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A cellular automaton (CA) model is proposed to simulate the egress of pedestrians while gaseous hazardous material is spreading.
*e advection-diffusion with source term is used to describe the propagation of gaseous hazardousmaterial. It is incorporated into
the CA model. *e navigation field in our model is determined by the solution of the Eikonal equation. *e state transition of a
pedestrian relies on the arrival time of cells in the Moore neighborhood. Numerical experiments are investigated in a room with
multiple exits, and their results are shown.

1. Introduction

During the recent decades, the research on pedestrian flow
has become an interesting and important issue to study. A
large number of scientists from different research fields have
paid attention to studying and modeling the pedestrians’
movements during evacuations. Pedestrian models can help
planers and designers to build safe public places and provide
important information to understand pedestrian dynamics.

Presently, the main methods to study pedestrian evac-
uation are based on experiment and simulation modeling.
Many pedestrian evacuation models have been investigated
by researchers on different levels of description, such as on
macroscopic models and on microscopic models. *e
macroscopic models usually apply to the case of large crowd
and involve averaged quantities, in particular density, ve-
locity, and energy. Examples of macroscopic models used for
the pedestrian flow model can be found in [1, 2] for the first
order macroscopic models (or scalar models) and in [3, 4]
for second order macroscopic models. *e microscopic
models describe the time evolution of the position of each
individual, addressed as a discrete particle. It mainly con-
tains a social force model [5], an optimal-velocity model [6],
a magnetic force model [7], cellular automata models [8],
and a discrete choice model [9].

*e spreading of some gaseous hazardous material (e.g.,
smoke, a gas cloud) is one of the most important factors that
have a great impact on an evacuation. Quite a number of
researches focus on pedestrian evacuations under smoke and
fire conditions. Zhao and Gao proposed an extended floor-
field model to study the pedestrian evacuation under the
influence of smoke diffusing. Smoke avoiding and herding
behavior of pedestrians are observed in their model [10].
Nguyen et al. integrated the smoke effect and the blind
evacuation strategy into the fire evacuation. *e results were
confirmed by empirical data from metro supermarket [11].
Zheng et al. studied the influence of the fire and the smoke
on the movement of pedestrians. An extended Floor-Field
model is carried out for study. *eir simulation results show
that the fire location in the room and the spreading rates of
the fire and the smoke highly influence the pedestrian
evacuation dynamics [12].

In this work, we are interested on the evacuation of
pedestrians during the spread of some gaseous hazardous
material. A cellular automaton model is used to simulate
pedestrian movements. It is combined with the advection-
diffusion equation, which is applied to the gaseous haz-
ardous material density. *is equation is used in many
applications in science and engineering for fluid motion,
heat transfer, and flow of gas or pollutant [13]. We solve it
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numerically by the operator splitting method, which is an
efficient approach to solve problems in multidimensions.
For the navigation field in our model, the Eikonal equation is
applied to attain the arrival time of each cell in the domain. A
pedestrian chooses a cell in the Moore neighborhood
according to the travelling time in the next time step. *e
Eikonal equation is also incorporated into the CAmodel and
solved numerically by the fast marching method [14].

*e main objective of this paper is to include the ad-
vection-diffusion equation [13] and the Eikonal equation
[15] into a cellular automaton model. *e developed model
is extended to describe the pedestrian flow, while hazard gas
is propagating. *e path field is determined by the arrival
time of cells, which is obtained from the Eikonal equation.
*e arrival time of cells depends on the pedestrian density as
well as on the hazard density. *e influences of the pe-
destrian density and the hazard source location on the ar-
rival time and evacuation time are investigated and
discussed.

*e framework of this paper is organized as follows. In
Section 2, we present the cellular automaton model and
explain a way to couple it with the advection-diffusion and
the eikonal equation. *e update rules and the numerical
methods to solve the advection-diffusion equation and the
Eikonal equation are prescribed in this section. Numerical
experiments and results are demonstrated in Section 3.
Finally, conclusions are made in Section 4.

2. Model

We consider the pedestrian evacuation problem of a mul-
tiple exits room where there is a source of gaseous hazard
material inside the room. We assume that the smoke density
has no effect on the pedestrians’ visibility and their health.
All pedestrians have a global knowledge of the physical
setting of the room. *e room is divided into a uniform
rectangular grid of cells. *e size of a cell is taken as
0.4m × 0.4m, which is the typical space occupied by a
person in a dense crowd [16].*e time domain is discretized
into a series of t1, t2, . . . , tm, . . . , where m is an integer.
Pedestrians can only move to an empty cell of the Moore
neighborhood [17]. A pedestrian selects a cell in the Moore
neighbours to move in the next time step according to the
arrival time of the cells, which is computed from the fol-
lowing Eikonal equation [15]:

|∇T(x)| �
1

F(x)
, x ∈ Ω,

T(x) � 0, x ∈ Γ0 ⊂ Ω,

Front � Γt � x | T(x) � t{ },

(1)

whereΩ is a simulation domain, T(x) is the arrival time of a
front crossing the point x, and Γ0 stands for an initial front or
area in the domain where the pedestrians want to go. Γt is the
front at time t. F(x)≥ 0 is a moving speed of the front and
depends on the position of x. It is set to

F(x) �
0.001, x ∈ Ωb,

U(ρ(x)), x ∈ Ω/Ωb,
 (2)

where Ωb are areas that are obstructed by obstacles [15] or
areas with high hazard gas density. U is the speed-density
function. It describes the relationship between the speed and
the density of pedestrians. Presently, there are many speed-
density functions available. In our simulation, we choose the
following [18].

U(ρ(x)) � Umax 1 −
ρ(x)

ρmax
 ,

ρ(x) �
1

πR2 

j, x− xj


<R

1,

(3)

where Umax and ρmax are the maximum speed and the
density of the pedestrians, respectively. R is the radius of a
ball used to compute the density ρ. 1/πR2 is a circle area with
radius R. In the proposed model, the gaseous hazard density
is integrated into the CAmodel which is used to describe the
pedestrians’ movements while hazard gas is spreading. *e
development of hazard material is expressed through the
following linear advection-diffusion equation [13, 19, 20]:

zC

zt
+ w · ∇C � κd∇

2
C + S cs, t(  ∈ Ω × R

+
, (4)

with the Dirichlet boundary conditions C � 0 on zΩ, the
diffusion constant κd > 0, the velocity field
w � (w1, w2) ∈ R2, the source term S(cs, t), and the simu-
lation domain Ω ⊂ R2. For simplification, we assume that
the source of hazard emits gas at a constant rate Qc[g/s]
from a single source point cs � (xs, ys). *us, the source
term can be written as

S cs(  � Qcδ x − xs( δ y − ys( , (5)

where δ is the Dirac delta function given by

δ(x) �
1, x � 0,

0, x≠ 0.
 (6)

2.1. Solving the Advection-Diffusion Equation. *ere are
various numerical techniques in the literature for solving the
problems of the advection-diffusion equation, for example,
the finite difference method, finite element method, finite
volume method, sprectral method, and method of lines. For
our purpose, we apply the operator splitting method, which
usually solves multidimensional problems efficiently. In two
dimensions, it is split into two parts. *e x-direction and y-
direction are handled separately over two time steps. First,
we generate a grid and use the same size as pedestrian CA
cells, i.e.,

xi � a + ihx, i � 0, 1, 2, . . . , Nx, hx � 0.4,

yj � c + jhy, j � 0, 1, 2, . . . , Ny, hy � 0.4,
(7)
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where Ω � (a, b) × (c, d). *en, we perform the operator
splitting on the two-dimensional advection-diffusion
equation by writing them as

C
∗
i,j � C

t
i,j − Δt w

∗
1
zC∗

zx
− κd

z2C∗

zx2 , (8)

C
t+1
i,j � C

∗
i,j − Δt w

t+1
2

zCt+1

zy
− κd

z2Ct+1

zy2  + ΔtSt
i,j, (9)

where

zC∗

zx
�

C∗i,j − C∗i− 1,j

Δx
,

z2C∗

zx2 �
C∗i+1,j − 2C∗i,j + C∗i− 1,j

Δx2 ,

zCt+1

zy
�

Ct+1
i,j − Ct+1

i,j− 1

Δy
,

z2Ct+1

zy2 �
Ct+1

i,j+1 − 2Ct+1
i,j + Ct+1

i,j− 1

Δy2 .

(10)

We assume that the hazard gas density on the boundaries
is zero. *erefore, the Dirichlet boundary conditions are
applied:

C(0, y, t) � 0,

C Nx, y, t(  � 0,

C(x, 0, t) � 0,

C x, Ny, t  � 0.

(11)

Initial conditions are given by

C(x, y, 0) � Qcδ x − xs( δ y − ys( , (12)

where (xs, ys) is a hazard source point and Qc is gas
concentration at initial time. First, we solve implicitly the
equation (8) in x-direction and obtain C∗i,j for all grid points
i, j. *e value C∗i,j is used to solve equation (9) in y-di-
rection. Finally, we receive the hazard gas density for the
next time step Ct+1

i,j for all grid points i, j. For further details
and the convergence of this method, we refer to the ref-
erence [21].

2.2. Solving the Eikonal Equation. Several methods exist to
solve the Eikonal equation, for example, the fast marching
method [22], fast marching level set method [14], fast
sweeping method [23], and fast iterative method [24]. In our
experiments, we employ the fast marching method, which is
well known and efficient to solve the Eikonal equation (1).
*e solution of the Eikonal equation, which is obtained from
the fast marching method, is constructed outwards from the
boundary data, ordered from the smallest to the largest
arrival time. *e fast marching method used the upwind
scheme to discretize the Eikonal equation.

2.3. Update Rule. *e main algorithm for updating the
pedestrians’ positions in each time step is as follows:

Step 0

(a) Discretize the simulation domain into a rectangular
grid with size 0.4m × 0.4m. *ree types of grid
points are generated. One grid is for pedestrian CA
cells. One is for solving the Eikonal equation to
receive the arrival time of each cell in the domain.
Another one is for solving the advection-diffusion
equation to obtain gas hazard density.

(b) Randomly distribute the pedestrians in the simu-
lation domain. Each cell occupies only one occu-
pant or none.

(c) *e state of a cell, occupied by an individual, is
assigned to 1. Empty cells receive the value 0.

Step 1: each pedestrian stays within one current po-
sition (CP) at time ts.
Step 2: solve the advection-diffusion equation applying
the operator splitting method with the same size of
lattice spacing as the pedestrian cell in the CA model.
*e hazard density of each cell on the domain is
obtained.
Step 3: compute the pedestrian density of each cell in
the domain.
Step 4: solve the Eikonal equation using the fast
marching method with the same size of lattice spacing
as the pedestrian cell in the CAmodel. T(x) � 0, where
x is a grid point on the exits. F(x) � Umax
(1 − (ρ(x)/ρmax)) is set for walkable cells and F(x) �

0.001 for obstacle cells or cells with high hazard density
(C(x) ≥ 0.05). *e arrival times of each cell on the
domain are received.
Step 5: each pedestrian chooses randomly one cell in
the Moore neighborhood, which has less or equal
remaining travel time than his current cell, for the time
step ts+1.
Step 6 (parallel update):a conflict arises when two or
more pedestrians attempt to move to the same cell.
Pedestrians, who have no conflict with other, move to
their selected cell. For pedestrians with conflicts, the
chosen cell is randomly assigned to one of them with
equal probability. *e selected pedestrian moves to the
interrelated cell, and the unselected pedestrians remain in
their original CPwithoutmoving until the next time step.
Step 7: all pedestrians update their CP for the time step
ts+1.
Step 8: update the state of each cell in the domain. *e
cell state is assigned to 1, if it is occupied by an oc-
cupant. Otherwise it is 0.
Step 9: set ts � ts+1 and return to Step 1 until ts � tend.

Remark 1. In Step 4, we set the threshold smoke concen-
tration as C(x) ≥ 0.05. It is assumed to be high enough to
influence the movements of the pedestrians. *is value
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reduces the visibility range of a pedestrian to about 6m− 7m,
and his speed is effected significantly, as described in the
references [25, 26].

3. Numerical Experiments and Results

We perform the following numerical experiments. *e
pedestrians are randomly distributed in the room at the
initial time of the simulation and have to be evacuated from
the room if there is a source of some gaseous hazardous
material (e.g., smoke or a gas cloud). *e modeling area is a

rectangle (16m × 20m) with two exits which are located at
the bottom and on the right side of the room. *e exits are
labeled Exit 1 and Exit 2, respectively. *e width of each exit
is 2m, see Figure 1. *e simulation domain is meshed into
grid cells. Each cell has a size of 0.4m × 0.4m which is the
typical space occupied by a person in a dense area [27].*us,
the average movement of an individual in each time step is
0.48m (parallel movement 0.4m or diagonal movement
0.4

�
2

√
m). As the average velocity of pedestrians in a nervous

state is about 1.65m/s [28, 29], one time step in the CA
model is 0.29 s. In order to obtain the general results, the
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Figure 1: *e modeling area for the numerical experiments.
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Figure 2: *e spread of gaseous hazardous material in scenario (i) and scenario (ii) at time 5.22 s, 15.08 s, and 39.15 s. *e velocity field
(w1, w2) in equation (4) is chosen randomly out of the interval [− 0.5, 0.5]. (a) t� 5 : 22 s, (b) t� 15 : 08 s, (c) t� 39 :15 s, (d) t� 5 : 22 s, (e)
t� 15 : 08 s, and (f) t� 39 :15 s.
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numerical simulations are operated ten trial runs for the
same example and their average is recorded. No re-entering
mechanism was allowed. *e evacuation process runs for
65 s. All simulation programs are implemented inMATLAB.

To give an impression of the gaseous hazardous material
that is spreading, we assume that the hazard density at the
source point is rather high at the initial time and restrict our
study to only one source. Furthermore, the hazard gas
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Figure 3: A plot of the ball radius R versus the average evacuation time.

Table 1: *e average evacuation time and the percentage of pedestrians who move out through Exit 1. *e source is in the middle of the
room in scenario (i) and in front of Exit 1 in scenario (ii).

Number of pedestrians
Evacuation time (s) Exit 1 (%)

Scenario (i) Scenario (ii) Scenario (i) Scenario (ii)
100 15.6020 s 21.1990 s 45.70 2.6
300 21.0250 s 34.5390 s 47.60 1.7
500 30.8850 s 56.2020 s 47.14 2.32

Total
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Figure 4: Number of outside pedestrians of scenario (i) and scenario (ii). Total number of pedestrians is 300. (a) Source is in the middle and
(b) source is near Exit 1.
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particles are supposed to generate from the source with a
constant rate, i.e.,

Qc �
10g/s, t � 0,

0.1g/s, t> 0.
 (13)

*e velocity field (w1, w2) in equation (4) is chosen
randomly out of the interval [− 0.5, 0.5] at each time step.
*e maximum velocity Umax is set to 3m/s, and the max-
imum density ρmax is 10 ped/m2. Figure 2 shows the
snapshots of the spreading of the hazard where the source is
located in the middle of the room and in front of Exit 1 at
time intervals t� 5.22 s, 15.08 s, and 39.05 s. One can see that

the gas particles, which are produced by the source of the
hazard, spread around in the course of the experiment.

First, we start with exploring the impact of a ball radius
R, which is used to compute the pedestrian density in
equation (3) on the evacuation time. A ball radius is set to
1, 2, . . . , 10m for analyzing. *e evacuation process begins
with 300 pedestrians placed in a homogeneously distributed
arrangement throughout the room. *e pedestrians escape
from the room, while the source of the gaseous hazardous
material is located in front of Exit 1. We measure the mean
evacuation time for ten trial runs using each radius. A plot of
the mean evacuation time versus the ball radius R is shown
in Figure 3. *e average evacuation time is rather high when

Table 2: *e computation time of ten trial runs in scenario (i) and in scenario (ii) with 100, 300, and 500 evacuees.

Number of pedestrians
CPU time (10 rounds)

Scenario (i) Scenario (ii)
100 0.4116 h 0.7349 h
300 0.5132 h 0.8940 h
500 0.7130 h 1.2547 h
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Figure 5: *e movements of 300 pedestrians during smoke spreading, where the source is in the middle of the room. *e velocity field
(w1, w2) of the advection-diffusion equation (4) is chosen randomly out of the interval [− 0.5, 0.5].
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the ball radius is set to 1. As the ball radius increases from
1m to 4m, the evacuation time is reduced. *e mean
evacuation times are slightly different when the ball radius is
more than 4. *erefore, the ball radius R influences the
evacuation time of evacuees. Setting a very small radius R
means pedestrians consider less pedestrian density for
moving, leading to longer evacuation time. *us, pedestrian
density influences the arrival time of the cells and therefore
the evacuation time.

*en, we examine the effect of the hazard source’s lo-
cation on the evacuation process. *e hazard source posi-
tions are considered in two cases: in the middle of the room
in scenario (i), and it is located in front of Exit 1 in scenario
(ii). *e number of evacuees in the experiments is 100, 300,
and 500. *e ball radius R in equation (3) is fixed to 4m for
all trials. Table 1 displays the average evacuation time and the
percentage of pedestrians who are moving out through Exit
1 considering the hazard spreading effect in scenario (i),
where the source is in themiddle of the room and in scenario
(ii), where the source is in front of Exit 1. *e hazard
source’s place has a great impact on the evacuation time.
When the source of danger occurs near the exit, it takes more

time to evacuate all people compared with the situation of a
source in themiddle of a room.*is can be interpreted as the
fact that pedestrians reject to move out through the exit
where the hazard source is located, since it refers to danger
or insecurity for them to move out. Most of the pedestrians
then use Exit 2 to escape. *erefore, the usage of Exit 2 is
absolutely high and a large jamming is observed around this
exit in scenario (ii). *e evacuation in scenario (ii) takes
longer duration compared with scenario (i). *e usage of
both exits is slightly different in scenario (i), where the
hazard source is in the centre of the room. *e average
number of outside pedestrians of each exit versus the time in
Figure 4 is plotted for each scenario. *e results show that
more pedestrians evacuate through Exit 2 in scenario (ii)
and the usage of the exits is quite balanced in scenario (i).

Table 2 shows the computation time of ten trial runs in
scenario (i) and in scenario (ii) with 100, 300, and 500
evacuees. *e results in Table 2 reveal that the computation
times for both scenarios increase as the number of pedes-
trians in simulations grows up. Scenario (ii) takes longer
computation time than scenario (i) since the evacuation
times in scenario (ii) are larger than those in scenario (i), see
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Figure 6: *e movements of pedestrians during smoke spreading, where the source is at Exit 1. *e velocity field (w1, w2) of the advection-
diffusion equation (4) is chosen randomly out of the interval [− 0.5, 0.5].
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Table 1. Large crowds are formed around Exit 2, and
pedestrians take long time to move out of the room in
scenario (ii).

Figures 5 and 6 illustrate evacuees’ movements during
the propagation of hazard, as the source is in the middle of
the room and in front of Exit 1, respectively.
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Figure 7:*emovements of 300 pedestrians during smoke spreading, as the velocity field of the advection-diffusion is (w1, w2) � (0.5, 0) in
equation (4) and the source is in the middle of the room.
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Figure 8: Contour plots of the dynamic potential (estimated remaining travel time) of 300 pedestrians in scenario (ii) and scenario (i) at
t � 15.08 s. (a) scenario (i) and (b) scenario (ii).
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From the results of scenario (ii) in Figure 6, we see that,
at the beginning of the simulation, the pedestrians who are
near Exit 1 move out through this exit due to less arrival time
and the little gas density effect. As time increases, the hazard
density around Exit 1 becomes higher, the pedestrians move
away from it, and large crowds are formed around Exit 2.
*e clogging and the arching effects, which are collective
phenomena naturally observed in pedestrian crowds, are
remarkable in the model.

*e movements of 300 pedestrians during smoke
spreading are demonstrated in Figure 7. *e velocity field of
the advection-diffusion is set to (w1, w2) � (0.5, 0) in
equation (4), and the source is in the middle of the room.

*e contour plots of the estimated remaining travel time
(arrival time) of 300 pedestrians for the example in scenario
(ii) and scenario (i) at t � 15.08 s are shown in Figure 8.
Cells that belong to obstacle cells or high hazard gas density
cells receive very large arrival time. In order to plot and see
the difference of arrival times between scenario (i) and
scenario (ii), we set the arrival times of these cells to 45 when
the arrival time is larger than 45. *e estimated arrival time
around Exit 1 of scenario (ii), where the hazard source is
placed in front of Exit 1, is quite large compared with
scenario (i). *is is due to fact that the hazard density is
combined with the speed of the front F(x) in equation (1).
When the hazard density around Exit 1 is high, it leads to a
large remaining time of cells around Exit 1. *erefore,
pedestrians will reject to move to these cells, which surround
Exit 1.

4. Discussion and Conclusions

In this paper, we incorporate the spread of hazard material
into the cellular automaton model for the pedestrian
evacuation in a room with multiple exits. *e Eikonal
equation is applied to determine the arrival time of each cell
in the Moore neighborhood, and the evacuees select a cell to
move in the next time according to this arrival time.*rough
this simple attempt, realistic pedestrians’ movements, while
the hazard material is spreading, are demonstrated. *e
arching and the clogging effects, which are pedestrian col-
lective phenomena occurring in pedestrian crowds around
exits, were observed in the model [28,30]. Different nu-
merical experiments are performed, and their results are
shown.

In this research, we limited our study with the as-
sumptions that all pedestrians know the physical setting of
the room and that the hazard gas density has no effect on the
pedestrians’ visibility and their health. For future work, one
might include these effects in modeling.
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