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CFD (Computational Fluid Dynamics) simulations are widely used nowadays to predict the behaviour of fluids in pure research
and in industrial applications. This approach makes it possible to get quantitatively meaningful results, often in good agreement
with the experimental ones. The aim of this paper is to show how CFD calculations can help to understand the time evolution
of two possible CBRNe (Chemical-Biological-Radiological-Nuclear-explosive) events: (1) hazardous dust mobilization due to the
interaction between a jet of air and a metallic powder in case of a LOVA (Loss Of Vacuum Accidents) that is one of the possible
accidents that can occur in experimental nuclear fusion plants; (2) toxic gas release in atmosphere. The scenario analysed in the
paper has consequences similar to those expected in case of a release of dangerous substances (chemical or radioactive) in enclosed
or open environment during nonconventional events (like accidents or man-made or natural disasters).

1. Introduction

Nowadays the perception of risks is completely changed if
compared to that in the past. The geographical boundaries
are thick such as the geopolitical ones. The social boundaries
have totally disappeared leaving space to a world with
different roles compared to the past. The globalization and
the simplicity to access information from one side have
improved technologies and quality of life but from the other
side have created a higher facility to gather information
to offend or create terror. The cases of the dispersion of
toxic gas in the past and in the recent history [1–5], the
DAESH progression in the Arabic Countries [6–10], the
Ebola diffusion through the aerial transportation [11–17],
and the radiological dispersion due to failures in fission or
fusion devices [18–24] are all examples on how the new
merge between the well-known risks and the new “dangerous
ideas” has exponentially increased the uncertainties of the
human health all around the world. The University of Rome

Tor Vergata, counting on the synergic work between the
Faculty of Engineering and the Faculty of Medicine and
Surgery, is facing these new problems with innovative work-
ing approaches voted to use the expertise developed in classic
scientific disciplines in an unconventional way. In this paper
the authors will demonstrate how the numerical simulations,
in particular CFD techniques [25–39], can be a powerful tool
to predict the consequences of particular accidents giving
to the decision makers the chances to better manage the
phases of accidents or terroristic events, reducing the risks
associated. The authors will start to face the problem of toxic
dust resuspension analysing first the problem itself that one
of the possible causes of this phenomenon can be the LOVA
and will show how these accidents can be approached with
the numerical simulations. After that the authors will demon-
strate how powerful are numerical simulations to simulate a
toxic gas release as a consequence of a terroristic attack. The
three cases analysed in this paper will be used to demonstrate
that through the numerical simulations it is possible to
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predict accidental releases scenario (both radiological and
chemical) in enclosed environment like a tank (that can be
considered as a section of an industrial plant or like an office
or a meeting room with an air conditioning plant) or in
larger environment like chemical plant or a subway.Thepaper
wants to demonstrate that every single accident, like the one
studied in [40–52], can be faced not only from a technical
point of view but also from an emergency management point
of view. It is important to merge the different point of view
and knowledge in order to use the numerical simulation as
predicting tool for nonconventional event (like a dangerous
release of a substances both man-made or caused by an
accident or a natural event) in order to facilitate the phases
of emergency management and restoration of normality.

The tool used to run the numerical simulation was
COMSOL MultiphysicsⓇ version 5.1; the results have been
analysed and are here discussed by the authors. For details
about theory and settings, please refer to the COMSOL
Multiphysics 5.1 User’s Guide [53].

2. Hazardous Dust Mobilization

2.1. Nuclear Fusion Devices Security. Vacuum technologies
are routinely used in many industrial and research appli-
cations. In some applications the macroscopic erosion of
hazardous materials (radioactive, toxic, or explosive) and
consequent accumulation of dust represent a risk for the
workers and the population, for example, if the dust is
mobilized during a loss of vacuum inside the vacuum vessel
due to an accident in the system of a nuclear fusion power
device. Improvement of accidentmanagement guidelines and
mitigation measures of experimental nuclear fusion plants
will significantly enhance the level of safety of the fusion
facilities currently designed and the foreseen ITER and
DEMO concepts [19].

Possible hazardous consequences from accidental dust
mobilization prompted greater attention in the safety analyses
of future high energy density fusion machines, like ITER or
DEMO. One of the priorities that have been identified by the
scientific community among the safety issues in this filed was
the simulation of dust transport caused by a continuumphase
ingress, water or air, into the vacuum vessel (VV) [54].

The Quantum Electronics and Plasma Physics (QEP)
Research Group of the University of Rome Tor Vergata
realized an experimental facility, STARDUST (Small Tank for
Aerosol Removal and Dust) after modified in STARDUST-
U (Upgrade) [55], in order to replicate experimental condi-
tions comparable to particular thermofluid dynamic scenario
expected in plants like ITER in case of LOVA (Loss Of
Vacuum Accidents).

The experimental campaigns have been set at the
beginning to collect data about the thermofluid dynamic
behaviour in case of LOVA replications inside STARDUST
and STARDUST-U. Together with these experimental cam-
paigns the QEP research group carried out experiments to
analyse the quantity of dust mobilized [56, 57] and determine
the velocities direction and modules by the use of optical
techniques [58, 59].

Thenumeric tool that will be developedwill be a powerful
instrument to predict the resuspension of dust (or particles)
in enclosed environment. It will be possible to simulate
several typologies of accidents like the ones expected in the
nuclear fusion plants (like ITER). ITER has guidelines to
determine how severe is an accident; these are on the Generic
Site Safety Report [60].

The simulations, and the relative models, developed and
presented in this section are essential tool to support the final
aim of thework on safety and security of nuclear fusion plants
that is finding a numerical multiphase model to predict the
dust resuspension in case of accidents. For all simulations,
an unstructured grid with wall refinement to capture the
boundary layer was used.The convergence was considered to
have been achievedwhen themaximumvalue of the residuals
is below 1𝑒 − 4 and show an asymptotic trend.

2.2. Numerical Simulations to Support Radiological Risks
Prevision. The failure of a window or a breach in the metallic
vessel of a subatmospheric tank is one of the major concerns
about safety in future Tokamaks-based power plants. The
understanding of the expansion into vacuum of the air
surrounding the vessel is crucial in order to predict dust
mobilization. Here, air is injected into a two-dimensional
vessel, in which the initial pressure is 300 Pa. As can be
seen in Figure 1, a 1 cm diameter pipe allows the air to flow
downwards into the vacuum chamber, and the specific mass
flow rate of it varies over time according to this law:

𝑚 = 𝑎 ⋅ (1 − exp (−𝑏 ⋅ 𝑡)) , (1)

where 𝑎 = 0.00056 kg/s and 𝑏 = 0.962 s−1.
The static temperature of the air is 293.15 K and the dura-

tion of the simulation is 10 s. A fully compressible, turbulent
flow was considered, and the governing equations are as
follows.

Consider

Continuity Equation

𝜕𝜌

𝜕𝑡
+ ∇⃗ ⋅ (𝜌�⃗�) = 0. (2)

Navier-Stokes Equation

𝜌 ⋅ (
𝜕�⃗�

𝜕𝑡
+ (�⃗�∇⃗) �⃗�) = ∇⃗

⋅ ((−𝑝 −
2

3
(𝜇 + 𝜇

𝑇

) (∇⃗ ⋅ �⃗�) −
2

3
𝜌𝑘) ⋅ 𝐼

+ (𝜇 + 𝜇
𝑇

) (∇⃗�⃗� + (∇⃗�⃗�)
𝑇

)) .

(3)
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Figure 1: STARDUST facility picture showing the section (“sez.A”) that is implemented in the numerical simulation software, as shown in
Figures 2, 3, and 4.

Energy Equation
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𝑝

⋅ (
𝜕𝑇

𝜕𝑡
+ (�⃗� ⋅ ∇⃗𝑇))
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(4)

Turbulent Kinetic Energy Conservation Equation

𝜌 ⋅ (
𝜕𝑘

𝜕𝑡
+ (�⃗�∇⃗) 𝑘) = ∇⃗ ⋅ [(𝜇 +
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𝑘

− 𝜌𝜖. (5)

Turbulent Kinetic Energy Dissipation Rate
Conservation Equation

𝜌 ⋅ (
𝜕𝜖

𝜕𝑡
+ (�⃗�∇⃗) 𝜀) = ∇⃗ ⋅ [(𝜇 +
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(6)

Turbulent Kinetic Energy Production Rate

𝑃
𝑘

= 𝜇
𝑇

⋅ ∇⃗�⃗� : (∇⃗�⃗� + (∇⃗�⃗�)
𝑇

−
2

3
⋅ (∇⃗ ⋅ �⃗�)

2

) −
2

3
𝜌𝑘

⋅ (∇⃗ ⋅ �⃗�) .

(7)

Turbulent Viscosity Equation

𝜇
𝑇

= 𝜌𝐶
𝜇

𝑘
2

𝜖
. (8)

Perfect Gases State Equation

𝑝 = 𝜌𝑅𝑇. (9)
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Figure 2: Mach number with streamlines after 1 s.

In order to simulate this kind of flow, the High Mach
Number Flow module of COMSOL was used. For further
information, please see the CFD Module, High Mach Num-
ber Flow Interface, pages 282–304.

Figures 2, 3, and 4 show the Mach number fields with
streamlines, respectively, after 1 s, 5 s, and 10 s from the air
inlet in the chamber.

As can be seen, a subsonic expansion of the gas occurs.
TheMach number initially rises because of the mass flow rate
increase as the valve opens. Then, while the vessel internal
pressure rises along with the gas density, at a constant and
fixed mass flow rate, the velocity decreases and therefore also
the Mach number decreases. A great vortex, entrained by the
jet of air, completely fills the vessel. This structure of the flow
ismanifestly very effective inmobilizing dust contained in the
cavity.
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Figure 3: Mach number and streamlines after 5 s.

Mach number with streamlines, t = 10 s
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Figure 4: Mach number and streamlines after 10 s.

Figures 5 and 6 present a comparison between numerical
results obtained with the model presented and experimen-
tal results measured in STARDUST facility. The graph in
Figure 5 shows the pressurization rate inside the chamber for
the first 10 seconds. Please note that the experimental results
are presented with error bars. The graph in Figure 6 shows
the air velocity over time, calculated from the Ma number.
The results are still not perfectly equal due to insufficiently
fine grid and numerical viscosity effects but represent a first
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Figure 5: Pressurization of the chamber in the first 10 s.
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Figure 6: Local air velocity inside the STARDUST facility in the first
10 s.

step towards the validation of the numerical model with the
experimental data collected in STARDUST facility.

The second case study is about tungsten powder removal
by an air jet flowing inside a cavity containing the dust.
Figure 7 shows the physical two-dimensional domain (all
lengths in mm).

The air enters at 100m/s from the left upper side and exits
from the upper right side that is imposed to be at atmos-
pheric pressure. Initially, the air is at rest at 1 atm and a layer
of tungsten powder, 3 cm thick, lies at the bottom of the
cavity. The diameter of the solid particles is 0.4 𝜇m and the
tungsten density is 19500 kg/m3.The equations describing the
behaviour of this two-phase flow are as follows.

Consider

Average Density Equation

𝜌 = 𝜌
𝑐

⋅ (1 − 𝜑
𝑑

) + 𝜌
𝑑

⋅ 𝜑
𝑑

. (10)
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Figure 7: Physical domain.

Continuity Equation
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Mass Balance between the Two Phases Equation
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Effective Viscosity Equation
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Drag Coefficient Calculation (Schiller-Naumann Model)
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Energy Equation
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Turbulent Kinetic Energy Conservation Equation
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Turbulent Kinetic Energy Dissipation Rate
Conservation Equation
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Turbulent Kinetic Energy Production Rate
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Turbulent Viscosity Calculation

𝜇
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𝜖
. (22)

Perfect Gases State Equation

𝑝 = 𝜌𝑅𝑇. (23)

The full model takes into account the drift (or slip) speed
between the air and the particle, and the Schiller-Naumann
drag model was used. To simulate this flow, the multiphase
module using the turbulent Euler/Euler transport model was
used. For further details, see the CFD Module, Multiphase
Flow, the Euler/Euler Model Interface, pages 360–371.

Figures 8, 9, and 10 show the dust volume fraction and
the streamlines at 0 s, 0.5 s, and 1 s.

As can be seen, the vortex that forms in this driven cavity
rapidly entrains the dust, so its fallout and the contamination
of the surroundings of the release point of the powder
have to be expected. The high mobilization speed is due to
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the velocity of the inlet air jet. The order of magnitude of
the speed (100m/s) is common when dust is blown by an air
jet during an accident/terroristic attack. Figure 11 shows the
evolution in time of the mass content of dust in the cavity,
normalised with respect to its initial value.

The mobilization speed has been confirmed by experi-
ments carried out in the STARDUST-U facility of the Indus-
trial Engineering Department of the University of Rome Tor
Vergata. This kind of accident can occur in Tokamaks, when
a LOVA happens or when hazardous dust is accidentally or
voluntarily exposed to the wind. It is clear from Figure 11 that
almost the total amount of dust is resuspended in the first
second after the air inlet in accordance with the peak of air
velocities measured (see [19, 54, 57]) and the dust mobilized
during the experimental campaigns (see [56, 58, 59]).

Once the multiphase model has been developed and
validated through a comparison with the experimental data,
changing the boundary conditions (geometry, temperatures,
flow rates, etc.), it can be used to simulate the release or
mobilization of other dangerous compounds (like chemical
agents or biological agents).
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3. Toxic Gas Release

The diffusion of harmful gases in the atmosphere is the result
of several causes: terroristic attack, failure of a vessel in a
chemical plant, gaseous exhaust of a factory, andmany others
[1–5]. Here, a release of chlorine was considered as a case
study. Referring to Figure 10, chlorine flows upwards in a
vertical pipe, blown from the right by the wind. The wind
speed is 5m/s and the chlorine pressure at the base of the
pipe is 1.5 atm. On the upper and left edges of the domain,
atmospheric pressure was imposed. The simulation time is
10 s. Initially, the domain is filled with air; then chlorine starts
to flow and to be released in the atmosphere.

The domain is two-dimensional, as shown in Figure 12,
and all dimensions are expressed in meters.

The gas is considered as amixture of air and chlorine.The
simulation is unsteady and was carried out with COMSOL
Multiphysics. The flow is turbulent, compressible, and non-
isothermal. The general equations describing the behaviour
of the flow are as follows.

Consider

Continuity Equation

𝜕𝜌

𝜕𝑡
+ ∇⃗ ⋅ (𝜌�⃗�) = 0. (24)

Navier-Stokes Equation

𝜌 ⋅ (
𝜕�⃗�

𝜕𝑡
+ (�⃗�∇⃗) �⃗�) = ∇⃗

⋅ ((−𝑝 −
2

3
(𝜇 + 𝜇

𝑇

) (∇⃗ ⋅ �⃗�) −
2

3
𝜌𝑘) ⋅ 𝐼

+ (𝜇 + 𝜇
𝑇

) (∇⃗�⃗� + (∇⃗�⃗�)
𝑇

)) .

(25)

Energy Equation

𝜌 ⋅ 𝐶
𝑝

⋅ (
𝜕𝑇

𝜕𝑡
+ (�⃗� ⋅ ∇⃗𝑇))

= ∇⃗ ⋅ (𝑘∇⃗𝑇) + 𝜇

⋅ (∇⃗�⃗� + (∇⃗�⃗�)
𝑇

−
2

3
⋅ (∇⃗ ⋅ �⃗�) ⋅ 𝐼) : ∇⃗�⃗� + �⃗�

⋅ ∇⃗𝑝.

(26)

Turbulent Kinetic Energy Conservation Equation

𝜌 ⋅ (
𝜕𝑘

𝜕𝑡
+ (�⃗�∇⃗) 𝑘) = ∇⃗ ⋅ [(𝜇 +

𝜇
𝑇

𝜎
𝑘

) ∇⃗𝑘] + 𝑃
𝑘

− 𝜌𝜖. (27)

Turbulent Kinetic Energy Dissipation Rate
Conservation Equation

𝜌 ⋅ (
𝜕𝜖

𝜕𝑡
+ (�⃗�∇⃗) 𝜀) = ∇⃗ ⋅ [(𝜇 +

𝜇
𝑇

𝜎
𝜖

) ∇⃗𝜖] + 𝐶
𝜖1

𝜖

𝑘
𝑃
𝑘

− 𝐶
𝜖2

𝜌
𝜖
2

𝑘
.

(28)

Turbulent Kinetic Energy Production Rate

𝑃
𝑘

= 𝜇
𝑇

⋅ ∇⃗�⃗� : (∇⃗�⃗� + (∇⃗�⃗�)
𝑇

−
2

3
⋅ (∇⃗ ⋅ �⃗�)

2

) −
2

3
𝜌𝑘

⋅ (∇⃗ ⋅ �⃗�) .

(29)

Turbulent Viscosity Equation

𝜇
𝑇

= 𝜌𝐶
𝜇

𝑘
2

𝜖
. (30)

Perfect Gases State Equation

𝑝 = 𝜌𝑅𝑇. (31)

Species Conservation Equation

∇⃗ ⋅ �⃗�
𝑖

+ 𝜌 ⋅ (
𝜕𝜔
𝑖

𝜕𝑡
+ (�⃗� ⋅ ∇⃗) 𝜔

𝑖

) = 𝑅
𝑖

. (32)

𝑖th Species Diffusive Flux

⃗𝑗
𝑖

= −(𝜌(𝐷
𝑚

𝑖

+
]
𝑇

Sc
𝑇

) ⋅ ∇⃗𝜔
𝑖

+ 𝜌𝜔
𝑖

𝐷
𝑚

𝑖

⋅
∇⃗𝑀
𝑛

𝑀
𝑛

+ 𝐷
𝑇

𝑖

⋅
∇⃗𝑇

𝑇
) .

(33)
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Chlorine mass fraction with streamlines, 1 s
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Figure 13: Chlorine mass fraction with streamlines after 1 s.

𝑖th Species Mass Molecular Diffusion Coefficient

𝐷
𝑚

𝑖

=
1 − 𝜔
𝑖

∑
𝑘 ̸=𝑖

(𝑥
𝑘

/𝐷
𝑖𝑘

)
. (34)

Mean Molar Mass

𝑀
𝑛

= (∑

𝑖

𝜔
𝑖

𝑀
𝑖

)

−1

, (35)

where 𝜔
𝑖

is the mass fraction of the 𝑖th species, 𝑥
𝑖

is its molar
fraction, Sc

𝑇

is the Schmidt turbulent number, and𝐷
𝑖𝑘

is the
binary diffusion coefficient between 𝑖th and 𝑘th species. This
simulation was performed by using the Concentrated Species
Interface and the Single-Phase Flow Interface. For further
details, see the CFD Module, Single-Phase Flow Interface
module, Theory for Turbulent Flow Interfaces, pages 136–
172, and the Chemical Reactions Module, Chemical Species
Transport Interfaces, and Transport of Concentrated Species,
pages 196–211.

Figures 13, 14, and 15 show the chlorine mass fraction
with streamlines at 1 s, 5 s, and 10 s.

As can be seen, an unsteady vortices system forms behind
the pipe and the chlorine plume, and this gas is rapidly mixed
in the air by the eddies, so the whole zone behind the release
point of the gas is contaminated.

4. Conclusions

Expansion into vacuum, dust mobilization, and gaseous
mixing were investigated by means of numerical simulations.
It was found that this approach is well suited for studying
this kind of safety problems and makes it possible to predict
the transient evolution of the phenomena involved in CBRNe
events. A further development of this technique will be
the study of accidents/terroristic attacks occurring in three-
dimensional domains under realistic conditions. It is in fact
well known that turbulent flows are intrinsically unsteady and

Chlorine mass fraction with streamlines, 5 s
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Figure 14: Chlorine mass fraction with streamlines after 5 s.

Chlorine mass fraction with streamlines, 10 s
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Figure 15: Chlorine mass fraction with streamlines after 10 s.

three-dimensional, rather than bidimensional. So, as turbu-
lence plays a crucial role in the flow behaviour, especially with
respect to pollutants transport, a more realistic 3Dmodelling
of the flow is to be preferred. It is also known that a 3D
domain allows movements in the third dimension which are
not possible in 2D. In other words, a 3D simulation fits better
the real flow than a 2D one. The drawback of this approach
is the greater requirement of RAM and the higher number of
processors.

Building synthetic models on the basis of numerical
results obtained for each class of problem under several
conditions (speed of wind, mass flow rate of the pollutants,
and so on) is intended in the future.The approach is the same
as the one used by experimental researchers to determine
empirical correlations. In such a way, the models can be
used by the in-field operators just by inserting as inputs
the above-mentioned conditions and will give as an output
the pollutants concentration, which is the required data to
evaluate the safety risks.
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Nomenclature

𝜌: Density
�⃗�: Velocity vector
𝑝: Pressure
𝜆: Thermal conductivity
𝐶
𝑝

: Constant pressure specific heat
𝑇: Temperature
𝑅: Gas constant
𝜇: Molecular viscosity
𝜇
𝑇

: Turbulent viscosity
𝑘: Turbulent kinetic energy
𝜀: Turbulent kinetic energy dissipation

rate
𝑃
𝑘

: Turbulent kinetic energy production
term

𝐶
𝜖1

, 𝐶
𝜖2

, and𝐶
𝜇

: Turbulence model constants
⃗𝑗
𝑖

: 𝑖th species diffusive flux
𝜔
𝑖

: 𝑖th species mass fraction
𝑥
𝑖

: 𝑖th species molar fraction
𝑀
𝑖

: 𝑖th species molar mass
𝑀
𝑛

: Mean molar mass
𝑅
𝑖

: 𝑖th species source term
𝐷
𝑚

𝑖

: 𝑖th species mass molecular diffusion
coefficient

𝐷
𝑖𝑘

: Binary diffusion coefficient between 𝑖th
and 𝑘th species

Sc
𝑇

: Turbulent Schmidt number
]
𝑇

: Turbulent kinematic viscosity
𝜑
𝑑

: Dispersed particles volume fraction
𝑐
𝑑

: Dispersed phase mass fraction
𝜌
𝑐

: Continuous phase density
𝜌
𝑑

: Dispersed phase density
𝑑
𝑑

: Dispersed phase particles diameter
�⃗�
𝑐

: Continuous phase velocity vector
�⃗�
𝑑

: Dispersed phase velocity vector
�⃗�slip: Slip velocity
�⃗�: Gravity acceleration vector
𝜑max: Maximum particles volume fraction
𝐶
𝑑

: Particles drag coefficient
Re
𝑝

: Particle-based Reynolds number.
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