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This paper proposes a number of forward VNS and reverse VNS algorithms for job-shop scheduling problem. The forward VNS
algorithms are the variable neighborhood search algorithms applied to the original problem (i.e., the problem instance with the
original precedence constraints). The reverse VNS algorithms are the variable neighborhood search algorithms applied to the
reversed problem (i.e., the problem instance with the reversed precedence constraints). This paper also proposes a multi-VNS
algorithm which assigns an identical initial solution-representing permutation to the selected VNS algorithms, runs these VNS
algorithms, and then uses the best solution among the final solutions of all selected VNS algorithms as its final result. The aim of
the multi-VNS algorithm is to utilize each single initial solution-representing permutation most efficiently and thus receive its best
result in return.

1. Introduction

Job-shop scheduling problem (JSP) is a hard-to-solve
scheduling problem which has commonly been found in
many industries. JSP is similar to other scheduling problems
in the terms that it consists of a number of jobs and a number
of machines, and it requires assigning the given jobs into the
given machines over time. However, JSP has some more spe-
cific constraints whichmake it unique and thus different from
the other scheduling problems. These specific constraints are
given as follows. Each job in JSP consists of a number of oper-
ations which must be processed in the specific order as the
precedence constraints. Each operationmust be processed on
a preassigned machine by a specific processing time without
preemption. In addition, each machine cannot process more
than one operation simultaneously. The objective of JSP is to
find a feasible schedule which completes all given jobs by the
shortest makespan, that is, the time length from the starting
time to the completion time of the schedule.

In order to solve JSP, this paper is interested in apply-
ing variable neighborhood search (VNS) algorithm because
this algorithm is recognized as a simple, systematic, and
successful metaheuristic for combinatorial problems. This
paper receives insight and motivation from the previously

published literature to develop the forward VNS, reverse
VNS, and multi-VNS algorithms. The forward VNS algo-
rithms are the VNS algorithms applied to the original prob-
lem (i.e., the being-considered JSP instance with the original
precedence constraints). The reverse VNS algorithms are the
VNS algorithms applied to the reversed problem (i.e., the
being-considered JSP instance with the reversed precedence
constraints); each reverse VNS algorithm has an additional
step to transform its reversed problem’s solution to be usable
for the original problem.The proposed multi-VNS algorithm
is an algorithm which assigns the same initial solution-
representing permutation into a number of the specified
VNS algorithms, runs these VNS algorithms, and finally
uses the best solution among the final solutions of these
VNS algorithms as its final result. In other words, the multi-
VNS algorithm aims at utilizing each single initial solution-
representing permutation most efficiently by systematically
using different VNS neighborhood structures and scheduling
directions on the same initial solution-representing permuta-
tion.

The remaining parts of this paper are organized as follows.
Section 2 reviews the articles related to the research in
this paper and then summarizes the research contributions.
Section 3 proposes a generic VNS algorithm, so that this

Hindawi Publishing Corporation
Modelling and Simulation in Engineering
Volume 2016, Article ID 5071654, 15 pages
http://dx.doi.org/10.1155/2016/5071654



2 Modelling and Simulation in Engineering

section later proposes the forward VNS algorithms and the
reverse VNS algorithms based on the given generic form.
This paper proposes a multi-VNS algorithm in Section 4
and then evaluates the multi-VNS algorithm’s performance
in Section 5. Section 6 finally provides the conclusions of this
research.

2. Literature Review and
Research Contribution

Job-shop scheduling problem (JSP) starts with 𝑛 given jobs
𝐽
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must be processed in the given order as a chain of precedence
constraints. This means, for each job 𝐽

𝑖
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only on a preassigned machine with a specific preassigned
processing time. The preemption for each operation is not
allowed; that is, after a particular machine starts processing
any operation, it cannot be stopped or paused for any reasons
until finishing the operation. In addition, each machine can
process only one operation at a time. JSP aims at finding a
schedule (i.e., an allocation of all given operations to time
intervals on the given machines) which satisfies all above-
given constraints so as to minimize the schedule’s makespan.
As mentioned, the makespan defines the time length from
the starting time of the schedule (i.e., the starting time of
the first started operation in the schedule) to the completion
time of the schedule (i.e., the completion time of the last
finished operation in the schedule). JSP is a well-known
scheduling problem, so it has been mentioned frequently in
the textbooks, for example, [1, 2]. The mathematical models
for describing JSP have been commonly found in literature,
for example, [3].

JSP is important to industry and attractive to academia,
so many algorithms have been developed for solving the
problem. These algorithms include tabu search algorithms
[4, 5], a simulated annealing algorithm (SA) [6], a hybrid
algorithm between particle swarm optimization (PSO) and
VNS [7], genetic algorithms (GAs) [8–13], PSO algorithms
[14–16], VNS algorithms [17–19], a hybrid algorithm between
PSO and GA [20], a bee colony algorithm [21], an ant colony
optimization algorithm [22], a memetic algorithm [23], and
a hybrid algorithm between GA and SA [24]. Based on the
literature review, the VNS algorithms are recognized as well-
performing algorithms for JSP, so this paper will research
more on the VNS algorithms.

VNS was first introduced in [25, 26] as a metaheuristic
approach for combinatorial optimization problems. As its
name implies, VNS changes its neighborhood structure from
one to another systematically in the purpose of finding
local optimal solutions as well as escaping from them, so
VNS is highly potential to find a global optimal solution.
The development of VNS is based on the three following
observations [25, 27]:

(1) A local optimal solution in a neighborhood structure
may not be the same as a local optimal solution in
another neighborhood structure.

(2) A global optimal solution is a local optimal solution
with respect to all possible neighborhood structures.

(3) Inmany problem instances, local optimal solutions in
different neighborhood structures are relatively close
to each other.

VNS generally consists of three main steps: the shaking
step, the local search step, and the step of updating its
best found solution. The VNS algorithm’s local search step
aims at finding a local optimal solution with respect to
variable neighborhood structures. The shaking step aims at
escaping from a local optimal solution as well as generating
a new initial solution for the local search step. In published
literature, the review articles about VNS are found in [25–28],
the applications of VNS are found in [17–19, 28, 29], and the
parallelization strategies for VNS are given in [27, 30].

The articles closely related to the research in this paper
are articles [7, 17, 19, 29]. As mentioned above, a well-
performing hybrid algorithm between PSO and VNS for JSP
was given in [7]. Later, article [17] disassembled theVNS from
the hybrid algorithm and reported that the VNS algorithm
alone performs as equally well as the hybrid algorithm in
terms of solution quality. After that, article [29] introduced
the variants of the VNS algorithm of [17] for asymmetric
traveling salesman problem, while article [19] introduced the
variants of the VNS algorithm of [17] for JSP. Article [19] is
most closely related to the research in this paper, because
this paper aims at enhancing the performances of the VNS
algorithms given in [19].

As just mentioned, the objective of the research in this
paper is to enhance the performances of the VNS algorithms
of [19], so the contributions of the research in this paper
are given in overview as follows. A preliminary study of this
research finds that, in several hard-to-solve JSP instances, the
maximum iterations of the VNS algorithms of [19] should
be increased in order to enhance their potentials of finding
the optimal solutions; thus, this paper will find out the more
proper maximum iterations for the VNS algorithms. This
paper will also introduce more variants of the VNS algo-
rithms of [19] which use different neighborhood structures
from [19]. Moreover, this paper will introduce the use of
the reversed problem (i.e., the being-considered JSP instance
with the reversed precedence constraints) for the VNS
algorithms because each hard-to-solve JSP instance may be
solved easier in its corresponding reversed problem.Note that
the schedule’s construction using the reversed precedence
constraints is called the reverse or backward scheduling, and
it has often been applied for scheduling problems in many
articles such as [14, 22, 31, 32]. For efficiently utilizing each ini-
tial solution-representing permutation, this paper will then
propose the multi-VNS algorithm which assigns an identical
initial solution-representing permutation into the selected
VNS algorithms, runs these VNS algorithms, and uses the
best solution found by these VNS algorithms as its final
solution.
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3. Proposed VNS Algorithms

This section will propose the generic VNS algorithm for JSP,
so that the forward VNS algorithms and the reverse VNS
algorithms will be developed based on the given generic
VNS algorithm. As mentioned earlier, the forward VNS
algorithms define the VNS algorithms applied to the original
problem, that is, the being-considered JSP instance using the
original (forward) precedence constraints. The reverse VNS
algorithms define the VNS algorithms applied to the reversed
problem, that is, the being-considered JSP instance using
the reverse (backward) precedence constraints. In addition,
each reverse VNS algorithm has one more additional step
to modify its reversed problem’s solution to be usable for
the original problem. The terms forward VNS and reverse
VNS will hereafter be abbreviated by FVNS and RVNS,
respectively. Section 3.1 provides the generic VNS algorithm
which is the generic form for all FVNS and RVNS algorithms
proposed in this paper. Based on the generic form given,
Section 3.2 presents the FVNS and RVNS algorithms using
different operators to generate their solution-representing
permutations. The performances of the proposed FVNS and
RVNS algorithms will also be tested in Section 3.2.

3.1. Generic VNS Algorithm for JSP. This section introduces
the generic VNS algorithm as the generic form of the
FVNS and RVNS algorithms proposed later in Section 3.2.
Note that the solutions (i.e., the JSP schedules) generated
by all proposed VNS algorithms are represented by the
operation-based permutations [3, 13]. Each operation-based
permutation is an arrangement of the𝑚𝑛 integers consisting
of 1
1
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, where the

subscripts are used to distinguish the integer of the same
value. In other words, it is a sequence of the 𝑚𝑛 integers
consisting of the numbers from 1 to 𝑛, where each number
(from 1 to 𝑛) occurs repeatedly 𝑚 times. Based on the JSP
definition given in Section 2, 𝑛 is the number of all given jobs,
while 𝑚 is the number of all given machines. Moreover, 𝑚 is
also equal to the number of all operations of each job, so𝑚𝑛
is thus the number of all operations in the schedule. As an
example, 𝑃 = {2, 3, 2, 1, 1, 3} is an operation-based permu-
tation possibly generated by a particular VNS algorithm for
a 3-job/2-machine JSP instance. The procedure to decode an
operation-based permutation into a JSP schedule, as found
in [3, 13, 17, 19], is given here in Algorithm 1. This decoding
procedure transforms the operation-based permutation into
an order of priorities of all given operations and then uses this
order of priorities to construct a semiactive schedule. Note
that a semiactive schedule is a feasible schedule such that no
operations can be started earlier without altering the given
order of priorities of operations.

Algorithm 1. It is a procedure to decode an operation-based
permutation into a semiactive schedule.

Step 1. Let 𝑃 represent the operation-based permutation
which is required to be transformed into the semiactive
schedule 𝑆. Let the number 𝑖 (𝑖 = 1, 2, . . . , 𝑛) in the 𝑗th
occurrence (𝑗 = 1, 2, . . . , 𝑚) from leftmost to the right of

the permutation 𝑃 refer to the 𝑗th operation of the job 𝑖 or
𝑂
𝑖𝑗
. After that, let the order of these 𝑚𝑛 operations in the

permutation 𝑃 from leftmost to the right define the order of
priorities of the 𝑚𝑛 operations from highest to lowest. For
example,𝑃 = {2, 3, 2, 1, 1, 3}means that the order of priorities
of the operations in descending order is 𝑂

21
, 𝑂
31
, 𝑂
22
, 𝑂
11
,

𝑂
12
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32
.

Step 2. At the beginning, let the schedule 𝑆 be empty, so the
earliest available times of all𝑚machines equal 0. Let 𝑡 = 0.

Step 3. Based on the order of priorities of all operations
given in Step 1, let 𝑂 represent the current highest-priority
operation among all as-yet-unassigned operations. Then, let
𝜏 represent the preassigned processing time of the operation
𝑂, and let𝑀 represent the preassigned machine required by
the operation 𝑂.

Step 4. Assign the operation 𝑂 into the schedule 𝑆 by letting
the starting time of the operation 𝑂 equal the maximum
between the earliest available time of the machine𝑀 and the
completion time of the immediate-predecessor operation of
the operation 𝑂. As a consequence, the completion time of
the operation𝑂 equals its starting time given in this step plus
its processing time 𝜏.

Step 5. Update the earliest available time of themachine𝑀 to
equal the completion time of the operation 𝑂.

Step 6. Increase 𝑡 by 1. After that, if 𝑡 = 𝑚𝑛, stop and the
schedule 𝑆 is now completely constructed with the makespan
equal to the maximum of the completion times of all 𝑚𝑛
operations; otherwise, repeat from Step 3.

Algorithm 2 is the procedure of the generic VNS algo-
rithm which uses Algorithm 1 to decode operation-based
permutations into JSP solutions.𝑃

0
,𝑃
1
, and𝑃

2
in Algorithm 2

are the operation-based permutations which represent the
job-shop schedules 𝑆

0
, 𝑆
1
, and 𝑆

2
, respectively. The per-

mutation 𝑃
0
is the current best found permutation, so the

schedule 𝑆
0
is the current best found solution. As mentioned,

each permutation of 𝑃
0
, 𝑃
1
, and 𝑃

2
is a sequence of mn

integers consisting of the numbers 1, 2, 3, . . . , 𝑛, where each
number (from 1 to 𝑛) is repeatedly 𝑚 times. The solution
neighborhood structures used by the generic VNS algorithm
are generated based on the swap operator and the insert
operator. The swap (i.e., interchange) and insert (i.e., shift)
operators are commonly used in literature, for example, [7, 21,
33]. In this paper, the swap operator generates a neighbor of a
specific operation-based permutation by randomly selecting
two integers (of all𝑚𝑛 integers) from two different positions
in the permutation and then swapping the positions of the
two selected integers.The insert operator is done by randomly
selecting two integers (of all 𝑚𝑛 integers) from two different
positions in the permutation, removing the first-selected
integer from its old position, and then inserting it into the
position in front of the second-selected integer.
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Algorithm 2. It is a procedure of generic VNS algorithm.

Step 1. Let the user specify the type of this VNS algorithm
to be a forward VNS algorithm or a reverse VNS algorithm
and specify each of the operators 𝐴, 𝐵, 𝐶, and 𝐷 to be the
swap operator or the insert operator. If this VNS algorithm
is specified to be a reverse VNS algorithm, then generate the
reversed problem by letting the machine and the processing
time of its operation𝑂

𝑖𝑗
(𝑖 = 1, 2, . . . , 𝑛 and 𝑗 = 1, 2, . . . , 𝑚) be

equal to themachine and the processing time of the operation
𝑂
𝑖𝑘
(𝑖 = 1, 2, . . . , 𝑛 and 𝑘 = 𝑚−𝑗+ 1) of the original problem;

then, replace the original problem by the reversed problem in
all the following steps.

Step 2. Generate 𝑃
0
randomly as an initial current best

operation-based permutation (or, as an option, 𝑃
0
can also be

generated manually by the user) and then transform 𝑃
0
into

the job-shop schedule 𝑆
0
by using Algorithm 1. Let the VNS

algorithm’s iteration 𝑡 = 0.

Step 3. Process the shaking step by generating 𝑃
1
=

𝐴(𝐴(𝐵(𝐵(𝑃
0
)))) and then transforming 𝑃

1
into a job-shop

schedule 𝑆
1
by using Algorithm 1.

Step 4. Let the local search procedure’s iteration 𝑡local = 0.
Process the local search procedure by Steps 4.1 to 4.5.

Step 4.1. Let 𝑙max = 2 and 𝑙count = 0.

Step 4.2. If 𝑙count = 0, then generate 𝑃
2
= 𝐶(𝑃

1
); however,

if 𝑙count = 1, then generate 𝑃
2
= 𝐷(𝑃

1
) instead. After

that, transform 𝑃
2
into the job-shop schedule 𝑆

2
by using

Algorithm 1.

Step 4.3. If the makespan of 𝑆
2
> the makespan of 𝑆

1
, then

increase 𝑙count by 1. However, if the makespan of 𝑆
2
≤ the

makespan of 𝑆
1
, then update 𝑙count to equal 0, update 𝑃

1
to

equal 𝑃
2
, and also update 𝑆

1
to equal 𝑆

2
.

Step 4.4. If 𝑙count = 𝑙max, then go to Step 4.5; otherwise, repeat
from Step 4.2.

Step 4.5. Increase 𝑡local by 1. After that, if 𝑡local = 𝑚𝑛(𝑚𝑛 − 1),
then go to Step 5; otherwise, repeat from Step 4.1.

Step 5. If the makespan of 𝑆
1
≤ the makespan of 𝑆

0
, then

update 𝑃
0
to equal 𝑃

1
and also update 𝑆

0
to equal 𝑆

1
.

Step 6. Increase 𝑡 by 1. After that, check the conditions below:

(i) If the stopping criterion is not met, then repeat from
Step 3.

(ii) If the stopping criterion is met and this VNS algo-
rithm is specified in Step 1 to be a forward VNS
algorithm, then stop and 𝑆

0
is the final solution.

(iii) If the stopping criterion is met and this VNS algo-
rithm is specified in Step 1 to be a reverse VNS
algorithm, then go to Step 7.

Step 7. Transform 𝑆
0
into 𝑆
𝑅0
by letting the starting time of𝑂

𝑖𝑗

(𝑖 = 1, 2, . . . , 𝑛 and 𝑗 = 1, 2, . . . , 𝑚) of 𝑆
𝑅0

equal the makespan
of 𝑆
0
minus the completion time of 𝑂

𝑖𝑘
(𝑖 = 1, 2, . . . , 𝑛 and

𝑘 = 𝑚−𝑗+1) of 𝑆
0
. As a consequence, the completion time of

𝑂
𝑖𝑗
(𝑖 = 1, 2, . . . , 𝑛 and 𝑗 = 1, 2, . . . , 𝑚) of 𝑆

𝑅0
then equals the

makespan of 𝑆
0
minus the starting time of 𝑂

𝑖𝑘
(𝑖 = 1, 2, . . . , 𝑛

and 𝑘 = 𝑚−𝑗+1) of 𝑆
0
.Then, stop and 𝑆

𝑅0
is the final solution.

Note that the makespan of 𝑆
𝑅0

is equal to the makespan of 𝑆
0
.

The main steps of the generic VNS algorithm in Algo-
rithm 2 are more clarified as follows. Step 1 requires the
user to assign the type of the VNS algorithm which can be
either a forward VNS algorithm or a reverse VNS algorithm.
If the type of VNS algorithm is specified to be a reverse
VNS algorithm, the precedence constraints of all operations
of each job must be reversed. In Step 1, the user moreover
has to specify that each of the operators 𝐴, 𝐵, 𝐶, and 𝐷 is
either the swap operator or the insert operator. Step 2 in
Algorithm 2 generates𝑃

0
as the initial current best operation-

based permutation and then transforms the permutation 𝑃
0

into the schedule 𝑆
0
through the decoding procedure given in

Algorithm 1.
Step 3 is the shaking step of the VNS algorithm,

which modifies the operation-based permutation 𝑃
0
to the

operation-based permutation 𝑃
1
. To do so, Step 3 uses the

operator 𝐵 to 𝑃
0
for receiving the permutation 𝐵(𝑃

0
), then

uses the operator 𝐵 again to the permutation 𝐵(𝑃
0
) for

receiving the permutation 𝐵(𝐵(𝑃
0
)), then uses the operator

𝐴 to the permutation 𝐵(𝐵(𝑃
0
)) for receiving the permuta-

tion 𝐴(𝐵(𝐵(𝑃
0
))), and finally uses the operator 𝐴 again to

the permutation 𝐴(𝐵(𝐵(𝑃
0
))) for receiving the permutation

𝐴(𝐴(𝐵(𝐵(𝑃
0
)))) as 𝑃

1
.

Step 4 in Algorithm 2 is the VNS algorithm’s local search
procedure used to improve the permutation 𝑃

1
; thus, at the

end of Step 4, 𝑃
1
will be a local optimal solution. Later, Step 5

checkswhether the permutation𝑃
1
taken fromStep 4 is better

than or equal to the current best permutation 𝑃
0
or not. If so,

the current best permutation 𝑃
0
will be updated to equal the

permutation 𝑃
1
.

Step 6 is the step to check whether the stopping criterion
is satisfied or not and check whether this VNS algorithm is a
forward VNS algorithm or a reverse VNS algorithm. If the
stopping criterion is not satisfied, then the VNS algorithm
will process its next iteration. If the stopping criterion is
satisfied and this VNS algorithm is a forward VNS algorithm,
then stop and the schedule 𝑆

0
is the final solution. If the

stopping criterion is satisfied and this VNS algorithm is
a reverse VNS algorithm, then process Step 7 in order to
transform the schedule 𝑆

0
into the schedule 𝑆

𝑅0
, which is the

reverse VNS algorithm’s final solution usable for the original
problem.

3.2. Proposed Forward VNS and Reverse VNS Algorithms. As
previously mentioned, Algorithm 2 is the generic form for
all forward VNS (FVNS) algorithms and all reverse VNS
(RVNS) algorithms proposed in this section. Each of𝐴, 𝐵, 𝐶,
and 𝐷 in Algorithm 2 can be specified to be either the swap
operator or the insert operator, so there are a total of 32 VNS
algorithms generated from Algorithm 2 including 16 FVNS
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algorithms and 16 RVNS algorithms. For the identification
purpose, let us name these 32 VNS algorithms in the format
of TABCD. Let 𝑇 represent the specified VNS type which
can be either 𝐹 = a forward VNS algorithm or 𝑅 = a reverse
VNS algorithm. Let 𝐴, 𝐵, 𝐶, and 𝐷 here represent the
specified operators for the generic operators 𝐴, 𝐵, 𝐶, and 𝐷
in Algorithm 2, so each of 𝐴, 𝐵, 𝐶, and 𝐷 can be either 𝑆
= the swap operator or 𝐼 = the insert operator. For example,
FISIS refers to the forward VNS algorithm in which 𝐴 is the
insert operator,𝐵 is the swap operator,𝐶 is the insert operator,
and 𝐷 is the swap operator; RSISS means the reverse VNS
algorithm in which 𝐴 is the swap operator, 𝐵 is the insert
operator, 𝐶 is the swap operator, and𝐷 is the swap operator.

Based on the format of TABCD above given, the 16
FVNS algorithms include FSSSS, FSSSI, FSSIS, FSSII, FSISS,
FSISI, FSIIS, FSIII, FISSS, FISSI, FISIS, FISII, FIISS, FIISI,
FIIIS, and FIIII, and the 16 RVNS algorithms include RSSSS,
RSSSI, RSSIS, RSSII, RSISS, RSISI, RSIIS, RSIII, RISSS, RISSI,
RISIS, RISII, RIISS, RIISI, RIIIS, and RIIII. Note that the
eight FVNS algorithms, that is, FIIIS, FIISI, FISIS, FISSI,
FSIIS, FSISI, FSSIS, and FSSSI, are slightly modified from the
VNS algorithms of [19] in that their maximum iterations are
extended from the 250th iteration to the 1,000th iteration.The
modification justmentioned is due to the result of this paper’s
preliminary study which finds that the maximum iteration
of 250th iteration makes each VNS algorithm stop prema-
turely before receiving its best returns in several hard-to-
solve instances. The discussion about the proper maximum
iteration will be given at the end of this section. In addition,
FSISI is also found in [17] with a slightly different stopping
criterion from the criterion used here; FSISI can thus be
recognized as the original variant of all VNS algorithms given
in this paper.

The 16 FVNS and 16 RVNS algorithms proposed in this
section are compared in their performances on the 43 well-
known benchmark instances, that is, ft06, ft10, and ft20 from
[34] and la01–la40 from [35]. The number of all jobs (𝑛)
and the number of all machines (m) of all instances are
given in parentheses in the form of instance’s name (𝑛,𝑚) as
follows: ft06 (6, 6), ft10 (10, 10), ft20 (20, 5), la01–la05 (10, 5),
la06–la10 (15, 5), la11–la15 (20, 5), la16–la20 (10, 10), la21–la25
(15, 10), la26–la30 (20, 10), la31–la35 (30, 10), and la36–la40
(15, 15). In the experiment here, the proposed FVNS and
RVNS algorithms are all coded in C# and executed on an
Intel(R) Core(TM) i5 CPU processor M580 2.67GHz. These
VNS algorithms will be stopped when either the 1,000th
iteration as the maximum iteration is reached or the optimal
solution given by the published literature [7, 8, 24] is found.
In other words, the stopping criterion in Step 6 of each VNS
algorithm is either the VNS algorithm’s iteration 𝑡 = 1,000
or the makespan of 𝑆

0
= the optimal solution value given

by the published literature. All VNS algorithms will be run
once on each given instance with the same random seed
number and the same initial operation-based permutation.
For each instance, this paper uses the solution value deviation
to evaluate the quality of the final solution given by each
algorithm. For a specific instance, the solution value deviation
is equal to 100% × (the algorithm’s final solution value − the
optimal solution value)/the optimal solution value. Thus, if

the algorithm can reach the optimal solution value given in
the published literature, the solution value deviation is then
0.000%.Note that, in this paper, a solution refers to a schedule
and a solution value refers to a schedule’s makespan.

Table 1 shows the solution value deviation (%) of every
proposed VNS algorithm over a single run for each instance.
The rowBest, the last row in Table 1, provides the best solution
value deviation found by all proposed VNS algorithms on
each instance. The column Avg, the last column in Table 1,
provides the average solution value deviation of all 43
instances of each VNS algorithm. Note that the instance will
be absented from Table 1 if all 32 VNS algorithms can return
the solution value deviations of 0.000% for it. This means
Table 1 reports that all 32 VNS algorithms can reach the
optimal solutions for the 28 instances of the total 43 instances,
that is, ft06, la01–la15, la17–la19, la23, la26, la28, and la30–
la35. Based on the results in Table 1, the list of the 32 VNS
algorithms in ascending order of their average solution value
deviations is FSSII, FISIS, FSSSI, RSSIS, RSISI, RISSI, FIIII,
RIISI, RSSSI, FSIII, RIISS, FISSS, RSSSS, RISIS, RISII, RIIII,
FSIIS, RIIIS, FIIIS, RSSII, RSIII, FIISI, FSSIS, RSIIS, FSSSS,
FSISI, FISSI, RISSS, FIISS, FISII, RSISS, and FSISS.

The comparison results in terms of speed given in
Table 2 indicate that the computational times per iteration
of all proposed VNS algorithms are not significantly differ-
ent. However, the total computational times of each VNS
algorithm may differ from one another because the VNS
algorithm will stop before reaching the maximum iteration if
it can find the optimal solution. (Remember that the stopping
criterion is to stop if either the optimal solution given by
the published literature is found or the maximum iteration
is reached.) Thus, the VNS algorithm performing better in
solution quality tends to perform better in speed as well.
However, if the stopping criterion is changed to be considered
only on the maximum iteration, the speeds of all proposed
VNS algorithms will differ very slightly. Table 2 shows the
computational times and the number of iterations used by
FSSII, FISIS, FSSSI, RSSIS, and RSISI which are the five best-
performing VNS algorithms in Table 1. In Table 2, Number
of iters means the number of all iterations used until the
stopping criterion is met, CPU time (sec.) means the total
computational time used until the stopping criterion is met,
and the CPU time/iter means the computational time per
iteration.

Figure 1 then reveals the proper maximum iterations
for the proposed VNS algorithms. Based on the same data
source used in Table 1, Figure 1 provides the average-solution-
value-deviation-over-iteration plots of FSSII, FISIS, FSSSI,
RSSIS, and RSISI on all 43 instances. Their average-solution-
value-deviation-over-iteration plots are all formed in similar
patterns which are reduced rapidly before the 500th iteration
and then reduced slowly during the 500th iteration to 800th
iteration. After that, the average solution value deviations of
FSSII, FISIS, FSSSI, and RSSIS have not been improved after
the 800th iteration, while RSISI is the only VNS algorithm
which can improve its average solution value deviation until
the 900th iteration. Based on this observation, this paper thus
suggests that the maximum iterations of the proposed VNS
algorithms should be in between the 800th iteration and the
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Table 1: Solution value deviations (%) of 16 FVNS and 16 RVNS algorithms.

Algorithm Instance Avg
ft10 ft20 la16 la20 la21 la22 la24 la25 la27 la29 la36 la37 la38 la39 la40

FSSSS 0.000 0.000 0.000 0.000 0.096 0.000 0.321 0.716 0.891 1.389 0.473 0.716 0.000 0.000 0.491 0.118
FSSSI 0.000 0.000 0.000 0.000 0.096 0.000 0.321 0.000 0.243 1.128 0.000 0.716 0.000 0.000 0.164 0.062
FSSIS 0.000 0.000 0.000 0.000 0.096 0.324 0.321 0.000 0.243 1.476 0.000 1.002 0.920 0.324 0.164 0.113
FSSII 0.000 0.000 0.000 0.000 0.000 0.000 0.321 0.000 0.000 1.042 0.000 0.000 0.920 0.000 0.164 0.057
FSISS 0.860 0.000 0.000 0.000 0.669 0.324 0.321 0.000 0.891 1.736 0.000 0.000 0.920 0.000 0.491 0.144
FSISI 0.860 0.000 0.000 0.000 0.669 0.324 0.321 0.307 0.405 0.955 0.000 0.716 0.418 0.000 0.164 0.119
FSIIS 0.000 0.000 0.106 0.000 0.669 0.000 0.321 0.512 0.486 0.868 0.000 0.000 0.920 0.000 0.164 0.094
FSIII 0.000 0.000 0.000 0.000 0.765 0.000 0.321 0.512 0.000 0.868 0.000 0.000 0.920 0.000 0.164 0.083
FISSS 0.000 0.000 0.000 0.554 0.096 0.324 0.321 0.000 0.000 1.128 0.000 0.215 0.585 0.324 0.164 0.086
FISSI 0.860 0.000 0.000 0.000 0.000 0.324 0.321 0.512 0.405 2.170 0.000 0.000 0.585 0.000 0.164 0.124
FISIS 0.000 0.000 0.000 0.000 0.478 0.324 0.321 0.000 0.162 0.694 0.000 0.000 0.418 0.000 0.164 0.060
FISII 0.000 0.000 0.000 0.554 0.478 0.324 0.321 0.000 0.405 1.736 0.000 0.716 0.920 0.000 0.164 0.131
FIISS 0.753 0.000 0.000 0.000 0.000 0.000 0.321 0.205 1.134 1.910 0.000 0.000 0.000 0.973 0.164 0.127
FIISI 0.000 1.116 0.000 0.554 0.096 0.000 0.321 0.307 0.000 0.955 0.000 0.716 0.418 0.000 0.327 0.112
FIIIS 0.860 0.000 0.000 0.000 0.096 0.324 0.321 0.307 0.405 1.042 0.000 0.716 0.000 0.000 0.164 0.098
FIIII 0.000 0.000 0.000 0.000 0.574 0.000 0.321 0.307 0.486 1.042 0.000 0.000 0.418 0.000 0.164 0.077
RSSSS 0.000 0.000 0.000 0.000 0.669 0.000 0.535 0.000 0.405 2.083 0.000 0.000 0.000 0.000 0.164 0.090
RSSSI 0.000 0.000 0.000 0.000 0.382 0.324 0.321 0.307 0.000 0.955 0.079 0.000 0.920 0.000 0.164 0.080
RSSIS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.257 0.000 0.000 0.000 0.000 0.573 0.066
RSSII 0.000 0.000 0.000 0.000 0.669 0.000 0.000 0.512 0.162 1.823 0.000 0.000 0.920 0.000 0.164 0.099
RSISS 1.505 0.000 0.000 0.000 0.191 0.000 0.321 0.614 0.000 2.604 0.000 0.000 0.418 0.000 0.164 0.135
RSISI 0.000 0.000 0.000 0.000 0.096 0.000 0.321 0.614 0.000 1.042 0.000 0.000 0.920 0.000 0.164 0.073
RSIIS 0.860 0.000 0.000 0.000 0.669 0.000 0.321 0.307 0.000 1.042 0.000 0.716 0.920 0.000 0.164 0.116
RSIII 0.860 0.000 0.000 0.000 1.243 0.000 0.321 0.000 0.000 1.042 0.000 0.000 0.920 0.000 0.164 0.106
RISSS 0.000 0.000 0.000 0.000 0.096 0.000 0.428 0.512 1.134 1.910 0.000 0.716 0.418 0.000 0.164 0.125
RISSI 0.000 0.000 0.000 0.000 0.574 0.000 0.321 0.512 0.000 1.215 0.000 0.000 0.418 0.000 0.164 0.074
RISIS 0.000 0.000 0.000 0.000 0.574 0.324 0.321 0.512 0.000 1.042 0.000 0.000 0.920 0.000 0.164 0.090
RISII 0.000 0.000 0.000 0.000 0.574 0.000 0.642 0.000 0.162 0.955 0.473 0.000 0.920 0.000 0.164 0.090
RIISS 0.000 0.000 0.000 0.000 0.478 0.324 0.321 0.512 0.405 1.042 0.000 0.000 0.418 0.000 0.164 0.085
RIISI 0.000 0.000 0.106 0.554 0.382 0.000 0.321 0.512 0.000 1.302 0.000 0.000 0.000 0.000 0.164 0.078
RIIIS 0.860 0.000 0.000 0.000 0.000 0.324 0.642 0.000 0.567 0.694 0.000 0.000 0.920 0.000 0.164 0.097
RIIII 0.860 0.000 0.000 0.000 0.478 0.324 0.321 0.000 0.567 1.302 0.000 0.000 0.000 0.000 0.164 0.093
Best 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.694 0.000 0.000 0.000 0.000 0.164 0.020
Remark: (i) the solution value deviations of the remaining 28 instances from the total 43 instances, which are not shown in Table 1, are 0.000% for all 32 VNS
algorithms.
(ii) Avg refers to the average solution value deviation over all 43 instances for each VNS algorithm.

1,000th iteration. In case of requiring the short computational
time, the maximum iteration is suggested to be the 500th
iteration.

4. Proposed Multi-VNS Algorithm

In a brief explanation, the genericmulti-VNS algorithm starts
by randomly generating an operation-based permutation and
then assigning this permutation into the multiple selected
VNS algorithms as their initial current best operation-based
permutations. Then, the multi-VNS algorithm runs these

VNS algorithms and uses the best solution among the final
solutions of these VNS algorithms as its final solution. The
development of the multi-VNS algorithm proposed in this
paper is motivated by four observations as follows:

(1) On the same JSP instance, two VNS algorithms with
different settings of operators 𝐴, 𝐵, 𝐶, and 𝐷 may
not perform equally well. This property may also
be true even when these two VNS algorithms both
use the same initial operation-based permutation as
well as the same random seed number. For example,
according to Table 1, FSSII can find the optimal



Modelling and Simulation in Engineering 7
Ta

bl
e
2:
N
um

be
ro

fi
te
ra
tio

ns
,C

PU
tim

e,
an
d
CP

U
tim

ep
er

ite
ra
tio

n
us
ed

by
ea
ch

of
FS

SI
I,
FI
SI
S,
FS

SS
I,
RS

SI
S,
an
d
RS

IS
I.

In
sta

nc
e

FS
SI
I

FI
SI
S

FS
SS
I

RS
SI
S

RS
IS
I

N
um

be
r

of
ite
rs

CP
U
tim

e
(s
ec
.)

CP
U

tim
e/
ite
r

N
um

be
r

of
ite
rs

CP
U
tim

e
(s
ec
.)

CP
U

tim
e/
ite
r

N
um

be
r

of
ite
rs

CP
U
tim

e
(s
ec
.)

CP
U

tim
e/
ite
r

N
um

be
r

of
ite
rs

CP
U
tim

e
(s
ec
.)

CP
U

tim
e/
ite
r

N
um

be
r

of
ite
rs

CP
U
tim

e
(s
ec
.)

CP
U

tim
e/
ite
r

ft0
6

2
0.
1

0.
1

2
0.
1

0.
1

1
0.
04

0.
04

1
0.
03

0.
03

1
0.
04

0.
04

ft1
0

16
0

13
0

0.
8

41
2

31
6

0.
8

14
7

12
1

0.
8

46
6

35
5

0.
8

10
4

82
0.
8

ft2
0

13
1

17
8

1.4
67
4

85
6

1.3
30
0

40
9

1.4
10
2

12
9

1.3
31
8

41
2

1.3
la
01

5
0.
6

0.
1

1
0.
1

0.
1

1
0.
1

0.
1

1
0.
1

0.
1

3
0.
4

0.
1

la
02

18
2

0.
1

11
1

0.
1

1
0.
1

0.
1

7
0.
7

0.
1

1
0.
1

0.
1

la
03

68
8

0.
1

20
8

22
0.
1

33
4

0.
1

3
0.
3

0.
1

18
6

20
0.
1

la
04

3
0.
3

0.
1

4
0.
4

0.
1

12
1

0.
1

3
0.
3

0.
1

9
1

0.
1

la
05

1
0.
2

0.
2

1
0.
2

0.
2

1
0.
2

0.
2

1
0.
1

0.
1

1
0.
2

0.
2

la
06

1
0.
7

0.
7

1
0.
6

0.
6

1
0.
6

0.
6

1
0.
6

0.
6

1
0.
6

0.
6

la
07

1
0.
6

0.
6

1
0.
5

0.
5

1
0.
5

0.
5

1
0.
5

0.
5

1
0.
5

0.
5

la
08

1
0.
6

0.
6

1
0.
5

0.
5

1
0.
5

0.
5

1
0.
5

0.
5

1
0.
6

0.
6

la
09

1
0.
7

0.
7

1
0.
6

0.
6

1
0.
6

0.
6

1
0.
6

0.
6

1
0.
6

0.
6

la
10

1
1

1.0
1

0.
7

0.
7

1
0.
8

0.
8

1
0.
7

0.
7

1
0.
8

0.
8

la
11

1
2

2.
0

1
2

2.
0

1
2

2.
0

1
2

2.
0

1
2

2.
0

la
12

1
2

2.
0

1
2

2.
0

1
2

2.
0

1
2

2.
0

1
2

2.
0

la
13

1
2

2.
0

1
2

2.
0

1
2

2.
0

1
2

2.
0

1
2

2.
0

la
14

1
3

3.
0

1
3

3.
0

1
3

3.
0

1
3

3.
0

1
3

3.
0

la
15

1
2

2.
0

1
1

1.0
1

2
2.
0

1
1

1.0
1

1
1.0

la
16

63
62

1.0
28

25
0.
9

71
65

0.
9

16
2

14
9

0.
9

60
56

0.
9

la
17

11
10

0.
9

62
52

0.
8

7
6

0.
9

55
46

0.
8

3
3

1.0
la
18

22
20

0.
9

9
8

0.
9

39
35

0.
9

5
4

0.
8

3
3

1.0
la
19

19
17

0.
9

12
2

10
0

0.
8

7
6

0.
9

36
29

0.
8

26
21

0.
8

la
20

49
0

45
8

0.
9

23
20

0.
9

14
13

0.
9

46
1

39
0

0.
8

86
0

75
3

0.
9

la
21

51
7

19
46

3.
8

10
00

35
41

3.
5

10
00

37
20

3.
7

51
8

18
22

3.
5

10
00

36
11

3.
6

la
22

12
46

3.
8

10
00

36
16

3.
6

19
7

73
7

3.
7

11
3

40
1

3.
5

31
9

117
0

3.
7

la
23

2
8

4.
0

1
4

4.
0

1
4

4.
0

3
11

3.
7

1
4

4.
0

la
24

10
00

37
51

3.
8

10
00

35
50

3.
6

10
00

37
13

3.
7

72
1

25
40

3.
5

10
00

36
12

3.
6

la
25

39
2

51
20

13
.1

61
2

22
28

3.
6

41
9

15
70

3.
7

44
0

15
83

3.
6

10
00

37
15

3.
7

la
26

1
11

11
.0

2
21

10
.5

3
32

10
.7

7
73

10
.4

1
10

10
.0

la
27

49
9

54
48

10
.9

10
00

10
27
3

10
.3

10
00

10
87
9

10
.9

62
3

63
62

10
.2

60
1

62
95

10
.5

la
28

26
29
3

11.
3

53
55
2

10
.4

66
72
0

10
.9

95
99
5

10
.5

53
56
9

10
.7

la
29

10
00

11
11
3

11
.1

10
00

10
30
3

10
.3

10
00

10
98
6

11
.0

10
00

10
40

5
10
.4

10
00

10
61
0

10
.6

la
30

1
12

12
.0

3
32

10
.7

3
34

11
.3

1
11

11
.0

1
11

11
.0

la
31

1
63

63
.0

1
55

55
.0

1
58

58
.0

1
55

55
.0

1
57

57
.0

la
32

1
58

58
.0

1
52

52
.0

1
54

54
.0

1
51

51
.0

1
53

53
.0

la
33

1
60

60
.0

1
53

53
.0

1
56

56
.0

1
53

53
.0

1
56

56
.0

la
34

1
56

56
.0

1
51

51
.0

1
53

53
.0

1
50

50
.0

1
53

53
.0

la
35

1
64

64
.0

1
55

55
.0

1
59

59
.0

1
55

55
.0

1
57

57
.0

la
36

73
1

97
27

13
.3

46
0

56
47

12
.3

63
5

81
94

12
.9

74
7

90
83

12
.2

22
3

27
77

12
.5

la
37

39
0

49
83

12
.8

44
5

53
40

12
.0

10
00

12
63
7

12
.6

64
76
5

12
.0

44
6

54
09

12
.1

la
38

10
00

12
55
6

12
.6

10
00

118
02

11
.8

70
5

85
94

12
.2

41
6

49
07

11
.8

10
00

12
02
6

12
.0



8 Modelling and Simulation in Engineering

Ta
bl
e
2:
C
on

tin
ue
d.

In
sta

nc
e

FS
SI
I

FI
SI
S

FS
SS
I

RS
SI
S

RS
IS
I

N
um

be
r

of
ite
rs

CP
U
tim

e
(s
ec
.)

CP
U

tim
e/
ite
r

N
um

be
r

of
ite
rs

CP
U
tim

e
(s
ec
.)

CP
U

tim
e/
ite
r

N
um

be
r

of
ite
rs

CP
U
tim

e
(s
ec
.)

CP
U

tim
e/
ite
r

N
um

be
r

of
ite
rs

CP
U
tim

e
(s
ec
.)

CP
U

tim
e/
ite
r

N
um

be
r

of
ite
rs

CP
U
tim

e
(s
ec
.)

CP
U

tim
e/
ite
r

la
39

32
40

9
12
.8

44
4

53
06

12
.0

22
6

27
98

12
.4

62
5

74
46

11
.9

80
2

97
78

12
.2

la
40

10
00

12
66

4
12
.7

10
00

119
64

12
.0

10
00

12
47
8

12
.5

10
00

118
25

11
.8

10
00

12
16
0

12
.2



Modelling and Simulation in Engineering 9

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
10

0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

(%
)

Iteration
FSSII
FISIS
FSSSI

RSSIS
RSISI

Figure 1: Average-solution-value-deviation-over-iteration plots of
FSSII, FISIS, FSSSI, RSSIS, and RSISI.

solution for la37, while FSSIS cannot; FSSSS can find
the optimal solution for la39, while FISSS cannot.

(2) AVNS algorithmwhich performswell on a particular
instancemay not perform aswell on another instance.
For example, FSSII can find the optimal solution for
la37, but it cannot find the optimal solution for la29;
FSISI can find the optimal solution for ft20, but it
cannot find the optimal solution for ft10.

(3) A JSP instance which is hard to solve in its original
form may be easier to be solved in its reversed
problem, and vice versa. For example, according to
Table 1, FSSII cannot find the optimal solution for
la24, while RSSII can; FIIII can find the optimal
solution for ft10, but RIIII cannot.

(4) It is impossible or very difficult to identify which
scheduling direction (forward or reverse) is more
efficient for a specific instance without experiments.

The aim of developing the multi-VNS algorithm is to
handle with the four above-mentioned observations, and
thus the multi-VNS algorithm should utilize each single
operation-based permutation most efficiently. The generic
multi-VNS algorithm, as shown in Figure 2, starts its process
by generating 𝑃

0
as an identical initial operation-based

permutation for the𝑁 VNS algorithms, that is, the 1st VNS,
the 2nd VNS, . . ., the Nth VNS.These𝑁 VNS algorithms are
recommended to be different in their combinations of the 𝐴,
𝐵,𝐶, and𝐷 operators as well as their VNS types (i.e., forward
VNS or reverse VNS). The multi-VNS algorithm then runs
each of these specified𝑁VNS algorithms once on the being-
considered JSP instance. After that, the best solution among
the final solutions of all 𝑁 given VNS algorithms is used as
the final result of the multi-VNS algorithm and is abbreviated
as 𝑆∗.

Start

Run 1st 
VNS

Run 2nd 
VNS VNS

End

S
∗

= best solution found by all N VNS algorithms

· · ·

Generate P0 as the initial current best permutation randomly

Run Nth

Figure 2: Flowchart of the generic multi-VNS algorithm.

Although the proposed multi-VNS algorithm shown in
Figure 2 can be run either in sequence or in parallel pro-
cessing, this paper focuses only on the multi-VNS algorithm
operated in sequence via a single stand-alone processor.
Therefore, the multi-VNS algorithm in this paper runs the
𝑁 VNS algorithms in order from the 1st VNS to the Nth
VNS, sequentially. The procedure of the generic multi-VNS
algorithm used in this paper is given in Algorithm 3.

Algorithm 3. It is a procedure of the generic multi-VNS
algorithm.

Step 1. Assign the input parameter values as follows.

Step 1.1. Specify the specific 1st VNS, 2nd VNS, . . ., Nth VNS
algorithms for the multi-VNS algorithm differently in their
combinations of the operators 𝐴, 𝐵, 𝐶, and 𝐷 and the VNS
types. For each VNS algorithm, each of 𝐴, 𝐵, 𝐶, and 𝐷 can
be either the swap operator or the insert operator, while the
VNS type can be either a forward VNS algorithm or a reverse
VNS algorithm.

Step 1.2. Assign the stopping criterion for each of the 1st VNS,
2nd VNS, . . ., Nth VNS algorithms.

Step 1.3. Assign the stopping criterion for the multi-VNS
algorithm.

Step 2. Randomly generate 𝑃
0

as an identical initial
operation-based permutation for all 𝑁 VNS algorithms. Let
the multi-VNS algorithm’s iteration 𝑑 = 1.

Step 3. Run the 𝑑th VNS algorithm using the permutation 𝑃
0

generated in Step 2 as its initial current best operation-based
permutation.
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Step 4. After the dth VNS algorithm is stopped, let Sd0 be equal
to 𝑆
0
of the dth VNS algorithm if the dth VNS algorithm is

a forward VNS algorithm; however, let Sd0 be equal to 𝑆𝑅0 of
the dth VNS algorithm if the dth VNS algorithm is a reverse
VNS algorithm. (Remember that 𝑆

0
is the final solution for

the forward VNS algorithm, while 𝑆
𝑅0

is the final solution for
the reverse VNS algorithm.)

Step 5. Update the best found solution of the multi-VNS
algorithm or 𝑆∗ using Steps 5.1 and 5.2.

Step 5.1. If d = 1, let 𝑆∗ equal Sd0 and let the makespan of 𝑆∗

equal the makespan of 𝑆𝑑
0
.

Step 5.2. If 𝑑 ≥ 2 and the makespan of Sd0 is less than the
makespan of 𝑆∗, update 𝑆∗ to equal Sd0 and also update the
makespan of 𝑆∗ to equal the makespan of Sd0.

Step 6. If the stopping criterion of the multi-VNS algorithm
is met, then stop and let the final result of the multi-VNS
algorithm equal 𝑆∗; otherwise, increase the value of 𝑑 by 1
and repeat from Step 3.

Algorithm 3 is the generic multi-VNS algorithm where
the user must specify the 1st VNS algorithm to the Nth VNS
algorithm in their 𝐴, 𝐵, 𝐶, and 𝐷 operators, VNS types,
and stopping conditions. These 𝑁 VNS algorithms of the
multi-VNS algorithm in Algorithm 3 must be selected very
carefully because more VNS algorithms used in the multi-
VNS algorithm may consume more resources, especially the
computational time, without any guarantees to find a better
solution. Moreover, the uses of the same set of the𝑁 specific
VNS algorithms in different orders may consume different
computational times. This is because the stopping criterion
of the multi-VNS algorithm is specified to stop when either
the Nth iteration is reached (𝑑 = 𝑁) or the optimal solution
given by the published literature is found; thus, if the optimal
solution is found by the 𝑑th VNS algorithm, the multi-VNS
algorithm will stop at the dth VNS algorithm and will not
continue running the 𝑁 − 𝑑 remaining VNS algorithms.
Hence, to make the multi-VNS algorithm perform most
efficiently in computational time, the order of the 𝑁 VNS
algorithmsmust be selected carefully aswell. In this paper, the
method of selecting the proper value of𝑁 and also selecting
the specific 1stVNS toNthVNS algorithms for themulti-VNS
algorithm is given in Algorithm 4. Remember that, for each
instance, the solution value deviation of each VNS algorithm
is equal to 100% × (the VNS algorithm’s final solution value
− the optimal solution value)/the optimal solution value.

Algorithm 4. It is a method of selecting the value of 𝑁 and
selecting the specific 1st to𝑁th VNS algorithms for themulti-
VNS algorithm.

Step 1. Let 𝑑 = 1. Run all on-hand VNS algorithms once on
all given instances and then receive the final solutions of all
these on-hand VNS algorithms.Then, compute the following
based on the final solutions received.

Table 3: The 1st VNS to dth VNS algorithms and 𝐴𝐵𝑆𝑉𝐷
𝑑
value in

each iteration of Algorithm 4 based on results from Table 1.

𝑑 The 1st VNS to 𝑑th VNS 𝐴𝐵𝑆𝑉𝐷
𝑑

All All 32 VNS algorithms 0.020%
1 FSSII 0.057%
2 FSSII, FISIS 0.037%
3 FSSII, FISIS, FSSSI 0.027%
4 FSSII, FISIS, FSSSI, RSSIS 0.020%

Step 1.1. For each on-hand VNS algorithm, compute the
solution value deviation of every given instance and then
compute the average of the solution value deviations of all
given instances. Then, list all on-hand VNS algorithms in
ascending order of their average solution value deviations
(from left to right).

Step 1.2. For every given instance, find 𝐵𝑆𝑉𝐷All, that is,
the best (lowest) solution value deviation found by all on-
hand VNS algorithms. Then, compute 𝐴𝐵𝑆𝑉𝐷All, that is, the
average of the 𝐵𝑆𝑉𝐷All values of all given instances.

Step 2. Assign the current leftmost VNS algorithm among all
as-yet-unassigned on-hand VNS algorithms on the list given
in Step 1.1 as the dth VNS algorithm.

Step 3. For every given instance, find 𝐵𝑆𝑉𝐷
𝑑
, that is, the best

(lowest) solution value deviation found by all the already-
specified 1st VNS to dth VNS algorithms. Then, compute
𝐴𝐵𝑆𝑉𝐷

𝑑
, that is, the average of the 𝐵𝑆𝑉𝐷

𝑑
values of all given

instances.

Step 4. If 𝐴𝐵𝑆𝑉𝐷
𝑑
is equal to 𝐴𝐵𝑆𝑉𝐷All, then stop and let𝑁

equal d; this means the specific 1st toNth VNS algorithms are
completely selected. On the other hand, if𝐴𝐵𝑆𝑉𝐷

𝑑
is greater

than 𝐴𝐵𝑆𝑉𝐷All, then increase 𝑑 by 1 and repeat from Step 2.

As shown in Section 3.2, this paper proposes 16 FVNS
and 16 RVNS algorithms, so the number of all on-hand VNS
algorithms is thus 32. Based on the results fromTable 1, the list
of all 32 VNS algorithms in ascending order of their average
solution value deviations on all 43 instances is FSSII, FISIS,
FSSSI, RSSIS, RSISI, RISSI, FIIII, RIISI, RSSSI, FSIII, RIISS,
FISSS, RSSSS, RISIS, RISII, RIIII, FSIIS, RIIIS, FIIIS, RSSII,
RSIII, FIISI, FSSIS, RSIIS, FSSSS, FSISI, FISSI, RISSS, FIISS,
FISII, RSISS, and FSISS. According to the results in Table 1,
Algorithm 4 first computes 𝐴𝐵𝑆𝑉𝐷All = 0.020%. After that,
Algorithm 4 assigns FSSII as the 1st VNS algorithm with
ABSVD

1
= 0.057%, FISIS as the 2nd VNS algorithm with

ABSVD
2
= 0.037%, FSSSI as the 3rd VNS algorithm with

ABSVD
3
= 0.027%, and RSSIS as the 4th VNS algorithm

with ABSVD
4
= 0.020%, respectively. Since ABSVD

4
equals

𝐴𝐵𝑆𝑉𝐷All, Algorithm 4 stops here and thus 𝑁 = 4. This
means, based on Table 1 results, Algorithm 4 suggests that
the multi-VNS algorithm should use FSSII, FISIS, FSSSI, and
RSSIS as the 1st to 4th VNS algorithms, respectively. Table 3
summarizes the specified 1st VNS algorithm to the dth VNS
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algorithm and the 𝐴𝐵𝑆𝑉𝐷
𝑑
value given in each iteration of

Algorithm 4 based on the results from Table 1.

5. Performance Evaluation for Multi-VNS

This section will provide a specific multi-VNS algorithm,
which is Algorithm 3 using the 𝑁 specific VNS algorithms
and the other preassigned input parameter values. Later, an
experiment will be conducted in order to evaluate the per-
formance of the multi-VNS algorithm on the JSP instances.
The specific VNS algorithms and input parameter values for
Algorithm 3 alongwith the experimental conditions are given
below.

(1) Themulti-VNS algorithm uses the four specified VNS
algorithms (𝑁 = 4), that is, FSSII, FISIS, FSSSI,
and RSSIS as the 1st VNS, 2nd VNS, 3rd VNS, and
4th VNS algorithms, respectively. (Note that these
VNS algorithms are selected by Algorithm 4 based on
Table 1 results.)

(2) The stopping criterion of each specified VNS algo-
rithm (i.e., FSSII, FISIS, FSSSI, and RSSIS) used in
the multi-VNS algorithm is to stop when either the
optimal solution value (i.e., the optimal makespan)
given by the published literature is found or the
1,000th iteration is reached (t = 1,000).

(3) The stopping criterion of the multi-VNS algorithm is
to stopwhen either the optimal solution value (i.e., the
optimal makespan) given by the published literature
is found or the multi-VNS algorithm’sNth iteration is
reached.

(4) On each single run of the multi-VNS algorithm, the
multi-VNS algorithm runs the specific 1st VNS, 2nd
VNS, 3rd VNS, and 4th VNS algorithms with the
same random seed number and also the same initial
operation-based permutation.

(5) Themulti-VNS algorithm is coded inC# and executed
on an Intel(R) Core(TM) i5 CPU processor M580
2.67GHz.

(6) The multi-VNS algorithm in this paper will be
repeated for five runs with different random seed
numbers and also different initial operation-based
permutations. The multi-VNS algorithm in the 1st
run uses the same random seed number and the
same initial operation-based permutation as the VNS
algorithms in the experiment in Table 1.

(7) The performance of the multi-VNS algorithm will be
tested on the 43 benchmark JSP instances including
ft06, ft10, and ft20 from [34] and la01 to la40 from
[35].

Table 4 shows the final solution values from the five runs
of the multi-VNS algorithm with the above-given settings.
The column Best in Table 4 provides the best among the
final solution values of the five runs for every instance. The
column Avg provides the average of the final solution values
of the five runs.The column Avg CPU time (sec.) provides the
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Figure 3: Average-solution-value-deviation-over-iteration plots for
five runs of the multi-VNS algorithm.

average computational time in second over the five runs of
each instance.

Figure 3 shows the average solution value deviations of 43
instances over themulti-VNS algorithm’s iterations (𝑑 values)
of each run. The average solution value deviation in Figure 3
is, on average, reduced in high rate from the 1st iteration
to the 3rd iteration and then reduced in lower rate from
the 3rd iteration to the 4th iteration. Figure 3 also shows
that the multi-VNS algorithm improves the average solution
value deviation of its 1st VNS (i.e., FSSII here) for 0.05% on
average. The rate of improvement of 0.05% may seem to be
low; however, if considering only the instances where FSSII
cannot find the optimal solutions in Table 1 experiment (i.e.,
la24, la29, la38, and la40), the rate of improvement will be
0.21% on average.

Later, the performance of the multi-VNS algorithm
is then compared to the performances of the five high-
performing metaheuristic algorithms in published literature,
that is, the GA with the extended Akers graphical method
[8], the hybrid GA [9], the two-level PSO [14], the VNS
algorithm [17], the memetic algorithm [23], and also FSSII,
as the best-performing VNS algorithm in Table 1. In this
section, the performances of these algorithms are compared
only in their best found solution values. The computational
times of these algorithms will not be compared here because
of the differences in their stopping criteria, programming
languages, and CPU processor specifications. The best found
solution values of the algorithms in [8, 9, 14, 17] are taken
from their own articles, the best found solution values of
the multi-VNS algorithm are taken from the column Best in
Table 4, and the best found solution values of FSSII are taken
from the results over 5 runs in an additional experiment here.
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Table 4: Final solution value by each run of the multi-VNS algorithm.

Instance 1st run 2nd run 3rd run 4th run 5th run Best Avg Avg CPU time (sec.)
ft06 55 55 55 55 55 55 55 0.1
ft10 930 930 930 930 930 930 930 546
ft20 1165 1165 1165 1165 1165 1165 1165 382
la01 666 666 666 666 666 666 666 0.3
la02 655 655 655 655 655 655 655 2
la03 597 597 597 597 597 597 597 37
la04 590 590 590 590 590 590 590 0.5
la05 593 593 593 593 593 593 593 0.2
la06 926 926 926 926 926 926 926 1
la07 890 890 890 890 890 890 890 1
la08 863 863 863 863 863 863 863 1
la09 951 951 951 951 951 951 951 1
la10 958 958 958 958 958 958 958 1
la11 1222 1222 1222 1222 1222 1222 1222 2
la12 1039 1039 1039 1039 1039 1039 1039 2
la13 1150 1150 1150 1150 1150 1150 1150 2
la14 1292 1292 1292 1292 1292 1292 1292 3
la15 1207 1207 1207 1207 1207 1207 1207 2
la16 945 945 945 945 945 945 945 260
la17 784 784 784 784 784 784 784 42
la18 848 848 848 848 848 848 848 16
la19 842 842 842 842 842 842 842 30
la20 902 902 902 902 902 902 902 522
la21 1046 1046 1046 1047 1047 1046 1046.4 8526
la22 927 927 927 927 927 927 927 995
la23 1032 1032 1032 1032 1032 1032 1032 11
la24 935 938 938 938 938 935 937.4 14258
la25 977 977 977 977 977 977 977 4187
la26 1218 1218 1218 1218 1218 1218 1218 26
la27 1235 1235 1237 1236 1238 1235 1236.2 14368
la28 1216 1216 1216 1216 1216 1216 1216 497
la29 1160 1172 1163 1163 1163 1160 1164.2 42644
la30 1355 1355 1355 1355 1355 1355 1355 12
la31 1784 1784 1784 1784 1784 1784 1784 61
la32 1850 1850 1850 1850 1850 1850 1850 56
la33 1719 1719 1719 1719 1719 1719 1719 59
la34 1721 1721 1721 1721 1721 1721 1721 55
la35 1888 1888 1888 1888 1888 1888 1888 62
la36 1268 1268 1268 1268 1268 1268 1268 4843
la37 1397 1397 1397 1397 1397 1397 1397 3192
la38 1196 1201 1201 1196 1196 1196 1198 40265
la39 1233 1233 1233 1233 1233 1233 1233 5941
la40 1224 1224 1224 1224 1224 1224 1224 48849

The stopping criterion of FSSII is to stop when either the
optimal solution given in the published literature is found or
the 1,000th iteration ismet. VNS in [17] is the FSISI algorithm
which uses the stopping criterion that is to stop when either
the optimal solution given in the published literature is found,

the 1,000th iteration is reached, or no solution improvements
within 250 consecutive iterations happen. The comparison
results are then given in Table 5. For each instance, Table 5
provides the best found solution value of each algorithm
compared to the optimal solution value given in [7, 8, 24].



Modelling and Simulation in Engineering 13

Table 5: Comparison of best found solution values of algorithms.

Instance Optimal solution value Multi-VNS FSSII GA [8] GA [9] PSO [14] VNS [17] MA [23]
ft06 55 55 55 55 55 55 n/a 55
ft10 930 930 930 930 930 930 n/a 930
ft20 1165 1165 1165 1165 1165 1165 n/a 1165
la01 666 666 666 666 666 666 666 666
la02 655 655 655 655 655 655 655 655
la03 597 597 597 597 597 597 597 597
la04 590 590 590 590 590 590 590 590
la05 593 593 593 593 593 593 593 593
la06 926 926 926 926 926 926 926 926
la07 890 890 890 890 890 890 890 890
la08 863 863 863 863 863 863 863 863
la09 951 951 951 951 951 951 951 951
la10 958 958 958 958 958 958 958 958
la11 1222 1222 1222 1222 1222 1222 1222 1222
la12 1039 1039 1039 1039 1039 1039 1039 1039
la13 1150 1150 1150 1150 1150 1150 1150 1150
la14 1292 1292 1292 1292 1292 1292 1292 1292
la15 1207 1207 1207 1207 1207 1207 1207 1207
la16 945 945 945 945 945 945 945 945
la17 784 784 784 784 784 784 784 784
la18 848 848 848 848 848 848 848 848
la19 842 842 842 842 842 842 842 842
la20 902 902 902 902 907 907 902 902
la21 1046 1046 1046 1046 1046 1046 1047 1055
la22 927 927 927 927 927 935 927 927
la23 1032 1032 1032 1032 1032 1032 1032 1032
la24 935 935 938 935 953 944 937 940
la25 977 977 977 977 986 984 977 984
la26 1218 1218 1218 1218 1218 1218 1218 1218
la27 1235 1235 1235 1235 1256 1258 1235 1261
la28 1216 1216 1216 1216 1232 1218 1216 1216
la29 1152 1160 1164 1153 1196 1184 1163 1190
la30 1355 1355 1355 1355 1355 1355 1355 1355
la31 1784 1784 1784 1784 1784 1784 1784 1784
la32 1850 1850 1850 1850 1850 1850 1850 1850
la33 1719 1719 1719 1719 1719 1719 1719 1719
la34 1721 1721 1721 1721 1721 1721 1721 1721
la35 1888 1888 1888 1888 1888 1888 1888 1888
la36 1268 1268 1268 1268 1279 1278 1268 1281
la37 1397 1397 1397 1397 1408 1410 1397 1431
la38 1196 1196 1201 1196 1219 1221 1201 1216
la39 1233 1233 1233 1233 1246 1251 1233 1241
la40 1222 1224 1224 1222 1241 1229 1224 1233
Avg deviation 0.000% 0.020% 0.045% 0.002% 0.382% 0.320% 0.046% 0.330%



14 Modelling and Simulation in Engineering

For each algorithm, the row Avg deviation in Table 5 provides
the average of the solution value deviations of all best found
solutions.

According to the results in Table 5, GA [8] performs
best with the average deviation of 0.002%; it can find the
optimal solutions for 42 instances over all 43 instances. The
multi-VNS performs as the second-best with the average
deviation of 0.020%, and it can find the optimal solutions
for 41 instances. The algorithms FSSII and VNS [17] perform
equally well as the third and the fourth and are followed by
PSO [14], GA [9], and MA [23].

6. Conclusions

This paper proposed the 16 forward VNS algorithms and the
16 reverse VNS algorithms for JSP. It has been found that,
on many benchmark instances, the VNS algorithms perform
unequally even when using the same initial operation-based
permutation. Thus, for utilizing each initial operation-based
permutation most efficiently, this paper developed the multi-
VNS algorithm which assigns the same initial operation-
based permutation into the selected specific VNS algorithms
(i.e., FSSII, FISIS, FSSSI, and RSSIS in this paper), runs these
VNS algorithms, and uses the best solution found by all these
VNS algorithms as its final result. This paper then compared
the multi-VNS algorithm’s performance with the perfor-
mances of the six other high-performing algorithms. The
comparison results indicate that the multi-VNS algorithm
is the second-best algorithm in terms of solution quality.
Over all the 43 benchmark instances used, the multi-VNS
algorithm can find the optimal solutions for the 41 instances
and the very-near optimal solutions for the two instances.The
further work of this research is enhancing the performances
of the VNS algorithms in terms of both solution quality and
computational time by applying a combination of multiple
techniques.
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[27] J. A. Moreno-Pérez, P. Hansen, and N. Mladenović, “Parallel
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