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This paper presents a comprehensive multiparameter diagnosis method based on multiple partial discharge (PD) signals which
include high-frequency current (HFC), ultrasound, and ultrahigh frequency (UHF). The HFC, ultrasound, and UHF PD are
calculated under different types of faults. Therefor the characteristic values, as nine basic characteristic parameters, eight phase
characteristic parameters, and the like are calculated. Diagnose signals are found with the method based on information fusion
and semisupervised learning for HFC PD, adaptive mutation parameters of particle entropy for ultrasonic signals, and IIA-ART2A
neural network for UHF signals. In addition, integrate the diagnostic results, which are the probability of fault of various defects
and matrix, of different PD diagnosis signals, and analysis with Sugeno fuzzy integral to get the final diagnosis.

1. Introduction

Only part of the power equipment insulation generates a
discharge. The effect that a fixed discharge channel is not
formed in the discharge area is called PD. The PD can reflect
the presence of insulation faults in the power equipment.The
development of PDwill speed up the insulation deterioration
of the internal power equipment, leading to internal electrical
equipment insulation fault occurrence, resulting in equip-
ment fault and reducing the reliability of power supply. So it is
vital tomonitor the existence of PD in electrical equipment, as
well as the type of discharge and early detection of equipment
insulation faults, to deal with it in time, and to avoid
the failure of electrical equipment and reduce the serious
economic losses caused by power equipment insulation fault.

Kim et al. [1] examined an intelligent spacer built into
the internal type UHF PD sensors. Three-dimensional elec-
tromagnetic simulations were performed to analyze electric-
field distribution of the single-phase GIS and three-phase
GIS. After considering the spacer’s specifications, sen-
sor structures were designed and analyzed using the 3D EM
simulator.

Kaneko et al. [2] used a method for diagnosing the insu-
lation of a gas-insulated switch gear which is to detect PDs
using signals in the UHF band.

Schwarz et al. [3] presented that the aimwas the detection
of beginning destruction in the electrical insulation as a result
of electrical stress. A multiplicity of different PD sources
and their appearances show different physical and electrical
characteristics [4].

Sahoo et al. [5] presented PD detection, measurement,
and classificationwhich constitute an important tool for qual-
ity assessment of insulation systems utilized in HV power
apparatus and cables. The patterns obtained with PD detec-
tors contain characteristic features of the source/class of the
respective PD process involved. Gao et al. [6] used the UHF
methods for detecting PD owing to its sensitivity and anti-
interference capability.

They modeled five types of typical PD sources to imitate
the defects in GIS online.

Wu et al. [7] presented a method based on statistical
parameters to optimize the algorithm ofmulti-PD.They used
this method for estimation of residual breakdown voltage of
generator bars and the optimized multiparameter diagnosis
algorithm. Wu et al. [8] used a method to quantitatively
determine the reliability of multiparameter diagnosis and to
optimize the algorithm of multiparameter diagnosis. Gulski
and Kreuger [9] used a computer-aided discharge analyzer,
a combination of statistical and discharge parameters to dis-
criminate between different discharge sources.

Hindawi Publishing Corporation
Modelling and Simulation in Engineering
Volume 2016, Article ID 5949140, 12 pages
http://dx.doi.org/10.1155/2016/5949140



2 Modelling and Simulation in Engineering

Saha [10] presented cellulosic paper and oil insulation in
a transformer degrade at higher operating temperature.

In this paper, the available PD charging detection meth-
ods include ultrasonic method, UHF method, and HFC
method. The combined diagnosis of PD based on the multi-
dimensional characteristic parameters is brought by Sugeno
fuzzy integral to process the collected signals. A large amount
of experimental data shows that the method for PD signal
has well diagnostic accuracy and is able to judge the internal
insulation of electrical equipment.

2. PD Extraction

2.1. Basic Characteristic Parameters. The basic parameters of
PD are as follows.

(A) Maximum PD Quantitymax𝑄.Themaximum discharge
quantity within one sample data is

max𝑄 = max {𝑄𝑖} . (1)

(B) Average PD Quantity avg𝑄. The total discharge quantity
within cycle/discharging times is

avg𝑄 = mean {𝑄𝑖} . (2)

(C) Average Discharge Current 𝐼. The discharge quantity per
unit time (one cycle) is

𝐼 = 1𝑇∑
𝑖

𝑄𝑖. (3)

(D) Mean Square Rate. The mean square value of PD pulse
discharge quantity per unit time (one cycle) is

𝐷 = 1𝑇∑
𝑖

𝑄2𝑖 . (4)

(E) NQN. This parameter reflects the number of PD pulses
and the discharge intensity.

NQN = 𝐹𝑆𝐺 ⋅ 𝑁 [ log10𝑃12 + 𝑁−1∑
𝑖=2

log10𝑃𝑖 + log10𝑃𝑁2 ] . (5)

In (5),𝑃𝑖,𝑁, and𝐺 represent the number of pulses per second
in the quantization window 𝐼, the number of amplitude win-
dows, and the gain of PD detector, respectively.

FS is the maximum number of quantization window in
the unit mV gain.

(F) max𝑄95. It is the maximum of the discharge quantity
with 5% of the maximum PD quantity of discharge pulse
removed.

(G) avg𝑄95. It is the average of the discharge quantity with
5% of themaximumPD quantity of discharge pulse removed.

(H)max 10,max 20,max 50,max 100,max𝑋𝑋.These are the
minimum amplitude of xx maximum PD within each cycle
(in mV).

(K) avgmax 10, avgmax 20, avgmax 50, avgmax 100,
avgmax𝑋𝑋.These are the average amplitude of xxmaximum
PD within each cycle (in mV).

The parameters of rank (A) to (E) are values obtained
which were assumed in the absence of interference. Actual
testing will inevitably introduce severe interference. There-
fore, based on a large number of experiments and statistical
data, four very valuable parameters of rank (F) to (K) were
proposed. A lot of statistics show that, in the field detection
with interference, the credibility of the insulation condition
reflected by parameters above is greatly improved compared
to conventional parameters [11]. Table 1 shows the extraction
of partial basic characteristic parameters of PD.

2.2. Phase Characteristic Parameters. When a PD abnormal
signal was found, the type of PD needs to be determined.
Judging the type of PD is generally based on PD phase
distribution spectrums, which mainly include phase distri-
bution of the maximum discharge quantity 𝐻𝑞max(Φ); phase
distribution of the average discharge quantity𝐻𝑞𝑛(Φ); phase
distribution of discharge times𝐻𝑛(Φ); amplitude distribution
of PD𝐻(𝑞); energy distribution of PD𝐻(𝑝). There are totally
five two-dimensional discharging spectrums and a three-
dimensional discharging spectrum 𝐻𝑛(Φ, 𝑞). Suppose the
measured number of fundamental frequency cycle is 𝑚, and
each frequency cycle is divided into 𝑛 phase windows, with
each phase window represented by Φ𝑖; then it is clear that

𝐻𝑞max (Φ𝑖) = max {𝑞1 (Φ𝑖) , 𝑞2 (Φ𝑖) , . . . , 𝑞𝑘 (Φ𝑖)} , (6)

𝐻𝑞mean (Φ𝑖) = ∑𝑘𝑗=1 𝑞𝑗 (Φ𝑖)𝑘 . (7)

𝐻𝑞𝑛(Φ𝑖) is the sum of the discharge numbers in the phase
windowΦ𝑖, and𝐻(𝑞𝑖) and𝐻(𝑝𝑖) are the number of discharge
times and energy where the discharge quantities are 𝑞𝑖 and𝑝𝑖, respectively. In (7), 𝑘 is the discharge number of the phase
windowΦ𝑖. In this system,𝑚 is themaximumnumber of fun-
damental frequency cycle intercepted from actual data. Dis-
charge quantity is divided into 25 intervals. According to the
above five characteristic spectrums based on phase analysis,
PD can be derived from the phase characteristic parameters
as shown in Table 2.

Also
(a) Sk+ is defined as below:

Sk+ = ∑ (𝑥+𝑖 − 𝜇)3 ⋅ 𝑃𝑖𝜎3 , (8)

in (8), 𝑥, 𝑃, 𝜇, and 𝜎 are discrete value, probability
of 𝑥, average value of distribution, and the standard
deviation of the distribution, respectively,

(b) the definition of Sk− is in the following:

Sk− = ∑ (𝑥−𝑖 − 𝜇)3 ⋅ 𝑃𝑖𝜎3 , (9)
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Table 2: List of characteristics parameters.

Characteristics PD distribution pattern𝐻𝑞max(Φ) 𝐻𝑞𝑛(Φ) 𝐻𝑛(Φ) 𝐻(𝑞) 𝐻(𝑝)
Spectrum skewness Sk+ √ √ √ √ √
Spectrum skewness Sk− √ √ √
Spectrum kurtosis Ku+ √ √ √ √ √
Spectrum kurtosis Ku− √ √ √
The number of local peaks Pe+ √ √ √
The number of local peaks Pe− √ √ √
Discharge asymmetry 𝑄 √ √ √
Correlation factor cc √ √ √

(c) Ku+ is as below:

Ku+ = ∑ (𝑥+𝑖 − 𝜇)4 ⋅ 𝑃𝑖𝜎4 − 3, (10)

(d) in the following equation, the definition of Ku− has
been presented:

Ku− = ∑ (𝑥−𝑖 − 𝜇)4 ⋅ 𝑃𝑖𝜎4 − 3, (11)

(e, f) the number of local peaks Pe+ and the number of local
peaks Pe− are the ratio of the pulses’ number and the
number of phase intervals in positive and negative
half cycle of atlas, respectively,

(g) discharge asymmetry 𝑄 is the ratio of discharge
corresponding parameters’ average value in positive
half cycle and negative half cycle:

𝑄 = 𝑄+𝑆 /𝑁+𝑄−𝑆 /𝑁− , (12)

𝑄+𝑆 and𝐻(Φ) are the sumof corresponding parameter
values distributed in the positive half cycle and nega-
tive half cycle.𝑁+ and𝑁− are the number of nonzero
value distributed in positive half cycle and negative
half cycle of the voltage,

(h) correlation factor (cc) is used to assess the difference
on shape and distribution between𝐻+(Φ) and𝐻−(Φ)
[11]:

cc = ∑𝑥𝑦 − ∑𝑥∑𝑦/𝑛
√[∑𝑥2 − (∑𝑥)2 /𝑛] ⋅ [∑𝑦2 − (∑𝑦)2 /𝑛] , (13)

𝑥 and 𝑦 are discharge parameters in positive and neg-
ative half-cycle phase window. Also, 𝑛 is the number
of phase window of each half cycle [12]. PD generated
by different types of insulation defects have a signifi-
cant difference in the phase distribution atlas, and the
fingerprint database established by the simulation test
in laboratory can be taken as a reference in detecting
and identifying a defect at the scene. Table 3 shows the
PD data phase characteristic parameters.

Use the information gain feature fusion method for 
dimension reduction

Results

Enter the HFC PD 

HFC PD characteristic parameters

Diagnosis using soft computing method

Figure 1: The flow chart of diagnosis method.

3. Single PD Diagnosis Algorithm

3.1. High-Frequency Current PD Data’s Diagnostic Method
Based on Information Fusion and Semisupervised Learning.
In this paper, for the diagnosis of high-frequency current PD
data, a method based on information fusion and semisuper-
vised learning is used. Figure 1 shows the flow chart of this
method.

The implementation steps of the algorithm can be
described as follows.

Given a data collection 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑙, 𝑥𝑙+1, . . . , 𝑥𝑛}
and a tag collection 𝐶 = {1, 2, . . . , 𝑐}, the first l ones 𝑥𝑖 (𝑖 ≤ 𝑙)
are already labeled samples, labeled as 𝑦𝑖 ∈ {1, 2, . . . , 𝑐}, and
the last 𝑢 ones 𝑥𝑖 (𝑙 + 1 < 𝑢 ≤ 𝑛) are unlabeled samples. The
targets are the labels of predicted unlabeled samples. Define
an 𝑛 × 𝑐 matrix 𝐹 = [𝐹𝑇1 , . . . , 𝐹𝑇𝑛 ]𝑇. 𝐹𝑖 (𝑖 ∈ 1, 2, . . . , 𝑛) is the
energy vector of 𝑥𝑖 and 𝑥𝑖 is tagged as 𝑦𝑖 = argmax𝑗<𝑐𝐹𝑖𝑗.
Define the initial 𝑛 × 𝑐 matrix 𝑌. Steps of iterative solver are
as follows [13]:

(1) Construct undirected weighted graph 𝐺 = (𝑋, 𝐸); 𝑋
is a collection of samples and 𝐸 is a set of edges of
figure 𝐺.
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Table 4: The recognition result.

Defect type Spike Particulate Suspended Air
Spike 678 234 45 73
Particulate 29 810 33 101
Suspended 31 69 880 37
Air 60 152 54 730

(2) Construct similar matrix𝐾.
(3) Matrix 𝐿with 𝐿 = 𝐷−1/2𝐾𝐷−1/2 is calculated and𝐷 is

𝐷𝑖𝑖 = 𝑙+𝑢∑
𝑖=1

𝐾𝑖𝑗. (14)

(4) The problem is solved by Iterative method.

(5) When 𝐹𝑖𝑗 > 𝐹𝑖𝑘 (𝑘 ̸= 𝑗), mark each 𝑥𝑖 as 𝑦𝑖 = 𝑗.
Table 4 shows the four types of discharge model and the
recognition result of semisupervised learning. From Table 4,
it is clear that the accuracy rate of spike discharge is 79%,
particulate discharge is 88%, suspended discharge is 85%, and
air discharge is 83%.

3.2. Ultrasonic Signals Diagnostic Method Based on Adaptive
Mutation Parameters of Particle Entropy. In this paper, the
parameters are optimized with a method based on particle
entropy parameter adaptive mutation and then used for PD
ultrasound data’ diagnosis. Figure 2 shows the flow chart of
this method.

Process of parameters’ adaptive mutation algorithm
based on particle entropy is as follows:

(1) Randomly determine the initial position and velocity
of each particle in the data field, and set 𝐸0 as the
stable threshold value of particle entropy.

(2) Set the particles’ 𝑝best to the current optimal position,
and set 𝑝𝑔𝑑 as the global optimal position of initial
population.

(3) Update the position and velocity of the particles.

(4) If the particle fitness is better than the fitness of 𝑝𝑔𝑑,
update 𝑝𝑔𝑑 with the current position.

(5) Calculate the collection of particle entropy and deter-
mine whether the entropy of each particle is less than
the predetermined threshold value 𝐸0, and perform
(6) when it is true, otherwise skip.

(6) Vary𝑤 to𝑤0, calculate the variation value of 𝑝𝑔𝑑, and
then continue to update the iteration.

(7) Determine whether the convergence criteria of algo-
rithm are met; if true, implement (8); otherwise,
continue iterating.

(8) Output 𝑝𝑔𝑑 and end the algorithm.

Raw data

PD ultrasonic signals’ characteristic parameters extraction 

Unitary

Normalization

PCA 

EPPSO 

Results

End

SVM model diagnosis

Figure 2: Diagnosis with SVM.

3.3. UHF Signal Diagnostic Method Based on IIA-ART2A.
Parameters of ART2 neural network (NN) are optimizedwith
a method based on immune algorithm with the improved
variation of natural cycle and then used for the UHF PD data
diagnostic. Figure 3 shows the flow chart of thismethod based
on NN.

IIA-ART2A NN is unsupervised learning. If we select the
correct input vector, only a few samples, then we can get high
recognition accuracy [14, 15]. One thousand new sample data
set are selected in each type of defect, characteristic param-
eters are extracted, and pattern recognition with IIA-ART2A
NN is done [16]. Table 5 shows the recognition results, where
the fractal dimension numerical lists only the 4th node of 4-
floor wavelet packet decomposition, and matching nodes 1–4
represent spike, particulate, suspended, and air, respectively.
It is clear that the recognition rate of spike discharge is 91%,
PD is 85%, suspended discharge is 84%, and air discharge is
77%.

4. Multiple Classifier’s Fusion Analysis
Based on Sugeno Fuzzy Integral

In this work, a multiple classifier fusion based on Sugeno
fuzzy integral is used, to integrate the final diagnosismatrix of
different PD diagnosis signals (HFC, ultrasound, and UHF)
and calculate the final diagnosis result. Figure 4 shows the
flow chart of this strategy.
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UHF PD signal characteristic 
parameters extraction 

Output the result of 
intelligent UHF PD signal 

diagnosis

Enter training data 

Avidity calculation

Termination 
condition is 

satisfied

Antibodies clonal 
expansion

Antibodies variation

Create ART2 NN

population

Obtain initial network weights and 
thresholds, the initial antibody 

Antibody selection

optimized weights and thresholds
Output the ART2A NN with defect diagnosis

Use IIA-ART2A NN for 

signal transform 
Denoising using wavelet 

Input UHF PD data

Figure 3: The flow chart of UHF signal diagnostic method.

Construct fuzzy measurement

Ultrasonic signals 
diagnostic method based 

on adaptive mutation 
parameters of particle 

entropy

Ultrasound PD 
diagnosis matrix

UHF PD diagnosis
matrix

Determine fuzzy density

Calculate Sugeno fuzzy integral 

Final diagnosis is the greater fuzzy integral value 

diagnosis matrix 
A HFC PD 

UHF signal diagnostic 

IIA-ART2A NN
method based on

method based on 
information fusion and 

HFC PD diagnostic

semisupervised learning

Figure 4: The flow chart of Sugeno fuzzy integral.
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Table 5: The recognition result of IIA-ART2A NN.

Number Fractal dimension Damp coefficient Similarity Matching node
0 0.072 0.01 0.9918 1
1 0.183 0.001 1 2
2 0.183 0.001 1 2
3 0.071 0.01 0.9972 1
4 0.072 0.01 0.9298 1
5 0.098 0.02 0.9986 3
6 0.098 0.02 0.9996 3
7 0.099 0.02 0.9680 3
8 0.081 0.01 0.9974 1
9 0.088 0.01 0.9972 1
10 0.136 0.1 0.8999 4
11 0.122 0.1 0.9731 4
12 0.181 0.1 0.8997 4
13 0.083 0.01 0.9678 1
14 0.092 0.01 0.9982 1

Combining a plurality of different classifiers to obtain
high accuracy is an important research topic. There is inter-
action between the classifiers, rather than being independent.
Fuzzy integral is nonlinear integral based on fuzzy measure-
ment, and fuzzy measurement is a nonnegative nonadditive
set function, while the nonadditive characteristic of fuzzy
measurement can precisely describe interactions between
classifiers.Therefore, exploring fusion technology of multiple
classifiers based on fuzzy integral is the content of this article.
Let 𝐶 = {𝐶1, 𝐶2, . . . , 𝐶𝑛} be a collection of 𝑛 target categories
and 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑚} is a collection of 𝑚 classifiers. 𝑍𝑘 is
the 𝑘th identified object. After sample𝑍𝑘 is identified by each
classifier, we can define amatrix referred to as PD(𝑍𝑘), which
is the cross section in decision-making model [12].

PD (𝑍𝑘) = [[[[
[

ℎ𝑘11 ⋅ ⋅ ⋅ ℎ𝑘1𝑛... d
...

ℎ𝑘𝑚1 ⋅ ⋅ ⋅ ℎ𝑘𝑚𝑛
]]]]
]
. (15)

And each row vector ℎ1 = (ℎ𝑘𝑖1, ℎ𝑘𝑖2, . . . , ℎ𝑘𝑖𝑛), 𝑖 = 1, 2, . . . , 𝑚, is
the recognition results of a classifier 𝑥𝑖 on the sample 𝑍𝑘 in
various categories, and we call it output vector of classifier 𝑥𝑖.

Each column vector ℎ𝑗 = (ℎ𝑘1𝑗, ℎ𝑘2𝑗, . . . , ℎ𝑘𝑚𝑗), 𝑗 = 1, 2, . . . ,𝑚, represents recognition results of each classifier on the
sample 𝑍𝑘 in category 𝐶𝑗. When the sample is fixed, ℎ𝑗 can
be thought of as a function ℎ𝑗 : 𝑋 → [0, 1] (if the output of
the classifier is not in the interval [0, 1], it can be normalized
to meet the conditions), which maps the classifier 𝑥𝑖 to the
corresponding components ℎ𝑖𝑗 of fusion vector 𝐶𝑗. Each
intersection ℎ𝑘𝑖𝑗 of the output vector 𝑥𝑖 and the fusion vector𝐶𝑗 represents the degree of determination on the fact that the
class 𝑥𝑖 assigned sample 𝑍𝑘 to category 𝐶𝑗, also known as the
objective estimate of the determination that 𝑍𝑘 belongs to 𝐶𝑗
of the classifier 𝑥𝑖. When ℎ𝑘𝑖𝑗 = 1, the classifier 𝑥𝑖 determines
that 𝑍𝑘 belongs to the category 𝐶𝑗; on the contrary, when
ℎ𝑘𝑖𝑗 = 0, 𝑥𝑖 confirms that 𝑍𝑘 does not belongs to category 𝐶𝑗.
Let 𝑔 be the Sugeno fuzzy measurement of the defined power

set 𝑃(𝑋) of 𝑋, fuzzy measurement on a single set of points
(the fuzzy density).𝑔𝑗 = 𝑔({𝑥𝑖}), 𝑖 = 1, 2, . . . , 𝑚, indicates the credibility of
the decisions made by classification 𝑥𝑖.∀𝐴 ∈ 𝑃(𝑋), 𝑔(𝐴) represents degree of reliability of local
decision made by a subset 𝐴 of 𝑋. Fuzzy integral fuses the
objective evaluation of the determination that 𝑍𝑘 belongs
to 𝐶𝑗 (fusion vectors of 𝐶𝑗) and the degree of reliability of
classifiers credibility; the integral value is the total objective
evaluation of the system that the sample belongs to category𝐶𝑗. Thus, the system has integrated value for each category,
taking the corresponding category of maximum integrated
value as the system’s determined category of sample 𝑍𝑘.

Therefore, the basic steps of fusionwith fuzzy integral can
be summarized as follows:

(1) Determine fuzzy density.
(2) Construct fuzzymeasurements. Parameters are deter-

mined through the fuzzy density, and then fuzzy
measurements are also determined.

(3) Calculate fuzzy integral, the integrated extent of
determination of the fused object to be identified
belonging to each category.

(4) Size comparison of the integral value is carried out, to
determine the category of the object to be identified.

In order to facilitate the integration of fuzzy arithmetic, we
must first set the output of the probability of failure, provided𝑤𝑖 (𝑖 = 1, 2, . . . , 𝑚) the corresponding characteristic parame-
ters’ values of sample data and the 𝑚th fault; the occurrence
probability of 𝑖th fault is defined as

𝜂𝑖 = 𝑤𝑖𝑤𝑖 + 𝑤𝑘 , 𝑤𝑘 = 𝑘 ̸=𝑖
min
𝑘=1,2,...,𝑚

(𝑤𝑘) . (16)

And 0 < 𝜂𝑖 ≤ 1 and 𝜂𝑖 has a clear sense; it reflects the
difference between the binding energy of sample and the 𝑖th
fault and the binding energy of sample and the fault second
to 𝑖th. When the two values are equal 𝜂𝑖 = 0.5, critical state𝜂𝑖 > 0.5, it can be classified as 𝑖 type, and the greater the
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Table 6: Accuracy of the classifiers.

Defect model Testing samples Training samples C1 C2 C3
(A) Spike 1000 500 0.79 0.85 0.96
(B) Particulate 1000 500 0.83 0.79 0.88
(C) Suspended 1000 500 0.89 0.78 0.84
(D) Air 1000 500 0.85 0.89 0.79
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Figure 5: High-frequency testing results: (a) a pulse waveform; (b) PRPD spectra.

Table 7: The conversion of probability on sample characteristics
among different classifiers.

Defect model C1 C2 C3
(A) Spike 0.2936 0.6923 0.4215
(B) Particulate 0.1375 0.2785 0.4912
(C) Suspended 0.4533 0.3242 0.1884
(D) Air 0.7990 0.5780 0.7723

value of 𝜂𝑖 the stronger the deterministic of classification.
PD fault data of four states including spikes on the surface
of high-voltage conductor, free metal particulates, suspended
electrode, and a solid insulating gap take 1000 samples from
each state, within which training samples change depending
on the conditions, 500 test samples, and construct classifiers
of three categories:

(1) Category 1: for one thousand training samples, C1
classifier is constructed in accordance with the pro-
posed HFC PD data’s diagnostic method based on
information fusion and semisupervised learning.

(2) Category 2: for one thousand training samples, C2
classifier is constructed in accordance with the pro-
posed ultrasonic signals diagnostic method based on
adaptive mutation parameters of particle entropy.

(3) Category 3: for one thousand training samples, C3
classifier is constructed in accordance with the pro-
posed UHF signal diagnostic method based on IIA-
ART2A NN.

Table 6 shows the accuracy rates obtained when identifying
four types of samples.

Fuzzy density is defined based on the accuracy of the
method, and then the fuzzy density matrix is obtained as
follows:

PD = [[[[[
[

0.2217 0.2851 0.3412
0.2972 0.3361 0.3095
0.2669 0.2847 0.3155
0.3322 0.3182 0.2451

]]]]]
]
. (17)

We choose a test sample as an example so the sample is
identified by the C1, C2, and C3 classifiers and then we
calculate the probability of its belonging to A, B, C, and D
categories; the results are shown in Tables 7, 8, and 9 and then
directly classified inTable 7; it is divided into classDbyC1 and
C3 and into A category by C2.

Table 8 shows the results of fuzzy measure and fuzzy
integral, withinwhich ℎ(𝑥) ismeasurable function; the results
of the descending corresponding item are in Table 8; 𝑔(⋅) is
the fuzzy measurement calculated according to the rank of
fuzzy density and measurable function ℎ(𝑥) and 𝑆V express
the Sugeno fuzzy integral value of ℎ(𝑥) and 𝑔(⋅), wherein the
fuzzy density is calculated from the classification accuracy.
Make judgments based on the value of 𝑆V, and then the
test sample belongs to class D. As can be seen, the fuzzy
integral gets the “nonlinear” mean-value of ℎ(𝑥). Since fuzzy
measurements are from the classification accuracy of differ-
ent categories, taking them as references when calculating the
mean-value of multiclassification can reduce the uncertainty
of multiclassifier [13].

Take PD as blurred density, to make fuzzy integral
decision for various types of PD samples; recognition results
are shown in Table 9; compared with Tables 4–8, it can be
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Table 8: Results of fuzzy measure and fuzzy integral.

Defect type ℎ(𝑥) 𝑔(⋅) 𝑆V
(A) Spike [0.5312 0.3951 0.1067] [0.3990 0.6990 1.0000] 0.3817
(B) Particulate [0.2846 0.2990 0.1137] [0.3861 0.6852 1.0000] 0.4780
(C) Suspended [0.4433 0.4219 0.1774] [0.3541 0.6089 1.0000] 0.5539
(D) Air [0.7022 0.6941 0.5689] [0.3721 0.6948 1.0000] 0.7041
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Figure 6: UHF testing results.

The position
of contact

Figure 7: Iron core’s lead insulation of columnA in contact with the
upper clamps.

Carbon footprint

Figure 8: Separate the iron core’s lead insulation of column A and
the upper clip.

Table 9: Classification results of fuzzy integral fusion.

Defect model Test samples Training samples Accuracy
(A) Spike 1000 500 96.66%
(B) Particulate 1000 500 94.37%
(C) Suspended 1000 500 90.45%
(D) Air 1000 500 94.50%

Damaged part

Figure 9: Damaged part of iron core’s lead insulation of column A.

seen that the recognition accuracy of error-prone categories’
sample (such as C, D) has significantly improved with fuzzy
integral fusion decision. Because differences among original
characteristic vectors of error-prone subsample are small, the
randomness and uncertainty of recognition process make it
difficult to correctly classify.Multiple classifier fusion analysis
based on fuzzy integral can avoid this kind of “uncertainty”
and improve the recognition accuracy to some extent.
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First levelSecond levelThird levelFourth levelFifth levelSixth level

Figure 10: After poking iron core’s lead insulation of column A.

5. Field Application of Combined
Diagnosis of PD Based on the
Multidimensional Characteristic Parameters

Detect PD on a 1000 kV high-voltage reactor, field test with
the integrated application of UHF, and ultrasonic and high-
frequencymethod, and then implement themultiple classifier
fusion analysis based on Sugeno fuzzy integral. Test results
show that there are two distinct PD phenomena in the high
resistance; positioning discharge source 1 is located in the
upper clip part of reactor column X (the body of 1) and
discharge source 2 is located at the bottom of the reactor
winding. The accuracy of the above PD diagnosis and local-
ization is verified by the disintegrated inspection [14].

(1) With the detecting method of high-frequency PD
pulse current, it is detected that, at the clip of body 1 of the
high resistance iron core clamps grounding line, the ampli-
tude of high-frequency PD signal is the highest, reaching
500mV; at the iron core of body 1, the amplitude reaches
300mV; at the clip and the iron core of body 2, the amplitude
reaches 250mV. PD phase spectra shows the characteristic
of symmetric distribution in first and third quadrants, the
high-frequency PD pulse current testing results are shown in
Figure 5.

(2) Detecting with the UHF method, the PD detecting
results are shown in Figure 6. In PRPD spectra, it is obvious
that there are two discharge sources, which are shown in the
red circle in the first and third quadrants and green circle in
the twice and fourth quadrants, respectively.

(3) Locate the source of discharge.The discharging source
is located at a position 136 cm away from the east side of the
reactor’s wall of box, 200 cm away from the north side of the
box’s wall, and at a height of 391 cm. The discharge source
is located at a middle and high position of the box, close to
the east and west box’s wall, and the variation trend keeps
consistent with UHF detection with normalized amplitude.

(4) Significant discharge signals are detected on the
reactor by the ultrasonic sensor.

(5) Two discharging points have been found in disinte-
grated inspection of the high resistance, and the results are
consistent with the PD detection, as follows.

Discharging Point 1. Iron core’s lead insulation of high resis-
tance column A of A phase collides with the upper clamps
(Figure 7); carbon footprint is found at the side of the clip
(Figure 8); there are totally six corresponding lead insulation
crepe papers, wherein the outer three layers of crepe paper
have disruptive discharge phenomena (Figures 9 and 10).

Traces of discharge at the position of iron core’s lead
insulation collidingwith the upper clampsmay be the oil gap’s
PD under a high electric field (the upper end of column A
is in the operation of 500 kV voltage level, which will form
a strong electric field on the outer surface of the iron core’s
lead insulation; and by testing the standby phase, it can be
calculated that potential difference of the iron core’s lead and
clamp’s lead of column A is significantly greater than column
X under the rated working voltage).

Discharging Point 2. The shield cap of fixing bolt is not
installed in place and collides with the fixing bolts at the
bottomof the columnX clamps.There exists carbon footprint
(Figure 11). Because the shield cap is not installed in place,
leading to being too close to clip bolts, and contact discharge
happened under running vibration. The discharge here and
the ultrasonic testing result are in agreement and also in
agreement with the high-frequency detection result of clip
and iron core ground loop anastomosis.

6. Conclusion

This article proposes nine PD basic characteristic parameters
to reflect insulation of device and 8 phase characteristic
parameters to reflect the type of discharge. The collected
signals are processed with the method of high frequency,
UHF, and ultrasonic. With the multiclassifier fusion method
based on Sugeno fuzzy integral, integrate all kinds of defects
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The position of contact

Traces of carbon wiped off

Figure 11: The lower lead supporting shield fixing bolts cap of high
resistant’s column X.

fault probability matrix, namely, the diagnosis results of
high-frequency current PD data’s diagnostic method based
on information fusion and semisupervised learning ultra-
sonic signals diagnostic method based on adaptive mutation
parameters of particle entropy and UHF signal diagnostic
method based on IIA-ART2A NN. The results show that this
method is significantly better than single detection method
when diagnosing defects of spike, particulate, suspended, and
air.
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