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)e conventional method for machining metal matrix composites (MMCs) is difficult on account of their excellent characteristics
compared with those of their source materials. Modern laser machining technology is a suitable noncontact method formachining
operations of advanced engineering materials due to its novel advantages such as higher productivity, ease of adaptation to
automation, minimum heat affected zone (HAZ), green manufacturing, decreased processing costs, improved quality, reduced
wastage, removal of finishing operations, and so on.)eir application includes hole drilling in an aircraft engine components such
as combustion chambers, nozzle guide vanes, and turbine blades made up of MMCs which meet quality standards that determine
their suitability for service use. )is paper presents a derived mathematical model based on evolutionary computation methods
using multivariate regression fitting for the prediction of multiple characteristics (circularity, taper, spatter, and HAZ) of
neodymium: yttrium aluminum garnet laser drilling of aluminum matrix/silicon carbide particulate (Al/SiCp) MMCs using
genetic programming. Laser drilling input factors such as laser power, pulse frequency, gas pressure, and pulse width are utilized.
From a training dataset, different genetic models for multiple quality characteristics were obtained with great accuracy during
simulated evolution to provide a more accurate prediction compared to empirical correlations.

1. Introduction

Metal matrix composites (MMCs) are substances which blend
a tough metallic matrix with a hard ceramic reinforcement
possessing excellent features such as high strength to wear
ratio, high modulus, and wear and corrosion resistance [1].
MMCs are broadly used in the fields of the aerospace, au-
tomotive, electronics, and metallic industries. MMCs com-
prise a metal as a base material (matrix) and hard ceramic
particles such as B4C, SiC, and Al2O3 as reinforcement (long
fibers, short whiskers, or particulates in irregular or spherical
shapes). )e properties of MMCs are judged by matrix, re-
inforcement, and interface between them [2]. )ey are a
material which is difficult to machine due to the presence of
hard ceramic particles [3]. Most of the research in the ma-
chining of Al/SiCp MMCs has focused on turning and
milling, whereas drilling has been given less attention.

1.1. Laser Drilling. )e laser drilling system is growing ex-
ponentially to suit the alternative program for achieving the
major demands of aerospace, automobile, metallic, and
electric industrial potential, especially microhole drilling in
different components such as watches and turbine blades,
fuselages, printed circuit boards, and so on [3]. Pulsed Nd:
YAG laser microhole drilling has gained popularity in recent
years to be used as an indispensable tool for microhole
drilling of components for technologically advanced in-
dustries. Laser microhole drilling processes are successfully
employed to both conductive and nonconductive materials
to remove by evaporation, and the amount of molten ma-
terial removed depends on the penetration of laser energy
generated from a sequence of laser pulses at the same place
[4]. Laser drilling in the production industry has been as-
sociated with the various advantages of a high rate of ma-
chining, noncontact method; hence, there is no damage to
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tool or tool wear, increased product quality, and less wastage.
Highly reflective materials require a low amount of laser
power with a short wavelength of Nd:YAG (compared with
CO2 lasers) [5]. While it possesses several advantages and is
widely approved by advanced industries, it also has some
defects such as taperness, noncircular holes, HAZ, recast
layer, and so on [6].

1.2. Genetic Programming. Genetic programming (GP) is
the most effective tool used to predict the behaviour of
various processes and for the formation of empirical
modeling. Normally, GP supports the process of evolution in
nature—Darwin’s theory of “survival of the fittest”—to find
the best solution to an assigned problem. GP is known as the
generalized form of the genetic algorithm (GA) and has been
extensively studied [7–9]. In GP, the model is represented by
terminals and functions. A well-known implementation of
GP is in symbolic regression and is used to determine the
mathematical expression for a given set of variables and
functions. )e function is generated using a Boolean op-
erator (AND, OR, NOT, or ANDNOT), nonlinear operators
(sin, cos, tan, exp, tanh, and log), and from basic mathe-
matical operators (+, −, /, and ×). )e fitness function is
calculated as the error between the actual value and the
predicted value of the symbolic expressions. In GP, indi-
vidual terms are randomly initialized, and the population is
progressed to find out the optimal solutions through various
operations such as reproduction, crossover, and mutation.
)e reproduction process produces children as an input to
the next generation by replicating a fraction of the parent
selected by the current generation. Individuals having
highest fitness values in the population are selected as the
parent and used for reproduction. Normally, the crossover
operation produces children by exchanging some parts of
their selected parents. )e crossover operation is divided
into two types (subtree and node crossover). However, the
subtree crossover has shown more significant effect than the
node crossover.

A variety of methods are available to develop relation-
ships between inputs and outputs for evaluating outputs
under varying input conditions without experimental work.
)ese forecasting output data are derived in the form of
equations using artificial neural network, statistical re-
gression methods like linear regression, response surface,
ANOVA, etc., with limited accuracy. To obtain higher ac-
curacy at about 99.3 to 99.8% for the mathematical model
derived, the effective method available is genetic pro-
gramming which is an application of machine learning or
artificial intelligence using inbuilt algorithms. )e use of the
GP approach with experimental data to develop a mathe-
matical model involving laser microhole drilling input and
output parameters is presented in this work. )ese math-
ematical models can be used to study the production of high-
quality microdrills of the pulsed Nd:YAG laser used in
Al7075/SiCp MMCs by minimizing the microhole drilling
defects, such as the degree of taperness of a hole, spatter,
and heat affected zone width, and to maximize a hole cir-
cularity [10]. )e various drilling input parameters involved

are pulse power (v0), pulse frequency (v1), assistance of gas
pressure (v2), and pulse width (v3) [11].

2. Materials and Methods

In the present work, using the stir casting technique, an
MMC consisting of aluminum alloy 7075 as a base metal
reinforced with particulates of silicon carbide having a size
of 40–50 μm for 10% volume fractions is produced. )e
microholes were drilled onto MMC plates using the pulsed
Nd:YAG laser beam system (Model: JK300D), and the tests
were carried out at its maximum power capacity of 16 kW.
Various input parameters such as laser input power (v0),
pulse frequency (v1), assistance of gas pressure (v2), and
pulse width (v3) at different levels have been selected. )e
experimental results for various levels of input factors of
laser microhole drilling of MMC (Al7075/10%SiCp) plate of
2mm thick are shown in Tables 2–5. For a smaller diameter
hole, laser microdrilling is preferred, especially when the
materials are very hard, extra thin, or made of glass and
composites. )e quality of these holes mainly depends on
heat affected zone (HAZ) of hole walls, taperness formed
when the hole is enlarged, circularity to maintain the uni-
form dimension of the circular hole, and spatter occurring at
the ends of a hole during resolidification of material [12, 13].

)e input parameters of different levels can improve the
quality of drilled holes. )e quality of holes was determined
using optical measuring microscope OLYMPUS STM6 on a
cut sectioned hole sample by measuring circularity, spatter,
HAZ, and taper characteristics, and in each experimental
run, the laser was drilled at a spot size of 180 μm [10].
Various studies have been conducted to investigate the ef-
fects of input control parameters on the defects developed by
the laser microdrilling process [14, 15]. Due to an internal
focusing of the issue of a laser drilling process, hole taperness
and noncircularity affect the quality of holes [16]. Normally,
there is spatter accumulation due to an incomplete sus-
pension of removed MMC at the drilling zone which
resolidifies and adheres around the whole circumference.
Hence, it is advisable to produce high-quality circular
microdrilled holes with the minimum amount of taper,
spatter, and HAZ width. )e above-said qualities are to be
determined by the level of input parameters which requires a
mathematical model to study the process condition capable
of producing the desired quality of product. However, this
model is to be derived in such a way that all the charac-
teristics measuring qualities are quickly measurable simul-
taneously [11].

3. Genetic Programming Methodology

Various stages of GP involved in the flowchart are as follows:
For the analysis of multiple characteristics of neo-

dymium: yttrium aluminum garnet laser drilling of alumi-
num matrix/silicon carbide particulate MMCs such as
circularity, taper, spatter, and HAZ, data accumulations of
experiments were carried out as per stages involved in
Figure 1. )e accumulated data were randomized using
notitia DiscipulusTM software and were provided to the
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software in three groups, viz., training, validation, and ap-
plied [17]. )e three sets of data are generated by experi-
mental results provided. Higher numbers of experiment
running around more than 100 are required for best solu-
tion. Test runs were conducted to determine desirable pa-
rameters generating an optimal solution in the minimum
possible time. Initially, the tests were carried out at the default
parameter settings, such as population size, crossover rate,
DSS subset size, and so on, and later varied to find optimum
values [18].)e different parameters involved in achieving the
final mathematical model satisfying the results are tabulated
in Table 1. It shows the flow of set required to achieve the final
model which could provide us a mathematical model satis-
fying the above conditions of the quantity involved [19].

3.1.RegressionandFitnessMeasurement. Regression analysis
is a stochastic method in which symbolic regression finds
both the working model of output (or target) function and
its inputs (or fixed coefficients), or at least an approximation
(error measurement fit by linear or square). Fitness mea-
surement indicates how far the output value predicted by the
GP concurs with the experimental value.

3.2. Correlation Coefficient, r/R. )e linear correlation co-
efficient refers to measuring the strength and direction of a
linear relationship held between two variables (output, M,
and input, N), where r value lies such that −1 < r < +1 [8].
)e signs indicate a strong positive linear correlation be-
tween M and N or perfect fit if r is close to +1 with an
increase of M values; N values also increase, whereas r is
close to −1 if M and N have a strong negative linear cor-
relation such that with an increase of M values, N values
decrease. For r � 0, there is no linear/weak correlation, and a
value approaching zero represents a random, nonlinear
relationship between the M and N. )e square of the cor-
relation coefficient provides you with the coefficient of
determination, r2, to find the proportion of the variance of
output that is predictable from the inputs. )is helps us to

determine how certain one can be inmaking predictions from
a defined model. r2 defined from the ratio of the illustrated
variation to the total variation in the range of 0 < r2 < 1
signifies the strength of the linear correlation between P andQ
or represents the percentage of the data which is closest to the
line of best fit [20]. If r � 0.977, then r2 � 0.994, which means
that 99.4% of the total variation in Q can be explained by the
linear relationship between P and Q and the remaining 0.6%
of the variation in Q continues unexplained [21].

3.3.Factors Involved inGPModeling. )e various parameters
involved in modeling GP are tabulated in Table 1. It shows
the flow of set required to achieve the final model which
could provide you with a mathematical model satisfying the
above conditions of the quantity involved.

Architecture-altering operations: choose an architecture-altering operation from the available
repertoire of such operations, and create one new offspring program for the new population by applying

the chosen architecture-altering operation to one selected program 

 
 

 
 

 

Create new individual program(s) for the population by applying the following genetic operations with
specified probabilities by reproduction, cross over, and mutation 

Execution of each program in the population or selects one or two individual program(s) from the
population to ascertain its fitness (explicitly or implicitly) using the problem’s fitness measure 

Iterations following substeps (called a generation) on the population carried out until the termination
criterion is satisfied

Random generation of an initial population (called generation zero) of individual computer programs
consisting of the available functions and terminals 

Figure 1: Stages involved in genetic programming.

Table 1: Parameter setting for genetic programming.

Parameters Value assigned
Population size (P) 500
Number of generations 1000
Maximum depth of tree 6
Maximum generation 50
Functional set Multiply, plus, minus, divide
Terminal set (v1, v2, v3, v4, v5, v6, −10, 10)
Number of runs 110
Mutation rate 0.10

Crossover rate 75% nonhomologous
25% homologous

Reproduction rate 0.05

Fitness, r2
)e square root of the sum of the square
of absolute value of the differences

(errors), between the program’s output
and the observed data.

Termination

An individual emerges whose sum of
absolute errors is less than specified:

(a) required number of runs be
completed or (b) required correlation

coefficient is obtained
Terminal set T � {P, random-constants}

Modelling and Simulation in Engineering 3



4. Results and Discussion

)e selection of precise instructions from set F and
available terminal genes from set f(0) play a vital role in GP
modeling, and evolutionary process will build a mathe-
matical model (i.e., organism) such that it is as fit as for the
prediction of results. )e model consists of both in-
structions and function genes behaving similarly to the
character of computer programs differing in appearance
and dimensions [20, 22]. Previously, extensive work on
developing mathematical models was also carried out
using linear regression, second order, and higher order
equations using response surface methods, ANOVA, box,
artificial neural network, and fuzzy logic method where the
models of these methods develop the amount of error is
very high compared to experimental values upto 3 digit
numbers [24]. )ese analyses require high value of digit
numbers not lower and decimal numbers for output values
compared to values of inputs to accomplish accuracy.
)ese methods are suitable for small number of inputs;
otherwise, erroneous empirical relation would be gener-
ated. )e above nonGP methods may use limited data
according design matrix and orthogonal array of tables,
and the equation will be developed by using optimal input
values [24].

Using Grey–Taguchi method, the overall performance
characteristic in Nd:YAG laser microdrilling of alumina
was calculated using grey relational grade (GRG) to find
a optimal parameter set for getting highest GRG. )e
optimal value of GRG was 0.9172 which indicates the
effectiveness of the proposed approach and the highest
value of GRG of 0.8989 for confirmation experiment.

)e overall quality feature is improved by 2.03% at optimal
condition with HAZ width by 8.78%, and the hole
taper worsened by 2.14%. )is shows that, in multilevel
optimization of performance, characteristics cannot
reach simultaneously optimum value, instead they have to
compromise between various performance characteristics
to accomplish the optimum value pertaining to overall
performance. Both the performance characteristics im-
prove at optimum level with GRG of 0.1521 (19.88%). )e
taperness (from 0.0491 to 0.0476 rad) and HAZ width
(from 0.2180 to 0.1683mm) are decreased at the same time.
From the results, we can see that optimum results can
provide correlations at the accuracy level of 85% if outputs
are limited to two numbers. By increasing output quality
characteristics as well as input parameters and number of
experiments, it is very difficult to arrive at optimal set and
corresponding correlations obtained by regression anal-
ysis. )erefore GP-based solutions maintain an accuracy
level beyond statistical analysis irrespective of number of
outputs and inputs [25].

)e model used experimental measurements collected
by converting into three independent datasets such as
training, validation, and applied. Independent input vari-
ables used are pulse power (v0), pulse frequency (v1), as-
sistance of gas pressure (v2), and pulse width (v3) and
circularity, spatter, heat affected zone, and taper as the
dependent output variable. Various models for outputs are
developed by GP using the training dataset [23]. Best
mathematical models obtained from GP simulation are
given by equations (1)–(4)

circularity �
2GF2 − v0

v0
−
1.745

v0
+ 0.904515, (1)

spatter � 1 +
N

2[ (K + L)−(4L− 1.9/K + L){ } + 2 [(4L− 1.9/K) + L]0.5{ }]− 0.55
 

2

− 1.152⎡⎣ ⎤⎦

4

, (2)

taper � V P−N/(N−M + L/M) + V/(M−N)
3

+(OV)/(M−N)
3

  

/(M−N)
3 −V(F + G +  Q F + H2Q2 − 1 

0.25
Q2

+ 2H2Q2
+ 4 

/ 3Q− 3− 2F− 2G− 2 F + H2Q2 − 1 
0.25

Q2
+ 2H2Q2

+ HQ + 5 − 2v3 + 0.73

/ 3Q− 3− 2F− 2G− 2 F + H2Q2 − 1 
0.25

Q2
+ 2H2Q2

+ HQ + 5 −H2Q2 − 1 

/ (M−N)
3 P−N/(N−M + L/M) + V/(M−N)

3
+(OV)/(M−N)

3
   + 1.05,

(3)

heat affected zone �
(1.22L/I)− 0.682

v1v3
 − 0.079−

1.22F

G
−
0.5356G

v0
  +

(1.22L/I)− 0.682
v1

. (4)

Appendixes A, B, C, and D show further details related
to the derivation of the circularity, spatter, taper, and heat
affected zone, respectively.

Comparison of the experimental and predicted outputs
using the mathematical model obtained fromGP is shown in
Tables 2–5 for circularity, taper, spatter, and HAZ of pulsed
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Nd:YAG laser microhole drilling of MMC components.
Errors in determining predicted outputs are very few, and
the percentage of error is less than ±1% which shows that
results obtained from a GP mathematical model are highly
acceptable.

Furthermore, Figure 2 shows the regression fit for the
percentage of microdrilling process parameters of the MMCs.

Figure 3 shows the experimental-predicted relationship of
circularity, HAZ, taper, and spatter with the normal distri-
bution behaviour. )e models generated by the genetic
programming perform better based on statistical terms and
the historical dataset (training, validation, and applied data) to
exhibit a better predictive capacity on the experimental
dataset.)e analysis of themathematical expression of the GP

Table 2: Comparison between experimental and predicted values of circularity at R2 � 99.68.

No. PP (W) (v0) PF (Hz) (v1) AGP (kg/cm2) (v2) PW (ms) (v3)
Circularity (mm)

Error %
Experimental GP

1 250 210 12 0.4 0.908 0.908066 −6.6E − 05
2 210 210 8 0.2 0.9032 0.903074 0.000126
3 240 220 12 0.4 0.911 0.911254 −0.00025
4 210 210 8 0.6 0.953 0.953124 −0.00012
5 250 220 8 0.6 0.9425 0.941842 0.000658
6 210 250 12 0.6 0.978 0.978011 −1.1E − 05
7 210 230 10 0.4 0.948 0.945836 0.002164
8 230 210 10 0.6 0.957 0.958292 −0.00129
9 210 230 10 0.3 0.923 0.922506 0.000494
10 240 210 11 0.3 0.892 0.89308 −0.00108
11 220 210 9 0.3 0.926 0.926227 −0.00023
12 230 230 12 0.3 0.92 0.920843 −0.00084
13 240 220 12 0.3 0.9205 0.920919 −0.00042
14 220 250 8 0.3 0.896 0.895994 6.11E − 06
15 230 210 10 0.5 0.947 0.94698 1.96E − 05
16 240 230 8 0.4 0.899 0.898971 2.94E − 05
17 240 210 11 0.2 0.892 0.893078 −0.00108
18 220 240 12 0.6 0.974 0.973441 0.000559
19 240 250 10 0.6 0.954 0.955555 −0.00155
20 250 250 11 0.4 0.92 0.919789 0.000211
21 250 240 10 0.2 0.894 0.893536 0.000464
22 230 250 9 0.5 0.953 0.949875 0.003125
23 210 250 12 0.5 0.958 0.963079 −0.00508
24 250 240 10 0.3 0.892 0.893537 −0.00154
25 250 220 8 0.5 0.938 0.933247 0.004753
26 250 250 11 0.3 0.895 0.903726 −0.00873
27 230 230 12 0.2 0.893 0.892581 0.000419
28 230 220 11 0.2 0.89 0.892581 −0.00258
29 240 240 9 0.6 0.95 0.949358 0.000642
30 220 240 12 0.2 0.893 0.892039 0.000961
31 250 230 9 0.2 0.896 0.896958 −0.00096
32 220 220 10 0.5 0.951 0.950144 0.000856
33 240 240 9 0.5 0.95 0.943263 0.006737
34 210 220 9 0.2 0.9 0.896232 0.003768
35 220 250 8 0.2 0.902 0.896907 0.005093
36 250 210 12 0.5 0.948 0.94813 −0.00013
37 220 220 10 0.4 0.936 0.923214 0.012786
38 230 240 8 0.3 0.901 0.90405 −0.00305
39 250 230 9 0.6 0.9475 0.947726 −0.00023
40 230 250 9 0.4 0.911 0.928516 −0.01752
41 240 250 10 0.2 0.895 0.895507 −0.00051
42 220 210 9 0.4 0.91 0.90617 0.00383
43 240 230 8 0.5 0.94 0.936347 0.003653
44 210 240 11 0.5 0.951 0.959169 −0.00817
45 220 230 11 0.5 0.95 0.954643 −0.00464
46 220 230 11 0.6 0.97 0.967844 0.002156
47 230 240 8 0.4 0.901 0.906892 −0.00589
48 230 220 11 0.6 0.966 0.964493 0.001507
49 210 240 11 0.4 0.93 0.943397 −0.0134
50 210 220 9 0.3 0.922 0.918336 0.003664
PP: pulse power (W), PF: pulse frequency (Hz), PW: pulse width (ms), AGP: assist gas pressure (Kg/cm3).

Modelling and Simulation in Engineering 5



Model suggests specific laser output quality characteristics for
the experimental system under various control factors that
can be associated with the performance of a laser microdrilled
hole in MMCs. )e models generated by genetic pro-
gramming allow representation of the experimental data
without a detailed knowledge of the phenomenon. In addi-
tion, their study allows us to obtain a deeper insight into the
relevant factors in describing the quality phenomenon; for

instance, changes in any of the factors observed in quality of
the microhole produced that might be associated with
changes in the performance of hole production in MMC.

5. Conclusions

In this present work, new models of the circularity, spatter,
heat affected zone, and taper of MMCs drilling properties at

Table 3: Comparison between experimental and predicted values of HAZ at R2 � 99.88.

No. PP (W) (v0) PF (Hz) (v1) AGP (kg/cm2) (v2) PW (ms) (v3)
HAZ (mm)

Error %
Experimental GP

1 240 230 8 0.4 0.04 4.19E − 02 −0.00188
2 230 210 10 0.5 0.112 0.107232 0.004768
3 230 230 12 0.3 0.068 7.13E − 02 −0.00328
4 210 230 10 0.3 0.068 7.17E − 02 −0.00368
5 220 240 12 0.2 0.081 8.02E − 02 0.000789
6 240 220 12 0.3 0.078 7.82E − 02 −0.00023
7 220 210 9 0.4 0.088 8.75E − 02 0.000453
8 250 220 8 0.6 0.104 0.103178 0.000822
9 210 210 8 0.2 0.065 6.80E − 02 −0.00305
10 250 210 12 0.4 0.1 9.97E − 02 0.000311
11 210 230 10 0.4 0.069 7.04E − 02 −0.00139
12 240 220 12 0.4 0.073 7.20E − 02 0.00103
13 230 220 11 0.6 0.085 8.46E − 02 0.000417
14 220 250 8 0.3 0.102 0.101978 2.21E − 05
15 220 230 11 0.6 0.089 8.67E − 02 0.002272
16 220 220 10 0.5 0.094 9.50E − 02 −0.00098
17 240 240 9 0.6 0.105 0.102995 0.002005
18 240 210 11 0.2 0.085 8.12E − 02 0.003847
19 220 250 8 0.2 0.0747 7.28E − 02 0.001893
20 230 250 9 0.5 0.1 0.103908 −0.00391
21 210 220 9 0.3 0.082 8.05E − 02 0.001512
22 210 250 12 0.5 0.0909 9.14E − 02 −0.00051
23 210 250 12 0.6 0.0921 9.28E − 02 −0.00071
24 220 210 9 0.3 0.101 0.101721 −0.00072
25 240 240 9 0.5 0.1 0.10225 −0.00225
26 230 250 9 0.4 0.094 9.11E − 02 0.002885
27 240 250 10 0.6 0.096 9.56E − 02 0.000406
28 250 210 12 0.5 0.097 9.83E − 02 −0.00131
29 230 230 12 0.2 0.076 7.74E − 02 −0.0014
30 220 230 11 0.5 0.092 9.06E − 02 0.001379
31 210 240 11 0.4 0.072 7.25E − 02 −0.00049
32 230 210 10 0.6 0.095 9.25E − 02 0.002548
33 250 250 11 0.3 0.078 7.72E − 02 0.000826
34 250 220 8 0.5 0.105 0.104177 0.000823
35 210 220 9 0.2 0.084 7.68E − 02 0.007168
36 220 240 12 0.6 0.095 9.20E − 02 0.003025
37 230 240 8 0.4 0.055 4.67E − 02 0.008281
38 210 210 8 0.6 0.1 9.79E − 02 0.002054
39 250 230 9 0.2 0.07 7.45E − 02 −0.00448
40 240 250 10 0.2 0.095 8.29E − 02 0.012098
41 240 210 11 0.3 0.08 7.90E − 02 0.001025
42 230 240 8 0.3 0.09 8.87E − 02 0.001309
43 210 240 11 0.5 0.084 9.04E − 02 −0.00638
44 250 240 10 0.3 0.065 7.74E − 02 −0.01241
45 250 230 9 0.6 0.095 9.90E − 02 −0.00402
46 250 250 11 0.4 0.08 0.081854 −0.00185
47 230 220 11 0.2 0.077 0.0783 −0.0013
48 220 220 10 0.4 0.075 0.07292 0.00208
49 250 240 10 0.2 0.091 8.82E − 02 0.002776
50 240 230 8 0.5 0.09 0.090104 −0.0001
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different laser operating parameters are generated using
Discipulus GP software and C programming. Using GP-
based mathematical models, quality of laser drilled hole
properties for MMCs involving various laser input pa-
rameters is determined quickly by substitution of laser input
conditions, and without conducting any experiments, the
actual results can be predicted. )e comparison between the
new GP-based model and the experimental results indicated

that the new model is more accurately close to ± 0.006 to
0.009. )erefore, the new model can be considered an
alternative method to estimate the mechanical properties
when the experimental measurements or correlations are
not available. )e correctness of solutions achieved by GP
depends on correlated evolutionary parameters, the
number of experimental results, and their level of accuracy.
To improve the structure of the model during evolution,

Table 4: Comparison between experimental and predicted values of taper at R2 � 99.43.

No. PP (W) (v0) PF (Hz) (v1) AGP (kg/cm2) (v2) PW (ms) (v3)
Taper (deg)

Error %
Experimental GP

1 230 250 9 0.4 3.5 3.48E + 00 0.020539
2 230 240 8 0.4 3.702 3.68349 0.01851
3 210 220 9 0.3 3.815 3.816499 −0.0015
4 230 210 10 0.5 3.75 3.72E + 00 0.034738
5 240 250 10 0.2 4.135 4.12E + 00 0.017045
6 210 240 11 0.4 3.45 3.43E + 00 0.023249
7 230 230 12 0.3 3.925 3.86E + 00 0.064339
8 220 240 12 0.6 3.5 3.487621 0.012379
9 220 240 12 0.2 4.12 4.13E + 00 −0.00979
10 240 220 12 0.3 3.8 3.81E + 00 −0.00709
11 230 240 8 0.3 3.8 3.79E + 00 0.010771
12 220 250 8 0.3 3.962 3.96E + 00 0.006659
13 230 220 11 0.2 4.16 4.16E + 00 −0.00037
14 240 220 12 0.4 3.775 3.757363 0.017637
15 250 230 9 0.6 3.8 3.770205 0.029795
16 210 210 8 0.6 4.2 4.200192 −0.00019
17 230 220 11 0.6 3.75 3.718309 0.031691
18 220 250 8 0.2 4.05 4.10E + 00 −0.04831
19 250 210 12 0.4 4.1 3.96E + 00 0.138649
20 250 220 8 0.5 3.5 3.522696 −0.0227
21 240 240 9 0.5 3.4 3.41E + 00 −0.01021
22 210 210 8 0.2 4.1 4.10E + 00 0.00162
23 240 230 8 0.5 3.505 3.523799 −0.0188
24 210 230 10 0.4 3.58 3.633331 −0.05333
25 220 210 9 0.3 3.6 3.774172 −0.17417
26 250 250 11 0.3 3.8 3.846722 −0.04672
27 210 240 11 0.5 3.307 3.441274 −0.13427
28 250 240 10 0.2 4.1 4.105488 −0.00549
29 220 230 11 0.5 3.3 3.441037 −0.14104
30 240 250 10 0.6 3.8 3.81E + 00 −0.00654
31 230 210 10 0.6 3.305 3.638603 −0.3336
32 230 250 9 0.5 3.38 3.41E + 00 −0.03093
33 230 230 12 0.2 4.05 4.110147 −0.06015
34 210 220 9 0.2 4 4.125376 −0.12538
35 250 230 9 0.2 4.15 4.123817 0.026183
36 240 240 9 0.6 3.75 3.748872 0.001128
37 240 210 11 0.3 3.9 3.86E + 00 0.043294
38 250 210 12 0.5 3.65 3.501807 0.148193
39 210 250 12 0.6 3.25 3.47E + 00 −0.21634
40 210 250 12 0.5 3.45 3.49592 −0.04592
41 220 220 10 0.5 3.6 3.572536 0.027464
42 240 210 11 0.2 3.95 4.11E + 00 −0.16276
43 250 220 8 0.6 3.6 4.114297 −0.5143
44 220 220 10 0.4 3.8 3.694675 0.105325
45 250 250 11 0.4 3.9 3.655343 0.244657
46 240 230 8 0.4 3.6 3.615975 −0.01597
47 220 230 11 0.6 3.4 3.677536 −0.27754
48 220 210 9 0.4 3.5 3.48E + 00 0.023193
49 250 240 10 0.3 3.8 3.80E + 00 0.004566
50 230 250 9 0.4 3.5 3.48E + 00 0.020539
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Table 5: Comparison between experimental and predicted values of spatter at R2 � 99.3.

No. PP (W) (v0) PF (Hz) (v1) AGP (kg/cm2) (v2) PW (ms) (v3)
Spatter (mm)

Error %
Experimental GP

1 220 220 10 0.4 0.055 5.49E − 02 0.00013
2 230 220 11 0.6 0.044 4.42E − 02 −0.00018
3 210 250 12 0.6 0.044 4.34E − 02 0.000648
4 240 220 12 0.3 0.043 4.32E − 02 −0.00022
5 230 240 8 0.3 0.04 4.36E − 02 −0.00365
6 210 230 10 0.3 0.042 4.21E − 02 −7.3E − 05
7 250 240 10 0.2 0.065 6.50E − 02 3.18E − 05
8 230 230 12 0.2 0.043 4.31E − 02 −7.8E − 05
9 240 240 9 0.6 0.072 7.16E − 02 0.000406
10 230 220 11 0.2 0.045 4.50E − 02 −1.6E − 05
11 250 230 9 0.2 0.068 6.82E − 02 −0.00024
12 220 240 12 0.6 0.052 5.23E − 02 −0.00028
13 210 250 12 0.5 0.043 4.29E − 02 6.36E − 05
14 220 210 9 0.4 0.059 5.94E − 02 −0.00045
15 210 220 9 0.2 0.0445 0.044101 0.000399
16 220 240 12 0.2 0.05 5.02E − 02 −0.00019
17 230 210 10 0.5 0.072 7.03E − 02 0.001661
18 230 240 8 0.4 0.071 6.97E − 02 0.001265
19 240 210 11 0.2 0.056 5.54E − 02 0.000566
20 230 250 9 0.5 0.074 7.25E − 02 0.001524
21 240 230 8 0.4 0.075 0.064522 0.010478
22 220 250 8 0.3 0.074 0.071546 0.002454
23 250 210 12 0.5 0.046 5.18E − 02 −0.00581
24 210 240 11 0.4 0.043 4.20E − 02 0.000993
25 230 210 10 0.6 0.049 5.21E − 02 −0.00307
26 250 250 11 0.3 0.065 5.50E − 02 0.010003
27 210 230 10 0.4 0.04 4.28E − 02 −0.00277
28 210 210 8 0.6 0.043 0.042277 0.000723
29 210 240 11 0.5 0.045 0.044648 0.000352
30 220 230 11 0.6 0.057 5.40E − 02 0.003045
31 240 220 12 0.4 0.042 4.29E − 02 −0.00093
32 240 250 10 0.2 0.066 6.64E − 02 −0.00042
33 230 230 12 0.3 0.041 4.27E − 02 −0.00171
34 230 250 9 0.4 0.069 6.84E − 02 0.000556
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Figure 2: Continued.
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R2 = 99.43%
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Figure 2: Regression fit for the percentage of microdrilling process parameters of the MMCs. (a) Experimental-predicted value of cir-
cularity. (b) Experimental-predicted value of HAZ. (c) Experimental-predicted value of taper. (d) Experimental-predicted value of spatter.
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Figure 3: Experimental-predicted relationship of (a) circularity, (b) HAZ, (c) taper, and (d) spatter.
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more information was supplied through experimental
measurements. )erefore, the proposed mathematical
model has verified its results are adaptable up to reliability
of 99.3 to 99.8% to forecast experimental results. In the
testing stage, the GP model gives the same result as was
found out during the experiment with the reliability of cent
percent. )e GP approach has thus proved to be a highly
skilled and advantageous tool for recognizing correlations

in data when no proper theoretical or other methods are
possible or available.

Appendix

A. Circularity

A � ( ( 0.954v0 +(2v2 + 0.1644)
2
(v2 + 0.1644)

2 − ( 4503599627370496( 2v3− v0 +(4v2 + 0.6576)(v2 + 0.1644)

+(2v2 + 0.1644)(v2 + 0.1644)
2
/4720808237398575−(2v2 + 0.1644)(v2 + 0.1644)

· ( 2(2v2 + 0.1644)
2
(v2 + 0.1644)

2 − ( 9007199254740992( 2v3− v0 +(4v2 + 0.6576)(v2 + 0.1644)

+(2v2 + 0.1644)(v2 + 0.1644)
2
/4720808237398575 + 2v0v3

−1
,

(A.1)

B �
A

A3 (v0/v1v3)2 −(71143/40000) 2A2 − 2 0.74 /v2   + 1.92 
2

+ 2A  + v1 v3/v1 

+ 0.9045,
(A.2)

C �
1

B− 2B7( )
 ∗ 2B

7
 − 1.35 2v3 , (A.3)

D � − (4B)
3 − 1.35 4v32 −

2
B
− 4B

6
  + 2C − 1.1 0.24  + 1.08 v3, (A.4)

E � 382Dv3v2C
2 −(2v1 + v0 + 2v2)

2
DC +

382Dv3v2C2 − 2v1 + v0( 

E2 + v2, (A.5)

F �
C

DC2 +
382Dv3v2C2 − 2∗ v1 + v0( DC

E2
+ 382Dv3v2C

2 − 2v1 + v0, (A.6)

G �
E2

(1/C) + 382Dv3v2C2 − 2v1 + v0
+ 2v0− 15F + 11v2 1.08 – v1. (A.7)

B. Spatter

A �
0.2454(8.272 0.2454 + v2{ }− 0.7335 + v3)8 − 0.18 

0.2454(8.272 0.2454 + v2{ }− 0.7335 + v3)8 − 0.1732 
, (B.1)

B � 0.2454(8.272 0.2454 + v2{ }− 0.7335 + v3)
8 − 0.1732 

+
1

0.2454(8.272 0.2454 + v2{ }− 0.7335 + v3)8 − 0.1732 − A2 − 0.56( ) 
4 − 0.442

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

2

,
(B.2)

C �
1 + v0

B
 

2
0.2454

1

B/ 0.2454(8.272 0.2454 + v2{ }− 0.7335 + v3)8 − 0.1732 − A2 − 0.56( ) 
4

 − 0.442 
2

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

, (B.3)
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D �
0.2454

B/ 0.2454(8.272 0.2454 + v2{ }− 0.7335 + v3)8 − 0.1732 − A2 − 0.56( ) 
4

 − 0.442 
2 −C + 0.96,

(B.4)

E �
D/ 4[( B−(1 + v0/B){ }/D)]2 − 0.256−D   

4[( B−(1 + v0/B){ }/D)]2 − 0.256−D 
2
− 1 

, (B.5)

F � B−
(1 + v0)

B
  + D C−

0.96
B−((1 + v0)/B){ }

  +
(2.8− v2)2/E 

[ B−(1 + v0/B){ } + D[C−(0.96/ B−(1 + v0/B){ })]]2 + v3 
, (B.6)

G � 2
(2.8− v2)2/E 

[ B−(1 + v0/B){ } + D[C−(0.96/ B−(1 + v0/B){ })]]2
+ 2v3 + 2E + 2, (B.7)

H � 2
(2.8− v2)2/E

[ B−(1 + v0/B){ } + D[C−(0.96/ B−(1 + v0/B){ })]]2 + 2v3 + 3E + 3
(B.8)

x � H
2G{ }0.5

F + G
, (B.9)

I � H + H
( v2[(F + G) + x] + 2[2x]{ }/ 2[2x]−[(F + G) + x]{ })

[(F + G) + x]
−[x] , (B.10)

J �
( [(F + G) + x]−[2x] + 2 (H/IH) +( IH/H{ }/[[(F + G) + x]−[2x]]){ }− 0.446){ }− 0.316)2

[(F + G) + x]−[2x] + 2
H

IH
+( IH/H{ }/[[(F + G + x)]−[2x]]) − 0.446

, (B.11)

K � [(F + G) + x]−[2x] + 2
H

IH
+

IH/H{ }

[[(F + G) + x]−[2x]]
 − 0.446 + J, (B.12)

L � 1.2698−
K

K
−

H

IH
+

( (IH/H/[[(F + G) + x]−[2x]]){ }− 0.446)

[[(F + G) + x]−[2x]]
, (B.13)

M � 2
4L− 1.9
K + L

 
0.5

  + v0− 2 (K + L)−
4∗ L− 1.9

K + L
  + 2∗

4∗L− 1.9
K + L

 
0.5

  , (B.14)

N �
H

IH
+

( (IH/H)/[[(F + G) + x]−[2x]]{ }− 0.446))

[[(F + G) + x]−[2x]]

+
M/(M + 2v2− 0.153)2 

2V2 (K + L)−(4L− 1.9/K + L){ } + 2 [(4L− 1.9)/(K + L)]0.5   
.

(B.15)

C. Taper

M−N−
L

M
+

N

N−M +(L/M)
 

4

� V, (C.1)
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Q � (A− 6C + 0.002v3 + 1)A

� ((4508098723398239)/(4503599627370496v2− 9007199254740.992v3 + 4512597819425982))− 0.001v3 +(2263)

/((10000∗ v0 + 54.2v3− 460707433240896051609600)/(9007199254740.992v3− 9382184668271360000))

+ (0.001v3− 0.001)(1.001v3− 0.001)
0.5

(195.28v3− 175.55 + 9989)− 0.091 /(4508098723398239)

/(4503599627370496v2− 9007199254740.992v3 + 4512597819425982)− 0.001v3
+ ((2263)/(10000v0 + 54.2v3− 460707433240896051609600/(9007199254740.992v3− 9382184668271360000))

+ (0.001v3− 0.001)(1.001v3− 0.001)
0.5195.28v3− 175.55 + 9989 − 0.091,

(C.2)

B � 0.001v3−A +
9016197446796478

(4503599627370496v2− 9007199254740.992v3 + 4512597819425982)

+
4526

(10000v0 + 54.2v3−(460707433240896051609600/(9007199254740.992v3− 938)))
,

(C.3)

C �
B29.01∗ 1015

4.51∗ 1015v2− 9∗ 1012v3 + 4.51∗ 1015
−A

+
4526

10000v0 + 54.2v3− 4.61∗ 1023 +(0.001v3–1000)(1.001v3–1000)0.5(195.26v3− 175.5) + 1000
− 0.001,

(C.4)

D � (4526)/10000v0 + 54.2v3− 46.07∗ 1022 / 9∗ 1012v3− 9.4∗ 1018  +(0.001v3− 1000)(1.001v3− 1000)
0.5

· (195.26v3− 175.5) + 10000− 9.01∗ 1015/ 4.5∗ 1015v2− 9∗ 1012v3 + 4.5∗ 1015  

−A +(Q + 1)
0.5

(Q + 4C)− 0.001
−1

,

(C.5)

E � 6C− A− 0.001v3− 10.18∗ 1015 22.52∗ 1016v0 + 12.2∗ 1016v3− 1038∗ 1036/ 10.43∗ 1018v3− 9.4∗ 1018 

+ 2.252v3 – 2.25∗ 1018 (1.001v3− 1000)
0.5

(195.26v3− 175.5) + 2.252∗ 1019 – 40.62∗ 1031

/ 10.41v2− 20.3∗ 1027v3 + 10.2∗ 1030  – 4.5∗ 1015/ 4.5∗ 1014v2− 9∗ 1012v3 + 4.5∗ 1015 − 2263/10000v0

+ 195.26v3 – 4.61∗ 1021/ 9∗ 1012v3− 9.4∗ 1018  +(0.001v3− 0.001)(1.001v3− 0.001)
0.5

· (195.26v3− 175.55 + 9989) + D
0.5

Q 
−1

,

(C.6)

F � 4.51∗ 1015 / 4.5∗ 1014v2− 10.43∗ 1018v3 + 4.51∗ 1015 − 0.001v3  +(2263)/ 10000v0 + 54.2v3− 4.6∗ 1023 

/ 10.43∗ 1018v3–9.4∗ 1018  +(0.001v3− 0.001)(1.001v3− 0.001)
0.5

(195.27v3− 175.55 + 9989)

− v3 + E
2 4.51∗ 1015 / 4.5∗ 1015v2–10.43∗ 1018v3 + 4.51∗ 1015 − 0.001v3  +(2263)

/10000v0 + 54.2v3− 4.61∗ 1027/ 10.43∗ 1018v3− 9.4∗ 1018  + (0.001v3− 0.001)(1.001v3− 0.001)
0.5

· (195.27v3− 175.55 + 9989)
2
/ Q

8 − 0.73 Q,

(C.7)

G � − ( v3 + E
2 4.51∗ 1015 / 4.5∗ 1015v2–9.01∗ 1012v3 + 4.51∗ 1014  − 0.001v3 +(2263)/10000v0 + 54.2v3

− 4.61∗ 1027 / 9.01∗ 1012v3− 9.4∗ 1018   +(0.001v3− 0.001)(1.001v3− 0.001)
0.5

· (1000000000v3− 899000000)/(5121169) + 9989
2/ Q

8 − 0.73 Q−Q
2
A – 9.02∗ 1015

/ 4.5∗ 1015v2 – 9.01∗ 1012v3 + 4.51∗ 1015 − (4526)/ 10000v0 + 54.2v3− 4.61∗ 1027/1018 ∗ (10.5v3 – 9.4)  

+ (0.001v3− 1000)(1.001∗ v3− 1000)
0.5

(195.26v3− 175.55) + 9989 + 0.001 /E2
,

(C.8)
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H � v3 + E
2 4.51∗ 1015 / 4.5∗ 1015v2− 11.26∗ 1014v3 /125 + 4.51∗ 1015   −(v3/1000)  +(2263)

/ 10000∗ v0 + 54.2v3− 46.1∗ 1022/1018 ∗ ((10.5v3–9.4))   + ((0.001v3− 0.001)(1.001v3− 0.001)
0.5

· 109v3–8.99∗ 108  (5121169 + 10000)2/ Q
8 − 0.73 Q + F  

−1
,

(C.9)

I � 6A− 36C− 8F− 8G + 8v3− 8Q− 16F− 8G + 8− 8 (HQ)
2 − 2 

0.25
Q

2
+ 4H

2
Q

2
+ 8 /3Q + 3− 2F− 2G

− 2 F +(HQ)
2 − 1 

0.25
Q

2
+ 2H

2
Q

2
+ HQ + 5− 8v3 + 2.92/3Q− 2F− 2G + 3− 2 (HQ)

2 − 1 
0.25

· Q
2

+ 2(HQ)
2

+ HQ + 5
−1

− 4 F +(HQ)
2 – 1 

0.25
Q

2
+ 8(HQ)

2 − 4Q + 4− 4F− 4G F +(HQ)
2 – 1 

0.5

· Q
2

+ 4(HQ)
2

+ 8/ 3Q + 3− 2F− 2G− 2 F +(HQ)
2 – 1 

0.25
Q

2
+ 2(HQ)

2
+ HQ + 5 

−1
+ 2Q + 12.54

0.5
,

(C.10)

J � 2A− 12C− 2F− 2G + 2I + 0.004v3− 2 F + H
2
Q

2 − 1 
1/4

Q
2

+ 2H
2
Q

2
+ 4 

1/2

−
J

2A− 12C− 2F− 2G + 2I +(v3/250)− 2 F + H2Q2 − 1( )
0.25

Q2 + 2H2Q2 + 4 
,

(C.11)

K � (2Q− 2F− 2G + 2I− 4) F + H
2
Q

2 − 1 
0.25

Q
2

+ 2H
2
Q

2
+ 40.5

−
(2J)

(2Q− 2F− 2G + 2I− 4) F + H2Q2 − 1( )
0.25

Q2 + 2H2Q2 + 4 
,

(C.12)

L �
J

(2Q− 2F− 2G + 2I− 4) F + H2Q2 − 1( )
0.25

Q2 + 2H2Q2 + 4 1.5
−

J

(Q−F−G + I) F + H2Q2 − 1( )
0.25

Q2 + 2H2 Q2 + 4( )
,

(C.13)

M �
K− L +(2Q− 2F− 2G− 4) F + H2Q0.25Q2 + 2H2Q2 + 4( 

K

−
(2Q− 2F− 2G− 4) F + H2Q2 − 1( 

0.25
Q2 + 2H2Q2 + 4

K K− L +(2Q− 2F− 2G− 4) F + H2Q2 − 1( )
0.25

Q2 + 2H2Q2 + 4/K( ) 
,

(C.14)

N �
(2Q− 2F− 2G− 4) F + H2Q2 − 1( 

0.25
Q2 + 2H2Q2 + 4 

KK− L + 2Q− 2F− 2G –Q2 − 4( )
0.25

Q2 + 2H2Q2 + 4( )/K( ) 
+

(2L/M)

M−(L/M)
, (C.15)

O � (−N/(N−M +(L/M)))/ F + G +(2Q− 2F− 2G− 4) F + H
2
Q

2 − 1 
0.25

Q
2

+ 2H
2
Q

2
+ 4  

·  (3Q− 2F− 2G− 5) F + H
2
Q

2 − 1 
0.25

Q
2

+ 2H
2
Q

2
+ HQ + 5 −(2v3 + 0.73) 

/ (3Q− 2F− 2G− 5) F + H
2
Q

2 − 1 
0.25

Q
2

+ 2H
2
Q

2
+ HQ−H

2
Q

2 − 1 
3

 
−1

,

(C.16)

P � O/ (M−N)
3/V   · F + G +  (2Q− 2F− 2G− 4) F + H

2
Q

2.25
+ 0.004H

2
Qv3 + 1 

2
+ 4 

/ (3Q− 2F− 2G− 5) F +(HQ)
2 − 1 

0.25
Q

2
  + 2(HQ)

2 − 1
0.25

Q
2

+ 2(HQ)
2

+ HQ + 5 – (HQ)
2 − 1

−1
.

(C.17)
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D. Heat Affected Zone (HAZ)

A � 1.38v3
(16306.51v2v3 + 14782.8v1v2)

(v0v1)2
−
13.94v3
v0v12
−
4.14v32

v1v0
− 1.38v3v2 + 0.4v3 + 1.725, (D.1)

B �
(2326.4v2v3 + 2109v1v2)

v0v1
−
3.366

v1
+

(16306.51v2v3 + 14782.8v1v2)

(v0v1)2
−

10.1
v0v12
−
3v3
v1v0
− v2 + 0.29, (D.2)

C � 2.73
18.44A

v32
− 2v0 

5435.5v2v3 + 4927.6v1v2
(v0v1)2

−
3.366
v0v12
−
0.92v3
v1v0

+ 1.09  

2

· 0.92 −
5435.5v2v3 + 4927.6v1v2

(v0v1)2
+

3.1
v0v12

+
0.92v3
v1v0

+ 0.92A − 0.121,

(D.3)

D � B + 2C
−(5435.5v2v3 + 4927.6v1v2)

(v0v1)2
+
3.366
v0v12

+
v3

v1v0
+ A  − 1, (D.4)

E �
[0.741D + v3]2 − 1 

2
− 3.2 

5435.5v2v3 + 4927.6v1v2/(v0v1)2 − 3.366/v0v12( )−(v3/v1v0) + 1.09 
, (D.5)

F � −
5435.5v2v3 + 4927.6v1v2

(v0v1)2
+
3.366
v0v12

+
v3

v1v0
+ A 8C(E− v3)

·
5435.5v2v3 + 4927.6v1v2/(v0v1)2 − 3.366/v0v12( −(v3/v1v0) + 1.09 

v0
⎧⎨

⎩

⎫⎬

⎭

2

,

(D.6)

G � 1.1 (1−F)
4 − 1 

2
− 1  + F 

2
− 1 + F 

2

− 1⎡⎣ ⎤⎦

4

− 1⎛⎝ ⎞⎠

4

− 1.1
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

2

, (D.7)

H � D + 0.741D + v3− [0.741D + v3]
2 − 1 

2
+ 1  + E− 16.92(G/v0) 

+
(33.84(G/v0)−(6F/G)− 0.066)

D + 0.741D + v3− [0.741D + v3]2 − 1 
2

+ 1  + E− 16.92(G/v0) (F/G)
,

(D.8)

I �
5435.5v2v3 + 4927.6v1v2

(v0v1)2
−
3.366
v0v12
−

v3
v1v0

+ 1.09 

−
F(33.84(G/v0)−(6F/G)− 0.066)

D + 0.741D + v3− [0.741D + v3]2 − 1 
2

+ 1  + E− 16.92(G/v0) G
,

(D.9)

J �
(85.14G/v0− 15.1F/G− 0.1662)

D + 0.741D + v3− [0.741D + v3]2 − 1 
2

+ 1  + E− 16.92∗ (G/v0) ∗ (F/G)
,

(D.10)

K � 2.5
1− 2JIH3 + 2I/(Hv2)  

[(F/G)− 0.44(G/v0)]I2{ }
+

v2
v0

+ 2JIH
3

+
2I

(Hv2)
 , (D.11)

L �
v2 2v1 K

Iv0 
2 − 1 

2

v0− 2JIH3 + 2I/Hv2( ){ }[ ]/I( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠− v0− 1.26

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 2JIH
3

+
2I

(Hv2)
 . (D.12)
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