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Determination of optimal cutting parameters is one of the most important elements in any process planning of metal parts. In
this paper, a new optimization technique, firefly algorithm, is used for determining the machining parameters in a multipass
turning operation model. The objective considered is minimization of production cost under a set of machining constraints. The
optimization is carried out using firefly algorithm. An application example is presented and solved to illustrate the effectiveness of
the presented algorithm.

1. Introduction

The selection of optimal cutting parameters, like the number
of passes, depth of cut for each pass, feed, and speed, is a very
important issue for every machining processes [1].

Several cutting constraints must be considered in
machining operations. In turning operations, a cutting
process can possibly be completed with a single pass or
by multiple passes. Multipass turning is preferable over
single-pass turning in the industry for economic reasons [2].

The optimization problem of machining parameters in
multipass turnings becomes very complicated when plenty of
practical constraints have to be considered [3].

Traditionally, mathematical programming techniques
like graphical methods [4], linear programming [5], dynamic
programming [6, 7], and geometric programming [8, 9]
had been used to solve optimization problems of machining
parameters in multipass turnings. However, these traditional
methods of optimization do not fare well over a broad
spectrum of problem domains. Moreover, traditional tech-
niquesmaynot be robust.Numerous constraints andmultiple
passes make machining optimization problems complicated
and hence these techniques are not ideal for solving such
problems as they tend to obtain a local optimal solution.

Thus, metaheuristic algorithms have been developed to solve
machining economics problems because of their power in
global searching. There have been some works regarding
optimization of cutting parameters [2, 3, 10–14] for different
situations; authors have been trying to bring out the utility
and advantages of genetic algorithm, evolutionary approach,
and simulated annealing. It is proposed to use the new
optimization technique, firefly algorithm, for the machining
optimization problems.

The firefly algorithm (FA) is a metaheuristic, nature-
inspired, and optimization algorithm which is based on the
social (flashing) behavior of fireflies, or lighting bugs, in the
summer sky in the tropical temperature regions [5–18]. It
was developed by Dr. Yang at Cambridge University in 2007,
and it is based on the swarm behavior such as fish, insects,
or bird schooling in nature. In particular, although the
firefly algorithm has many similarities with other algorithms
which are based on the so-called swarm intelligence, such
as the famous Particle Swarm Optimization (PSO), Artificial
Bee Colony optimization (ABC), and Bacterial Foraging
algorithms (BFA), it is indeed much simpler both in concept
and implementation [15, 16, 18, 19]. Furthermore, according
to recent bibliography, the algorithm is very efficient and can
outperform other conventional algorithms, such as genetic
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algorithms, for solving many optimization problems, a fact
that has been justified in a recent research, where the statisti-
cal performance of the firefly algorithmwasmeasured against
other well-known optimization algorithms using various
standard stochastic test functions [20].

The current paper focuses on the application of a new
optimization technique, firefly algorithm, to determine the
optimal machining parameters that minimize the unit pro-
duction cost in multipass turnings.

2. Cutting Process Model

2.1. Decision Variables. In the constructed optimization
problem, six decision variables are considered: cutting speeds
in rough and finish machining (𝑉

𝑟
, 𝑉
𝑠
), feed rates in rough

and finish machining (𝑓
𝑟
, 𝑓
𝑠
), and depth of cut for each pass

of rough and finish machining (𝑎
𝑟
, 𝑎
𝑠
).

2.2. Objective Function. Based on theminimumunit produc-
tion cost, UC, criterion, the objective function for amultipass
turning operation can be given by the equation [10]:

UC = 𝐶
𝑀

+ 𝐶
𝐼
+ 𝐶
𝑅
+ 𝐶
𝑇
,

𝐶
𝑀

= 𝑘
0
[

𝜋𝐷𝐿

1000𝑉
𝑟
𝑓
𝑟

(
𝑎
𝑡
− 𝑎
𝑠

𝑎
𝑟

) +
𝜋𝐷𝐿

1000𝑉
𝑠
𝑓
𝑠

] ,

𝐶
𝐼
= 𝑘
0
[𝑡
𝑐
+ (ℎ
1
𝐿 + ℎ
2
) (

𝑎
𝑡
− 𝑎
𝑠

𝑎
𝑟

+ 1)] ,

𝐶
𝑅
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0

𝑡
𝑐
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1000𝑉
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𝑓
𝑠

] ,

𝐶
𝑇
=

𝑘
𝑡

𝑇
𝑝

[
𝜋𝐷𝐿

1000𝑉
𝑟
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𝑟
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) +
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1000𝑉
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] .

(1)

2.3. Constraints. There are some constraints which affect the
selection of the optimal cutting conditions and will be taken
into account.

The constraints in rough and finish machining are as
outlined below [10].

2.3.1. Rough Machining

Parameter Bounds. Due to the limitations on themachine and
cutting tool and due to the safety of machining the cutting
parameters are limited with the bottom and top permissible
limit:

cutting speed : 𝑉
𝑟𝐿

≤ 𝑉
𝑟
≤ 𝑉
𝑟𝑈
,

feed rate : 𝑓
𝑟𝐿

≤ 𝑓
𝑟
≤ 𝑓
𝑟𝑈
,

depth of cut : 𝑎
𝑟𝐿

≤ 𝑎
𝑟
≤ 𝑎
𝑟𝑈
.

(2)

Tool-Life Constraint. The constraint on the tool life is taken as

𝑇
𝐿
≤ 𝑇
𝑟
≤ 𝑇
𝑈
. (3)

Cutting Force Constraint. The maximum amount of cutting
forces Fu should not exceed a certain value as higher forces
produce shakes and vibration.This constraint is given below:

𝐹
𝑟
= 𝑘
1
(𝑓
𝑟
)
𝜇

(𝑎
𝑟
)
𝜐

≤ 𝐹
𝑢
. (4)

Power Constraint. The nominal power of the machine 𝑃
𝑈

limits the cutting process:

𝑃
𝑟
=

𝐹
𝑟
𝑉
𝑟

6120𝜂
≤ 𝑃
𝑈
, (5)

efficiency 𝜂 = 0.85.

Stable Cutting Region Constraint. This constraint is given as

(𝑉
𝑟
)
𝜆

𝑓
𝑟
(𝑎
𝑟
)
]
≥ SC. (6)

Chip-Tool Interface Temperature Constraint.This constraint is
given as

𝑄
𝑟
= 𝑘
2
(𝑉
𝑟
)
𝜏

(𝑓
𝑟
)
𝜙

(𝑎
𝑟
)
𝛿

≤ 𝑄
𝑢
. (7)

2.3.2. Finish Machining. All the constraints other than the
surface finish constraint are similar for rough and finish
machining [21].

Surface Finish Constraint. In the finishing operations, the
obtained surface roughness must be smaller than the spec-
ified value, SR

𝑈
, given by technological criteria, so that the

following equation is satisfied:

𝑓
𝑠

2

8𝑅
≤ SR
𝑈
. (8)

Constraints for roughing and finishing parameter rela-
tions are

𝑉
𝑠
≥ 𝑘
3
𝑉
𝑟
,

𝑓
𝑟
≥ 𝑘
4
𝑓
𝑠
,

𝑎
𝑟
≥ 𝑘
5
𝑎
𝑠
.

(9)

The Number of Rough Cuts. The possible number of rough
cuts is restricted by

𝑛 =
𝑎
𝑡
− 𝑎
𝑠

𝑎
𝑟

, (10)

where 𝑛
𝐿
≤ 𝑛 ≤ 𝑛

𝑈
,

𝑛
𝐿
=

(𝑎
𝑡
− 𝑎
𝑠𝑈
)

𝑎
𝑟𝑈

,

𝑛
𝑈
=

(𝑎
𝑡
− 𝑎
𝑠𝐿
)

𝑎
𝑟𝐿

.

(11)

The optimization problem in multipass turnings can be
divided into 𝑚 = (𝑛

𝑈
− 𝑛
𝐿
+ 1) subproblems, in each of

which the number of rough cuts 𝑛 is fixed. So the solution
of the whole optimization problem is divided into searching
the optimal results of 𝑚 subproblems and the minimum of
them is the objective of whole optimization problem [3].
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Input:
𝑓 (𝑧) , 𝑧 = [𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛
]
𝑇 (Cost function)

𝑆 = [𝑎
𝑘
, 𝑏
𝑘
] , ∀𝑘 = 1, . . . , 𝑛 (Constraints)

𝑚, 𝛽
0
, 𝛾,min 𝑢

𝑖
,max 𝑢

𝑖
(Algorithm’s parameters)

Output:
𝑥
𝑖
min

begin
repeat

𝑖
min

← arg min
𝑖
𝑓 (𝑥
𝑖
) , 𝑥
𝑖
min ← arg min

𝑥𝑖
𝑓 (𝑥
𝑖
)

For 𝑖 = 1 to𝑚 do
For 𝑗 = 1 to𝑚 do
If 𝑓 (𝑥

𝑗
) < 𝑓 (𝑥

𝑖
) then

𝑟
𝑗
← Calculate distance (𝑥

𝑖
, 𝑥
𝑗
)

𝛽 ← 𝛽
0
𝑒−𝛾𝑟𝑗

𝑢
𝑖
← Generate Random Vector (min 𝑢

𝑖
,max 𝑢

𝑖
)

For 𝑘 = 1 to 𝑛 do 𝑥
𝑖,𝑘

← (1 − 𝛽) 𝑥
𝑖,𝑘

+ 𝛽𝑥
𝑗,𝑘

+ 𝑢
𝑖,𝑘

𝑢
𝑖
min ← Generate Random Vector (min 𝑢

𝑖
,max 𝑢

𝑖
)

For 𝑘 = 1 to 𝑛 do 𝑥
𝑖
min
,𝑘
← 𝑥
𝑖
min
,𝑘
+ 𝑢
𝑖
min
,𝑘

until stop condition true
end

Pseudocode 1

3. Firefly Algorithm (FA)

Firefly algorithm is inspired by biochemical and social aspects
of real fireflies. Real fireflies produce a short and rhythmic
flash that helps them in attracting (communicating) their
mating partners and also serves as protective warningmecha-
nism. FA formulates this flashing behavior with the objective
function of the problem to be optimized.The following three
rules are idealized for basic formulation of FA.

(i) All fireflies are unisex so that fireflies will attract each
other regardless of their sex.

(ii) Attractiveness is proportional to their brightness,
which decreases as distance increases between two
flies. Thus the less bright one will move towards the
brighter one. In case it is unable to detect brighter one
it will move randomly.

(iii) The brightness of a firefly is determined by the
landscape of the objective function.

3.1. Firefly Algorithm Concept [17]. The algorithm is consid-
ered in the continuous constrained optimization problem
setting where the task is to minimize cost function𝑓(𝑥) for
𝑥 ∈ 𝑆 ⊂ R𝑛; that is, find 𝑥∗ such that:

𝑓 (𝑥
∗

) = min
𝑥∈𝑆

𝑓 (𝑥) . (12)

Assume that there exists a swarm of 𝑚 agents (fireflies)
solving optimization problem iteratively and 𝑥

𝑖
represents a

solution for a firefly 𝑖 in algorithm’s iteration 𝑘, whereas 𝑓(𝑥
𝑖
)

denotes its cost.
Each firefly has its distinctive attractiveness 𝛽 which

implies how strong it attracts other members of the swarm.
As a firefly attractiveness one should select anymonotonically

decreasing function of the distance 𝑟
𝑗

= 𝑑(𝑥
𝑖
, 𝑥
𝑗
) to the

chosen firefly 𝑗, for example, as Yang suggests, the exponential
function:

𝛽 = 𝛽
0
𝑒
−𝛾𝑟𝑗 , (13)

where 𝛽
0
and 𝛾 are predetermined algorithm parameters:

maximum attractiveness value and absorption coefficient,
respectively.

Every member of the swarm is characterized by its light
intensity 𝐼

𝑖
which can be directly expressed as an inverse of a

cost function 𝑓(𝑥
𝑖
).

Initially all fireflies are dislocated in 𝑆 (randomly or
employing some deterministic strategy).

To effectively explore considered search space 𝑆 it is
assumed that each firefly 𝑖 is changing its position iteratively
taking into account two factors: attractiveness of other swarm
members with higher light intensity, that is, 𝐼

𝑗
> 𝐼
𝑖
, for all

𝑗 = 1, . . . , 𝑚, 𝑗 ̸= 𝑖, which is varying across distance and a fixed
random step vector 𝑢

𝑖
.

If no brighter firefly can be found only the randomized
step is being used.

3.2. Pseudocode of the Firefly Algorithm. See Pseudocode 1.

4. Application Example

Now an application example is considered to demonstrate
and validate the firefly algorithm (FA) for the optimization
of process parameters of themultipass turning operation.The
parameters used for the numerical application arementioned
in Table 1.

4.1. Results and Discussion. The Firefly algorithm was run
with these parameters:
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Table 1: Machining data [10].

Parameter Values Parameter Values Parameter Values
𝐷 (mm) 50 𝐿 (mm) 300 𝑎

𝑡
(mm) 6

𝑉
𝑟𝑈

(m/min) 500 𝑉
𝑟𝐿
(m/min) 50 𝑓

𝑟𝑈
(mm/rev) 0.9

𝑓
𝑟𝐿
(mm/rev) 0.1 𝑎

𝑟𝑈
(mm) 3.0 𝑎

𝑟𝐿
(mm) 1.0

𝑉
𝑠𝑈

(m/min) 500 𝑉
𝑠𝐿
(m/min) 50 𝑓

𝑠𝑈
(mm/rev) 0.9

𝑓
𝑠𝐿
(mm/rev) 0.1 𝑎

𝑠𝑈
(mm) 3.0 𝑎

𝑠𝐿
(mm) 1.0

𝑃 5 𝑞 1.75 𝑟 0.75
𝑘
1

108 𝜇 0.75 𝜐 0.95
𝜂 0.85 𝜆 2 ] −1
𝑘
2

132 𝜏 0.4 𝜙 0.2
𝛿 0.105 𝑅 (mm) 1.2 𝑘

0
($/min) 0.5

𝐶
0

6 × 1011 ℎ
1

7 × 10−4 ℎ
2

0.3
𝑇
𝐿
(min) 25 𝑡

𝑐
(min/piece) 0.75 𝑡

𝑒
(min/edge) 1.5

𝑃
𝑈
(kW) 5 𝑇

𝑈
(min) 45 𝐹

𝑢
(N) 1961.3

SC 140 SR
𝑈
(𝜇m) 10 𝑄

𝑢
(∘C) 1000

𝑘
3

1.0 𝑘
4

2.5 𝑘
5

1.0
𝑘
𝑡
($/edge) 2.5

Table 2: The optimized turning parameters.

𝑛
Cutting parameters (rough machining) Cutting parameters (finish machining) UC ($)

𝑉
𝑟
(m/min) 𝑓

𝑟
(mm/rev) 𝑎

𝑟
(mm) 𝑉

𝑠
(m/min) 𝑓

𝑠
(mm/rev) 𝑎

𝑠
(mm)

1 98.4102 0.8200 3.0000 162.2882 0.2582 3.0000 1.9358
2 145.7281 0.6067 2.3964 207.0844 0.1519 1.2072 2.7213
3 144.1821 0.7907 1.5958 191.9014 0.1590 1.2125 3.1075
4 145.8086 0.7886 1.2429 180.1447 0.1821 1.0285 3.5428
5 166.5327 0.8998 1.0000 191.3605 0.2582 1.0000 3.4586

Table 3: Results of optimization using different algorithms.

Algorithms Unit cost ($)
FEGA [2] 2.3084
SA/SP [3] 2.2795
PSO [10] 2.2721
GA [11] 2.2538
SS [12] 2.0754
GA-based approach [13] 2.0298
ACO [14] 1.9680
Firefly 1.9358

nf = 40 (number of fireflies),

𝛼 = 0.25 (randomness),

𝛽
0
= 0.20 (minimum value of beta),

𝛾 = 1 (Absorption coefficient).

The results found by the Firefly algorithm are mentioned
on Table 2.

We find that the lowest value is 1.9358$ under which the
minimum number of rough cuts 𝑛 = 1 is taken.

The performance of the Firefly algorithm and others can
be seen in Table 3.

According to Table 3 one notices that the firefly algorithm
yields much better results than the other algorithms. Thus
the firefly algorithm can tackle the optimization of multipass
turning operations problem efficiently to achieve better
results in reducing the unit production cost.

5. Conclusion

This paper presents a firefly algorithm optimization for
solving themultipass turning operations problem.The results
obtained from comparing the Firefly algorithm with those
taken from recent literature prove its effectiveness.

The results of the Firefly algorithm are compared with
results of genetic algorithms, simulated annealing, particle
swarm intelligence, scatter search, and ant colony approaches.

The firefly algorithm obtains near optimal solution; it
can be used for machining parameter selection of complex
machined parts that require many machining constraints.
Also, it can be extended to solve the other metal cutting
optimization problems such as milling and drilling.

Abbreviations

𝐶
𝐼
: Machine idle cost due to loading and

unloading operations and tool idle motion
time ($/piece)

𝐶
𝑀
: Cutting cost by actual time in cut ($/piece)
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𝐶
𝑅
: Tool replacement cost ($/piece)

𝐶
𝑇
: Tool cost ($/piece)

𝑎
𝑟
, 𝑎
𝑠
: Depth of cut for each pass of rough and

finish machining (mm)
𝑎
𝑟𝐿
, 𝑎
𝑟𝑈
: Lower and upper bound of depth of cut in

rough machining (mm)
𝑎
𝑠𝐿
, 𝑎
𝑠𝑈
: Lower and upper bound of depth of cut in

finish machining (mm)
𝑎
𝑡
: Depth of material to be removed (mm)

𝐷, 𝐿: Diameter and length of workpiece (mm)
𝑓
𝑟
, 𝑓
𝑠
: Feed rates in rough and finish machining

(mm/rev)
𝑓
𝑟𝐿
, 𝑓
𝑟𝑈
: Lower and upper bound of feed rate in rough

machining (mm/rev)
𝑓
𝑠𝐿
, 𝑓
𝑠𝑈
: Lower and upper bound of feed rate in finish

machining (mm/rev)
𝐹
𝑟
, 𝐹
𝑠
: Cutting forces during rough and finish

machining (N)
𝐹
𝑢
: Maximum allowable cutting force (N)

ℎ
1
, ℎ
2
: Constants related to cutting tool travel and

approach/departure time (min)
𝑘
0
: Direct labor cost plus overhead ($/min)

𝑘
𝑡
: Cutting edge cost ($/edge)

𝑘1, 𝜇, 𝜐: Constants of cutting force equation
𝑘
2
, 𝜏, 𝜙, 𝛿: Constants related to chip-tool interface tem-

perature equation
𝑘
3
, 𝑘
4
, 𝑘
5
: Constants for roughing and finishing
parameter relations

𝜆, ]: Constants related to expression of stable
cutting region

𝑛: Number of rough cuts (an integer)
𝑁
𝑈
, 𝑁
𝐿
: Upper and lower bounds of 𝑛

𝑝, 𝑞, 𝑟, 𝐶
0
: Constants of tool-life equation

𝑃
𝑟
, 𝑃
𝑠
: Cutting power during rough and finish

machining (kW)
𝑃
𝑈
: Maximum allowable cutting power (kW)

𝑄
𝑟
, 𝑄
𝑠
: Chip-tool interface rough and finish

machining temperatures (∘C)
𝑄
𝑈
: Maximum allowable chip-tool interface

temperature (∘C)
𝑞: A weight for 𝑇

𝑝
[0, 1]

𝑅: Nose radius of cutting tool (mm)
SC: Limit of stable cutting region constraint
SR
𝑈
: Maximum allowable surface roughness

(mm)
𝑇, 𝑇
𝑟
, 𝑇
𝑠
: Tool life, expected tool life for rough

machining, and expected tool life for finish
machining (min)

𝑇
𝑝
: Tool life of weighted combination of 𝑇

𝑟
and

𝑇
𝑠
(min)

𝑇
𝑈
, 𝑇
𝐿
: Upper and lower bounds for tool life (min)

UC: Unit production cost exceptmaterial cost ($)
𝑉
𝑟
, 𝑉
𝑠
: Cutting speeds in rough and finish machin-

ing (m/min)
𝑉
𝑟𝐿
, 𝑉
𝑟𝑈
: Lower and upper bound of cutting speed in

rough machining (m/min)
𝑉
𝑠𝐿
, 𝑉
𝑠𝑈
: Lower and upper bound of cutting speed in

finish machining (m/min).

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References
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