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Extensive research has been devoted to the estimation of the parameters of frequently used distributions. However, little attention
has been paid to estimation of parameters of Gamma/Gompertz distribution, which is often encountered in customer lifetime
and mortality risks distribution literature. This distribution has three parameters. In this paper, we proposed an algorithm for
estimating the parameters of Gamma/Gompertz distribution based on maximum likelihood estimation method. Iterated local
search (ILS) is proposed to maximize likelihood function. Finally, the proposed approach is computationally tested using some

numerical examples and results are analyzed.

1. Introduction

In probability and statistics, the Gompertz distribution is a
continuous probability distribution. The Gompertz distribu-
tion was first introduced by Gompertz [1] to describe human
mortality and establish actuarial tables. Since then, many
investigators have used the Gompertz distribution or some
related forms of it in a variety of studies. There are many forms
of the Gompertz distribution in the literature. The Gompertz
distribution is often applied to describe the distribution of
adult lifespans by demographers [2, 3] and actuaries [4, 5].
Related fields of science such as biology [6] and gerontology
[7] also considered the Gompertz distribution for the analysis
of survival. More recently, computer scientists have also start-
ed to model the failure rates of computer codes by the Gomp-
ertz distribution [8]. In marketing science, it has been used
as an individual-level model of customer lifetime [9]. Also,
the Gompertz distribution is applied in reliability, life testing,
epidemiological, and biomedical studies. Several such situ-
ations have been discussed by Ananda et al. [10], Walker and

Adham [11], Jaheen [12], and many others. The probability
density function of the Gompertz distribution is

£ (x) = bye™ e exp (—nebx); 0<x<00,b>0,1>0,
@

where b is the scale parameter and 7 is the shape parameter
of the Gompertz distribution. In the actuarial and biological
sciences and in demography, the Gompertz distribution is
parameterized slightly and differently The Gompertz distri-
bution is a flexible distribution that can be skewed to the right
and to the left. The Gompertz density function can take on
different shapes depending on the values of the shape param-
eter 7. The nth moment of a Gompertz distributed random
variable X is

E(X") = B (1), @)

where El(z) = (1/n!) Loo (Inx)"x"*e™**dz is the gener-
alized integroexponential function [13]. When the shape



30
— 5s=03
—— s=10
— §=5.0

FIGURE 1: Three parameters Gamma/Gompertz distribution density
function.

parameter # of a Gompertz distribution varies according to
a Gamma distribution with shape parameter « and scale pa-
rameter 3 (mean = «/f3), the distribution of x is Gamma/
Gompertz [9]. The Gamma/Gompertz distribution has been
used as an aggregate-level model of customer lifetime and
a model of mortality risks. Missov studied life expectancy
resulting from a gamma-Gompertz force of mortality [14].

The probability density function of the Gamma/Gomp-
ertz distribution is

- bSbeﬁs '
B-1+ eb")s+1 ’

f ()

0<x<00,6>0,3>0,5s>0,
(3)

where b is the scale parameter and 8 and s are the shape
parameters of the Gamma/Gompertz distribution (Figure 1).
The cumulative distribution function of the Gamma/Gomp-
ertz distribution is

ﬁ5

F(x)=1- m;

0<x<00,b>0,3>0,5s>0.
(4)

When f = 1, this reduces to an exponential distribution with
parameter sb:

F(x)=1-¢% 0<x<00,b>0,s>0. (5)
The expected value of random variable X of a Gamma/Gomp-
ertz distribution depends on the values of b, 3, and s; that is,
we have E(x) = (1/B)[B/(f - 1)]Inp for b,s > 0, B+ 1 and
E(x) = 1/bs for b,s > 0, 8 = 1. Also, the median of this dis-
tribution is (1/b) In{B[(1/2)""* — 1] + 1}.

Successful application of Gamma/Gompertz distribution
depends on having acceptable statistical estimates of the dis-
tribution parameters. One of the best methods of obtaining
a point estimator of a parameter is the method of maximum
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likelihood. As the name implies, the estimator will be the val-
ue of the parameter that maximizes the likelihood function.
While the method of maximum likelihood is an excellent
technique, sometimes complications arise in its use. For ex-
ample, it may not always be possible to use calculus methods
directly to determine the maximum of likelihood function.
This difficulty is obvious in estimating the parameters of the
Gamma/Gompertz distribution.

In this paper, we use iterated local search (ILS) to estimate
Gamma/Gompertz parameters. The paper is organized as
follows. Section 2 describes the notion of maximum likeli-
hood estimation. Section 3 explains the basics of iterated local
search (ILS). In Section 4, we explain the steps of ILS algo-
rithm to solve the problem. Some numerical examples and
their computational results are represented in Section 5. Fi-
nally, Section 6 contains the conclusions.

2. Maximum Likelihood Estimation

Maximum-likelihood estimation (MLE) is a method of esti-
mating the parameters of a statistical model. In general, for a
fixed set of data and underlying statistical model, the method
of maximum likelihood selects values of the model parame-
ters that produce a distribution that gives the observed data
the greatest probability (i.e., parameters that maximize the
likelihood function). In essence the method selects a set of
model parameters that predicts that events that occur often in
the data are very likely to occur and events that occur seldom
in the data are predicted to occur with small probability. Max-
imum-likelihood estimation gives a unified approach to esti-
mation, which is well-defined in the case of the normal dis-
tribution and many other problems.

Suppose that x is a random variable with probability
distribution f(x, 6) where 6 = (6,,6,,0s,...,6,) is un-
known parameters vector. Let x;, x5, ..., X, be the observed
values in a random sample of size n. Then, the likelihood
function of the sample is

-

L(8) = f (x130) = £ (x36) f (x350) - £ (,56)
=E1[f(xi;§).

Note that the likelihood function is now a function of only the

(6)

unknown parameters 6 = 0,,0,,05,...,0;). The maximum
likelihood estimators of 6 are the values that maximize the
likelihood function L(6). In practice, it is often more conve-
nient to work with the logarithm of the likelihood function:

LnL(6) = Lnﬁ f(x:6). %)
i=1

The maximum likelihood estimators would be found by
equating the k partial derivatives to zero and solving the re-
sulting system of equations:

0 o N 0 o
—L(8)= —LnL (6
_,()Oor aé)n(

- )=0. (8)
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End While

sy < Generate Initial Solution (s)
s* « Apply Local Search (s,)
While termination condition not met do
s’ « Apply perturbation (s*)
s'* « Apply Local Search (s')
s « Apply acceptance criterion (s*, s')
Memorize Best Found Solution

ALGORITHM l: Iterated local search (ILS) algorithm.

While the method of maximum likelihood is an excellent
technique for many models and a maximum likelihood esti-
mator can be found as an explicit function of the observed
data x4, ..., x,, sometimes complications arise in its use. For
example, it is not always easy to maximize the likelihood
function because the equation(s) obtained from partial deriv-
atives may be difficult to solve or no closed-form solution to
the maximization problem is known or available. Therefore,
an MLE has to be found numerically using optimization
methods.

3. General Iterated Local Search

Iterated local search is a simple but powerful metaheuristic
algorithm [15]. It applies local search to an initial solution
until it finds a local optimum; then it perturbs the solution
and restarts local search. The importance of the perturbation
is obvious: a too small perturbation might not enable the
system to escape from the basin of attraction of the local opti-
mum just found. On the other side, a too strong perturbation
would make the algorithm similar to a random restart local
search.

A local search is effective if it is able to find good local
optima, that is, if it can find the basin of attraction of those
states. When the search space is wide and/or when the basin
of attraction of good local optima is small, a simple multistart
algorithm is almost useless. An effective search could be
designed as a trajectory only in the set of local optima s*, in-
stead of in the set s of all the states.

The requirement on the perturbation of s is to produce
a starting point for local search such that a local optimum
different from s is reached. However, this new local optimum
should be closer to s than a local optimum produced by a
random restart. The acceptance criterion acts as a counter
balance, as it filters and gives feedback to the perturbation
action, depending on the characteristics of the new local op-
timum. A high level description of ILS steps is presented in
Algorithm 1.

The design of ILS algorithms has several degrees of free-
dom in the choice of the initial solution, perturbation, and ac-
ceptance criteria.

The construction of initial solutions should be fast, and
initial solutions should be a good starting point for local
search. The fastest way of producing an initial solution is to
generate it at random; however, this is the easiest way for

problems that are unconstrained, whilst in other cases the
construction of a feasible solution requires also constraint
checking.

The perturbation is usually nondeterministic in order to
avoid cycling. Its most important characteristic is the
strength, roughly defined as the amount of changes made on
the current solution. The strength parameter, A, can be either
fixed or variable. In the first case, the distance between per-
turbation and local search is kept constant, independently of
the problem size. However, a variable strength is in general
more effective, since it has been experimentally found that,
in most of the problems, the bigger the problem size is, the
larger should be the strength.

A second choice is the mechanism to perform perturba-
tions. This may be a random mechanism, or the perturbation
may be produced by a deterministic or semideterministic
method.

The third important component is the acceptance crite-
rion. Two extreme examples consist in (1) accepting the new
local optimum only in case of improvement and (2) in always
accepting the new solution. In-between, there are several pos-
sibilities. In this paper, we consider an annealing scheme for
acceptance criterion. Simulated annealing is one of the most
novel algorithms initially presented by Kirkpatrick et al. [16].
The algorithm is based upon that of Metropolis et al. which
was originally proposed as a means of finding the equilibrium
configuration of a collection of atoms at a given temperature
[17]. Similar to other metaheuristic algorithms, it attempts
to solve hard combinatorial optimization problems through
controlled randomization. Sometimes simulated annealing
was applied to parameters estimation [18].

The performance of ILS algorithm depends on the def-
inition of the several control parameters. The choice of an
appropriate A is crucial for the performance of the algorithm.
The value of parameter A decrease during the search process;
thus, at the beginning of the search, diversification is high and
as it gradually goes on its search path, intensification becomes
intense. Hereby, with the choice of appropriate A, a dynamic
balance is given between diversification and intensification.

4. Applying Hybrid ILS for Estimating
Gamma/Gompertz Parameters

To estimate the three parameters of Gamma/Gompertz
distribution, let xi,...,x, be a random sample from the
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Obtain a random sample from the distribution the size of which should be big enough.

Initialize the ILS control parameter (A, €, C, 1)

select an initial solution 6,= (b, §);
Set E:G*(;
0 — Apply Local Search G

While termination condition not met do

6"~ Apply perturbation )

!

. Apply Local Search (0 )

End While

0
0 — Apply acceptance criterion ©, 9,*)

Memorize Best Found Solution

ALGORITHM 2: Proposed hybrid iterated local search.

Gamma/Gompertz distribution. The log of the likelihood
function is

LnL(b,B,s) = nLn(b) + nLn (s) + nsLn(B)
n n 9
+b2xi—(s+ 1)LnH(/3—1+ebx"). ©
i=1 i=1

When the derivatives are equated to zero, we obtain the fol-
lowing equations that must be solved to find the maximum
likelihood estimators of b, 3, and s:

imLmﬁg=Q

ob

3 (10)
%Ln L(b,B,s) =0,

0

—LnL(b,B,s) = 0. (11)

Os

There is no closed form solution to these equations and it
is very difficult to solve these equations using ordinary opti-
mization techniques. To estimate the parameters b, 3, and s
we are to maximize L(b, 3,s) (or Ln L(b, 3, s)), using hybrid
iterated local search.

For a given values of b and f, (11) gives an expression
of Ln L(b, B, s) as a function of only s which is called reduced
Ln L(b, 3, s). Although Ln L(b, 3, s) isanonconcave function,
itis obvious from expression (11) that reduced Ln L(b, 3, s) isa
concave function because second partial derivative of reduced
Ln L(b, 3, s) with respect to s is nonpositive. Therefore, taking
the first derivative of reduced Ln L(b, 3, s) with respect to s
and setting (0/0s) reduced Ln L(b, 3, s) = 0 yield

n

" La([I, (B-1+ &%) /p)

s (12)

Therefore, problem reduces to obtain parameters b and S; s
is computable from relation (12). Of course, only positive
values for s are acceptable. To challenge this very difficult
problem, we propose a hybrid iterated local search approach.
In this regard, the steps of this algorithm are briefly presented
in Algorithm 2, where the following notation is used:

N
0,: Initial solution

N

0: Current solution

N

6': Perturbed solution

—

6"*: Local optimum solution

? : Best solution

Ln L(é): Value of the objective function at solution 6
&: Neighborhood step-length parameter

A: Perturbation step-length parameter

C: Geometric cooling factor

7,: Initial temperature.

The algorithm starts with an initial random solution for the
problem (positive values for b and f3), and by initializing the
so-called perturbation step-length parameter A, the neigh-
borhood step-length parameter ¢, cooling factor C and initial
temperature 7,. At each solution, parameter s is calculated by
relation (12) and only solutions are considered feasible for
which s is positive. Two-neighborhood solution is generated
by right shift and left shift of current solution by an amount
of ¢, for b or f3, at random. Feasible improving direction is
detected. The generated feasible solution in improving direc-
tion replaces the current one. Generating feasible neighbor-
hood solution at same direction continues until a local
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FIGURE 2: Ln L(b, 3, s) versus iteration counter for Example 1: (a) n = 100, (b) n = 200, and (c) n = 300.

N
optimum solution 0'* is reached. This first local optimum

=

solution sets as best solution 8*. The cycle of algorithm re-

peats while the acceptance criterion is satisfied. At each repe-

tition of the algorithm, a perturbed solution of the current
—

local optimum solution 6'* is generated as follows: with gen-
erating two binary random numbers z; and z,, we select a
direction for perturbation (right or left) for each of the pa-
rameters b and f3. Perturbed solution is obtained by adding

N
to or subtracting from current local optimum solution, 8'*, a
dynamic amount, depending on the perturbation directions
and A, where A is the perturbation step-length parameter
playing an important role in our algorithm. The generated
feasible solution replaces the current one. Local search proce-
dure is applied to the newly chosen solution. We suppose that
after the local optimum is reached, it is always acceptable
(with checking positivity of s). After generating newly local
—

optimum solution, 0"*, a kind of annealing schedule is con-
sidered as acceptance criterion: accept all the improving new
local optima and accept also the nonimproving ones with

a probability that is a function of the temperature 7 and the
difference of objective values, in formulas:

P(Acceptance)
. N R
1 ianL(e’*)>LnL( “)
— g
LnL<9*) - LnL(@”‘)
exp| - -
| otherwise.

(13)

It is obvious that control parameter, 7, is chosen with respect
to the specific problem at hand. When adapting this general
algorithm to a specific problem, the procedure to generate
both initial and perturbed solutions is very important in addi-
tion to the control parameter. Hereby, the most important fea-
ture of this algorithm, as a metaheuristic, is the possibility of
accepting a worst solution, which can allow it to prevent fall-
ing into local optimum trap. Obviously, the probability of
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FIGURE 3: Ln L(b, f3, s) versus iteration counter for Example 2: (a) n = 100, (b) n = 200, and (c) n = 300.

accepting a worse solution decreases as the temperature de-
creases in each outer cycle. The initial temperature (7,) should
be high enough that, in the first iteration of the algorithm, the
probability of accepting a worse solution is, at least, of 80%
[16]. The most commonly used temperature reducing func-
tion is geometric; that is, 7; = Cr;_; in which C < 1 is con-
stant. The termination condition happens when the system
has reached to a desired energy level.

5. Numerical Examples

In this section, we solve two problem instances for illustrative
and comparative purposes. In addition, to know the effects
of the sample size, different sample sizes have been chosen
and used to solve estimate parameters. We consider two
Gamma/Gompertz distributions with parameters b = 2, § =
4,and s = 3 (Example ) and b = 3, = 3,ands = 3
(Example 2), respectively. Let x,, x5, ..., x,, be the observed
values from each distribution in a random sample of size

n = 100, 200, and 300. The coding has been done using
MatLab 7.12 and run on an Intel Core i5 CPU processor with
4 GB of RAM.

The performance of metaheuristic algorithms depends
excessively on the value of their parameters. To know the ef-
fects of the perturbation rule and acceptance criterion, dif-
ferent approaches have been chosen and used to estimate pa-
rameters. We obtained best results with perturbation rule ac-
cordingto A = (101—i) ¢ (in which i is iteration counter) and
acceptance criterion based on 7 > 13,

In this paper, the proposed algorithm parameter values
are selected through the computational experiments. The ex-
periments indicated that the best values for the parameters of
the algorithms in our examples are as follows: C = 0.975 and
7, = 100. € = 0.01 is selected for the examples.

Tables 1 and 2 show the results. Figures 2 and 3 show the
likelihood function for all the values evaluated during the
process of maximization. The experimental results demon-
strate that calibration provides high quality solutions. It is
quite clear that as the sample size increases the estimation will
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TABLE 1: Experimental result for Example 1.

Example 1 (b,Bs) =(2,4,3)

N 100 200 300

b, B.9) (2.02, 4.12, 3.0728) (1.98, 4.06, 2.944) (1.98, 3.93, 2.9506)

Ln L(b, ,3) —318.6441 —645.8559 -948.7620

Run time (sec) 2.19 12.38 19.06
TABLE 2: Experimental result for Example 2.

Example 1 (b, B,s) = (3,3,3)

n 100 200 300

(b, 3,3 (2.87,3.06, 2.8466) (2.85,2.91, 3.0412) (3.09, 2.93, 3.029)

LnL(b, 3,3) ~233.1599 —458.5367 —651.2425

Run time (sec) 1.84 9.76 23.05

be better. It is straightforward from the primary estimation
theory that the bigger the sample size the better the estima-
tion. With comparing the CPU time requirements, it is clear
that as the sample size increases more run time is needed. It
is because as the sample size increases the more complicated
will be the likelihood function to maximize.

6. Conclusions

We considered the Gamma/Gompertz distribution, which is
often encountered in customer lifetime and mortality risks
distribution literature. We developed hybrid iterated local
search to estimation of Gamma/Gompertz parameters. To
improve the efficiency of the proposed algorithm, its param-
eters were selected through the computational experiments.
The results of the computational experiment showed that cali-
bration provides high quality solutions. The large size samples
perform better than the small size ones, measured by the solu-
tion accuracy index but with more CPU time.
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