plan view of shock wave in a symmetric channel con-
traction.
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Figure 10: Computation domain and mesh for the symmetric
channel contraction.
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,

(15)

and ε is a small number introduced to prevent indeterminacy.
The parameters g1, g2, and g3 are the square of the L2 norm
of the unlimited element gradients. Lastly, the limited con-
servative variables at vertices of each element are calculated
from the limited gradient and average values of the variables.
The requirements for the reconstructed solution are to satisfy
each component of limited gradient and preserve the average
at the element centroid.

8. Numerical Results

Tests are performed in this section to examine the accuracy
of the proposed numerical scheme to model shallow water
flows with shock waves. Numerical tests include circular dam
break, shock wave in circular dam break, steady shock wave
in channel contraction, and dam break in channel with 45◦
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Figure 11: Water surface profile for in the symmetric channel
contraction.
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Figure 12: Water depth contour in the symmetric channel contrac-
tion

bend. Numerical results are compared with an exact solution
or measured experimental data, if available.

8.1. Circular Dam Break. To test the symmetric shock-
capturing capability of the scheme, the idealized circular dam
break problem is used [24–26]. The problem domain with
horizontal bed is shown in Figure 2. The radius of the dam is
11 m. Initially, the water depth inside the dam is set to 10 m,
and water depth outside is 1 m. The circular dam is removed
instantaneously, and the flow in the domain is computed.
Numerical results at 0.8 seconds after the removal of the dam
are shown in Figures 3 and 4. The corresponding velocity
field is shown in Figure 5. The symmetry of the forward
moving wave is well preserved. The initial water volume is
5909 m3, and the water volume at 0.8 seconds is 5910 m3,
showing the mass is well conserved.

8.2. Shock Wave in Circular Dam Break. The same domain
as used in the previous test is adopted here with different
initial conditions. The initial water depth is 1 m inside the
dam and 10 m outside the dam. After removing the dam, the
circular shock moves inwards, passes through the singularity,
and then expands outwards. The shock at 2 seconds is shown
below in Figures 6 and 7 as water surface in 3D view and
water depth contour, respectively. The velocity field is shown
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Figure 13: Comparison of water depths along the dash line.
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Figure 14: Comparison of water depths along the solid line.

in Figure 8. Water surface in Figure 6 shows the scheme is
oscillation-free, and the diffusion effects are minimal. Water
depth contours in Figure 7 show that the flow symmetry is
well preserved with unstructured elements. The initial water
volume is 21591 m3, and the water volume at 2 seconds is
21590 m3, showing the mass conservation is well preserved
in this model.

8.3. Shock Wave in Channel Contraction. The steady super-
critical shock wave due to channel contraction is simulated
to test the numerical scheme. The plan view of shock wave
in a symmetric channel contraction is illustrated in Figure 9.
In the figure, Lab is the length of the channel contraction, α2

is the angle of wall deflection, and β2 and β3 are the shock
front angles. The flow velocities in regions 1, 2, and 3 are V1,
V2, and V3, respectively. Ippen and Dawson [27] showed that
a proper width ratio B1/B3 could minimize the disturbance
in region 3 and limit the standing shock waves within the
contraction part. In the following, the channel contraction
suggested by Lin et al. [28] is adopted, so that results can be
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Figure 18: Comparison of simulated and measured hydrographs at
G1.
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Figure 19: Comparison of simulated and measured hydrographs at
G2.
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Figure 20: Comparison of simulated and measured hydrographs at
G3.

compared with exact solutions and other numerical schemes.
The geometry and computational mesh of the channel are
shown in Figure 10. The channel width at the upstream end
is 20 m and the width at the downstream end is 10.548 m, the
angle of wall deflection (α2) is 12 degrees, and the length of
contraction (Lab) is 22.234 m. For the inflow boundary con-
ditions, the Froude number is 2.7, the water depth is 1 m, the
longitudinal velocity is 8.4566 m/s, and the lateral velocity is
zero. The exact solution of shock wave angles is found to be
as β2 = 33.69◦ and β3 = 48.10◦, while the water depth in
region 2 and region 3 are 1.868 m and 2.562 m, respectively.

Steady flow solutions for water depth are shown in
Figures 11 and 12 with a coarse mesh (3632 elements, see
Figure 10). Figures 13 and 14 show a comparison of the exact
solution and the simulated water depth along the dash line
and the solid line (see Figure 10). Results from the coarse
mesh and a refined mesh (14528 elements) are compared
to show that the numerical scheme can perform adequately
even for a coarse mesh. Results using the refined mesh show
better resolution at the shock and weaker oscillation after
the shock. Moriasi et al. [29] suggested several methods to
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Figure 21: Comparison of simulated and measured hydrographs at
G4
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Figure 22: Comparison of simulated and measured hydrographs at
G5.

evaluate/quantify the accuracy of the simulated results with
respect to measured data. The current simulated results are
evaluated using the Nash-Sutcliffe efficiency (NSE), which
indicates how well the plot of simulated versus observed data
fits the line of unit slope, percent bias (PBIAS), and ratio
of the root mean square error to the standard deviation of
measured data (RSR). NSE ranges between –∞ and 1, with 1
being the optimal value. PBIAS and RSR are error index with
zero being the optimal value. Table 1 reports the accuracy of
the simulated results with respect to the analytical solution
along dashed and solid lines. The statistics confirm that
the model can accurately simulate the shock waves due to
supercritical flow in a channel contraction.

8.4. Dam Break in a Channel with 45◦ Bend. Physical models
were built in the Civil Engineering Department Laboratory,
Université Catholique de Louvain (UCL, Belgium) to model
dam break and strong transient flows in sharp bends. Ex-
perimental data were collected and used to validate numeri-
cal models developed by the CADAM group [30].
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Figure 23: Comparison of simulated and measured hydrographs at
G6.
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Figure 24: Comparison of simulated and measured hydrographs at
G7.

Table 1: Accuracy evaluation for supercritical flow in channel
contraction.

Type NSE PBIAS RSR

Dash line, coarse mesh 0.95 −0.40% 0.22

Dash line, fine mesh 0.98 −0.24% 0.15

Solid line, coarse mesh 0.94 −0.17% 0.24

Solid line, fine mesh 0.97 0.01% 0.17

The plan view of the channel with horizontal bed and 45◦

bend is shown in Figure 15. The gauge points are also shown
in the figure, and their positions are listed in Table 2. The
dam is represented by a gate at the outlet of the reservoir. The
gate is pulled up rapidly to simulate instantaneous failure of
the dam. The initial water level in the upstream reservoir is
0.25 m above the horizontal channel bed, and the channel
downstream is dry. The Manning’s roughness coefficients
of 0.0095 s/m1/3 for bottom and 0.0195 s/m1/3 for wall, as
suggested by Frazão et al. [30], are adopted. These values for
Manning’s roughness are based on the steady uniform flow.
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Figure 25: Comparison of simulated and measured hydrographs at
G8.
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Figure 26: Comparison of simulated and measured hydrographs at
G9.

Table 2: Gauge points location and accuracy of simulated results.

Gauge point x (m) y (m) NSE PBIAS RSR

G1 1.59 0.69 0.99 0.57% 0.074

G2 2.74 0.69 0.34 −13.67% 0.81

G3 4.24 0.69 0.83 −1.39% 0.42

G4 5.74 0.69 0.82 1.87% 0.43

G5 6.74 0.72 0.81 −7.89% 0.44

G6 6.65 0.80 0.87 −6.38% 0.36

G7 6.56 0.89 0.80 −5.46% 0.45

G8 7.07 1.22 0.84 −4.55% 0.40

G9 8.13 2.28 0.84 6.43% 0.40

After the removal of the gate, water flows rapidly into the
channel and reaches the bend. The water reflects against the
wall, and a shock forms and moves upstream. The velocity
field at 3 seconds is shown in Figure 16, and the water surface
at 10 seconds is shown in Figure 17. The velocity field shows
that the flow is two-dimensional at the inlet and in the
bend region. The reflected shock wave can be clearly seen
in the water surface profile. The simulated hydrographs at 9

gauging points are compared with measured data in Figures
18, 19, 20, 21, 22, 23, 24, 25, and 26. Accuracy evaluation of
the numerical results is shown in Table 2. Numerical results
are in good agreement with the measured data, except at G2
(low NSE, high PBIAS and RSR) which is located at the exit
of the reservoir. At G2, the magnitude of the reflected wave
and its arrival time are predicted accurately. The difference
in the water level drop immediately after the gate opening
may be related to difference in the manner in which the gate
is actually opened and simulated. It should be mentioned
that the simulated results are similar to or better than that
reported by previous studies.

9. Conclusions

A new numerical model is developed for two-dimensional
shallow water flows with shock waves. In this model, the
two-dimensional shallow water equations are solved by dis-
continuous Galerkin (DG) finite element method. The form
of shallow water equations that simplifies computation and
eliminate numerical imbalance between flux term and source
term is used here. In this formulation, the net pressure
force term is combined with the source term due to gravity.
A proper treatment of the new source term is given. The
HLL approximate Riemann solver is employed to calculate
the mass and momentum flux. A slope-limiting procedure
that is suitable for incompressible two-dimensional flows in
DG solver is presented. The performance of the numerical
scheme is tested by simulating circular dam break, shock
in channel contraction, and dam break in channel with 45◦

bend. These tests include steady and unsteady shock waves,
flow over initially dry bed, and subcritical and supercritical
flow. The circular dam break tests show the shock capturing
and symmetry preservation capabilities of the proposed
scheme. The comparisons of the numerical results with
analytical solutions and measured data demonstrate that the
scheme is capable of simulating two-dimensional shallow
water flows with shock waves as well as flow over dry bed.
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