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The deterioration of polycarbonate (PC) depends on various environmental factors. Meanwhile, the complexity of the related
weathering processes inhibits the prediction of service life based on the environmental factors. To elucidate the nonlinear
correlation between PC weathering and the environmental factors, three-year-long natural weathering tests were conducted at
eight experimental stations in China. The relationship between tensile-property data of PC and environmental and pollutant
data is analyzed by extra-trees and multilayer perceptron networks implemented in Python. The results indicated that (1) the
degradation of PC tensile properties is mainly affected by the experimental period (76.37%), whilst the effect of the
environmental or pollutant factors on the degradation is less pronounced (23.63%); (2) the classification accuracy of the trained
model on the training set is 91% (91/100), and on the testing set is 72.13% (44/61); and lastly, (3) it is inferred from the error
analysis of the classification results that the performance change of polycarbonate in Qionghai and Wuhan is characterized by
an initial reduction followed by a slight improvement. Lastly, we show that the proposed method performs well, especially in the
case of areas with incomplete data available.

1. Introduction

Polycarbonate (PC) is a widely used engineering plastic
owing to its excellent mechanical properties and low specific
gravity. However, the deterioration of PCmaterials is inevita-
ble and largely depends on the ambient factors in their appli-
cation, e.g., solar radiation, temperature, water exposure, and
atmospheric pollution [1–4]. Besides its physical and chemi-
cal properties, the weathering of PC is the result of the com-
bined action of various environmental factors. The interplay
between these environmental factors is so intricate that the
service-life prediction of PC products in many different envi-
ronments is extremely challenging. Hulme and Cooper [5]
concluded that the difficulties of the predictions of the
service-life of a polymer are as follows: (1) polymers are
time-, temperature-, environment-, and stress-dependent;
(2) the limit(s) of various properties of the polymers at which
they fail is often unknown; (3) the service conditions gener-
ally vary and often include fault situations; and (4) for com-

plex applications, it is impossible to fully replicate the
service condition in accelerated tests. However, when infor-
mation about the time, temperature, environmental factors,
and mechanical properties of the polymer can be collected
and analyzed on a large scale, the above-listed challenges
can be mitigated.

Artificial intelligence (AI) has been rapidly developing in
the recent years. Consequently, software supporting various
AI tasks is continuously being made available. However, only
a few people use this software to apply the latest machine
learning methods to study material weathering mechanisms.
The limited information available about new algorithms and
the lack of skills required to use them may be one of the rea-
sons. Nevertheless, with additional basic tools, the state-of-
the-art AI algorithms can be deployed through Python,
which is a high-level language suitable for scientific and engi-
neering applications. The use of Python enables the rapid and
flexible development of AI applications, which can be further
enhanced with additional extensions [6]. In addition, the
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Python programming language established itself as one of the
most popular languages for scientific computing [7]. Thanks
to its high-level interactive nature and its maturing ecosys-
tem of scientific libraries, Python is an appealing choice
for algorithmic development and exploratory data analysis
[8, 9]. Python is easy to learn and convenient to apply.
Hence, in the present work, two common machine learning
methods (extra-trees and multilayer perceptron networks)
have been used for the analysis of various environmental fac-
tors and mechanical properties of PC materials.

In fact, the use of Python—or other tools—to integrate
machine learning methods for scientific applications has
been gaining attention. Ong et al. [10] developed the Python
Materials Genomics (pymatgen) library, a robust, open-
source Python library for materials analysis. Nevertheless,
few researchers have applied Python as the main means of
studying weathering mechanisms. Similarly, with the help
of machine learning, we can find hidden connections in large
datasets.

The study of weatheringmechanisms remains a significant
and valuable research subject. Many researchers have studied
weathering mechanisms through various laboratory-based
methods, both at the macro and micro levels [11–14]. How-
ever, for enhanced material protection in practical applica-
tions, it is necessary to study the weathering mechanisms of
materials outdoors. Liu et al. [15] developed an outdoor
weathering-life prediction system for PC based on Artificial
Neural Network (ANN).

In this work, a three-year-long PC natural weathering test
was conducted at eight exposure stations in China. After a
tensile-strength and elongation at break factor analysis of
the weathered PC, we counted the frequency distribution of
the values of all environmental factors in a large-scale data
analysis process to identify the most influential factors. Con-
sequently, we separated the most important factors by an
extra-trees algorithm to reduce the disturbance introduced

of unrelated factors. Lastly, a multilayer perceptron neural
network was constructed based on the relationships observed
among the characteristic environmental parameters, tensile
property variation parameters, and service lifetime. We
introduced a guiding action into the model to study weather-
ing mechanisms. There are two main advantages of this
method: on the one hand, it maximizes the information
extracted from the collected data even if the original data
does not have a uniform scale and is incomplete. On the
other hand, the applied method can identify macroscopic
laws based on the large-scale data analysis.

2. Materials and Methods

2.1. Materials and Sample Preparation. Raw PC materials
(K1300, Teijin Limited) were purchased. Standard dumb-
bell tensile samples (150mm gauge length, 4mm × 10mm
cross-section) of pure PC were injection molded on a
UA120A injection-molding machine (Yizumi, China). The
injecting temperature, mold temperature, injection pressure,
packing pressure, and pressure-holding time were 190°C,
40°C, 700 bar, 150 bar, and 10 s, respectively.

2.2. Outdoor Weathering Experiments. According to the ISO
877 standard, the exposure tests were conducted at eight nat-
ural exposure stations in China. The stations were exposed to
different climate types. The eight stations are located in
Wuhan (WH, subtropical zone, humid urban climate type),
Lhasa (LS, warm temperate zone, plateau rural climate type),
Wanning (WN, torrid zone, marine climate type), Dunhuang
(DH, warm temperate zone, dry and hot desert climate type),
Shenyang (SY, warm temperate zone, humid urban climate
type), Jiangjin (JJ, subtropical zone, suburban acid rain cli-
mate type), Guangzhou (GZ, subtropical zone, humid urban
climate type), and Qingdao (QD, temperate zone, marine cli-
mate type) (Figure 1). The mean monthly values of the main
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Figure 1: Schematic overview of the preprocessing pipeline.
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environmental factors—such as monthly mean, high, and low
temperature (T); monthly mean, high, and low relative
humidity (RH); rainfall duration (RD); precipitation (P); sun-
shine duration (S); total solar radiation (G); infrared radiation
(IR); ultraviolet radiation (UV); sulfur dioxide (SD); hydrogen
chloride (HC); nitrogen dioxide (ND); hydrogen sulfide (HS);

sulfate ion rate (SR); ammonia (A); sea salts (SS); pH; sulfate
ion (SI); chloride (Cl); and dust fall (DF)—of the exposure
sites are supplied in the Supplementary materials (available
here). The data of the environmental parameters were col-
lected and calculated from the National Material Environmen-
tal Corrosion Platform. During the three-year duration of the

Input: Training Set D = fðx1, y1Þ, ðx2, y2Þ,⋯, ðxm, ymÞg;
Attribute Set A = fa1, a2,⋯, adg.

Process: Function TreeGenerateðD, AÞ
01: generate the node
02: if all samples in D belong to the same class C then
03: sign the node as a leaf node of class; return
04: end if
05: if A = Ø or samples in D have the same value of A then
06: sign the node as a leaf node of the class which the most samples in D belong to; return
07: end if
08: select the optimal attribute;
09: for every value a∗v of a∗ do
10: generate a branch for the node;

make Dv be a subaggregate of samples in D with the value a∗v of;
11: if Dv = Ø then
12: sign the branch node as a leaf node of the class which the most samples in D belong to; return
13: else
14: sign TreeGenerateðDv , A, fa∗gÞ as a branch node
15: end if
16: end for
Output: a decision tree with the root node.

Algorithm 1

Split_a_node(S)
Input: the local learning subset S corresponding to the node we want to split
Output: a split [a < ac] or nothing
–If Stop_split(S) is TRUE then return nothing.
–Otherwise select K attributes fa1,⋯, akg among all non-constant (in S) candidate attributes;
–Draw K splits fs1,⋯, sKg, where Si = Pick_a_random_split(S, ai), ∀i = 1,⋯, K ;
–Return a split s ∗ such that Score(s ∗, S) =maxi=1,⋯,KScore(si, S).

Algorithm 2

Pick_a_random_split(S, a)
Inputs: a subset S and an attribute
Output: a split
–Let aSmax and aSmin denote the maximal and minimal value of a in S;
–Draw a random cut-point aC uniformly in [aSmin,a

S
max];

–Return the split [a < aC].
Stop_split(S)
Input: a subset S
Output: a boolean
–If jSj< nmin, then return TRUE;
–If all attributes are constant in S, then return TRUE;
–If the output is constant in S, then return TRUE;
–Otherwise, return FALSE.

Algorithm 3

5Modelling and Simulation in Engineering



outdoor weathering, the PC samples were fixed at both ends on
aluminum alloy frames, tilted at 45° from the horizontal posi-
tion, and directly exposed to the south without any backing.

2.3. Characterization Methods. Dumb-bell specimens were
used for tensile tests according to the ISO 527.2 standard,
using a universal material machine (CMT 6503, MTS Sys-
tems Corporation), at a stretching rate of 20mm/min.

2.4. Data Source. All environmental-factor data were collected
from the website http://data.ecorr.org, which was built for
public research. The original data was recorded in excel tables
such as the ones shown in Tables 1 and 2. We focused on five
areas whose environmental factors were fully documented.
We will refer to these areas as well data-accumulated areas
(Guangzhou, Qingdao, Shenyang, Wanning, and Wuhan).
The remaining three areas will be referred to as incomplete
data areas (Dunhuang, Jiangjin, and Lhasa).

The data used in the presented experiments were recorded
during various intervals: between 2005 and 2012 and in 2014
in Qingdao and Wanning, between 2006 and 2014 in Shen-
yang and Wuhan, between 2005 and 2014 in Guangzhou,
and between 2012 and 2014 in Dunhuang, Jiangjin, and
Lhasa. The main part of the experiment relied on the data
collection and preprocessing, as shown in Figure 1.

2.5. Data Analysis Implemented in Python

2.5.1. Attribute Selection with Extra-Trees. To reduce the
error of the subsequent mathematical model, it is necessary
to identify the most important factors affecting the outdoor
weathering process of PC. Hence, we carried out attribute
selection with the extra-trees algorithm integrated in the
sklearn library.

The extra-trees algorithm was developed from random
decision trees, which is a classic machine learning method.
The traditional decision trees divided all objects into different
branches according to whether their characteristics fit the fil-
tering conditions of the individual branches. The basic pro-
cess of traditional decision trees is shown in Algorithm 1.

Geurts et al. [16] developed the extra-trees algorithm by
adding the following process, which extremely increases the
randomness of decision trees.

For regression problems [16], we have

Score si, Sð Þ = var y Sjf g − Si/ Sj jð Þ var y Sljf g − Si/ Sj jð Þ var y Srjf g
var y Sjf g ,

ð1Þ

where var fyjSg refers to the variance of the output y in sam-
ple set S, r and l refer to the right and left branch of the node,
respectively.

Moreover, Pierre Geurts proved that the extra-trees
learning algorithm could provide near-optimal accuracy
and good computational complexity, especially on classifica-
tion problems.

The criteria for selecting optimal decisive attributes is
the key to successful sample classification. Similarly, if apply-
ing a given attribute as a decisive attribute can significantly
improve the classification accuracy, that attribute is impor-
tant for describing the weathering mechanisms of the sam-
ples. Therefore, multiple methods are available for selecting
the optimal and decisive attributes.

Geurts et al. [17] have described the variable importance
in forests of randomized trees. They demonstrated that Mean
Decrease Impurity (MDI) importance computed by totally
randomized trees and extra-trees exhibit desirable properties
for assessing the relevance of a variable: it is equal to zero if
and only if the variable is irrelevant and it depends only on
the relevant variables.

We used this method to find the important factors which
can contribute more significantly to the weathering process
of PC materials than other factors.

2.5.2. Weathering-Life Prediction Model with Multilayer
Perceptron Networks. With the development of artificial
intelligence in the recent years, ANNs gained widespread
popularity for data processing in various industries. There
is an increasing number of convenient computer software
packages that facilitate the use, implementation, and applica-
tion of ANNs. For example, only by importing several
parameters can a corresponding model be implemented in
Python, which was used in the current work.

The structure and basic principles of multilayer percep-
tron networks—as one of the first ANN models—have
already been described by many researchers [18]. Hence,
the multilayer perceptron network shown in Figure 2 was
implemented in Python.

Besides its basic use, the sklearn library provides alter-
native activation functions and solving algorithms (the
solvers for weight optimization) which work in various situ-
ations. For example, “lbfgs” is an optimizer from the family
of quasi-Newton methods; “sgd” refers to stochastic gradient
descent; “adam” refers to the stochastic gradient-based opti-
mizer proposed by Kingma and Ba [19]. In addition, it is
noted in the help document of Python that the default solver
“adam” works well on relatively large datasets (with thou-
sands of training samples or more) in terms of both training
time and validation score. For small datasets, however,
“lfbgs” can converge faster and perform better. Hence, we
chose the “lfbgs” solver in this work.

Activation functions
 Python provided four

types of it: relu, tanh,
logistic, identity.

Output-layer
neurons

Input-layer
neurons Solving algorithmWeightWeight

Hidden-layer
neurons

 Python provided four
types of solvers: lbfgs,
sgd, adam.

Figure 2: Basic principles and structure of the multilayer
perceptron networks implemented in Python.
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3. Results

3.1. Data Overview and Characterization. As Tables 1 and 2
show, there are 28 recorded factors in total, including 16 cli-

matic factors and 12 pollutant factors. According to the qual-
ity of the existing data and weathering mechanism models of
polymer materials, 7 factors (air pressure, wind velocity and
direction, solar radiation angel, the pH, concentration of
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Figure 3: Frequency distribution graphs of climatic factors.
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sulfate ions and chloride ions in the rain) were not used in
this work owing to the high level of noise in the data associ-
ated with these factors.

Some data were not recorded due to reasons beyond the
experimental control. Consequently, more accurate conclu-

sions could be drawn from a complete dataset. Therefore, a
method that was robust against small numbers of missing
values is needed.

Firstly, frequency distribution graphs were constructed
(Figures 3 and 4) for the whole dataset, i.e., for each factor,
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Figure 4: Frequency distribution graphs of pollutant factors.
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so that the data could be intuitively presented. A frequency
distribution chart of all environmental factors was drawn to
observe the distribution of different factors in each region,
and to determine whether median values could be used to
suitably characterize and simulate the actual environment.
There are similarities to study the impact of individual key
factors on performance data. For calculation, after uniformly
dividing the maximum and minimum values of each factor
into 15 intervals, based on the amount of data falling in dif-
ferent intervals, the frequency of the total data of the factor
is determined.

Based on the frequency distribution graphs, the data
about most factors were concentrated in a specific interval
that depended on the region. The temperature and relative
humidity appear relatively as noise as these two climatic fac-
tors periodically vary with the seasons. However, there is a
distinct difference between the curve fluctuations, suggesting
that this noise would not affect the distinction between the
environments of distinct regions. Hence, the median values
of every factor were selected to characterize them based on
the regions, as shown in Tables 3 and 4.

3.2. Importance of Factors. The ExtraTreesClassifier package
of the sklearn library of Python 3.6 offers a convenient

approach to determining the importance of each factor, as
shown in Tables 5 and 6. When using the algorithm, we set
the environmental factors—including the pollutant factors
and the experimental time periods—as the cause and set
the elongation of materials at break as the result. Subse-
quently, the ExtraTreesClassifier operation was repeated
100 times. The mean and the variance of the 100 results were
used to determine the importance of each factor with statisti-
cal significance.

Tables 5 and 6 suggest that the experimental period is the
most important factor as it exhibited an importance of 0.7637
that is one or two orders larger than that of the other factors.
Hence, the experimental period contributes most signifi-
cantly to the tensile property degradation of PC materials
(76.37%). This is in line with most laboratory findings.
Besides, the remaining approximately 25% importance can
be attributed to the environmental factors. These relation-
ships are shown in Figure 5.

Based on existing research, high temperature can affect
the mechanical properties of polymer materials. Hence, all
factors with importance parameter larger than the monthly
maximum temperature were chosen for the next step.
Table 7 shows the data of the chosen factors in regions with
partially missing data. Eventually, the data was combined

Table 3: Median values of the pollutant factors in the well data-accumulated regions.

Factors
Regions

Guangzhou Wanning Qingdao Shenyang Wuhan

Sulfur dioxide (mg/m3) 0.096 0.002 0 0.0082 0.0421

Hydrogen chloride (mg/m3) 0.0946 0.0638 0.0399 0.0203 0.9288

Experimental period (month) 0.0563 0.0101 0.08 0.0769 0.1314

Nitrogen dioxide (mg/100 cm2·day) 0.0166 0.0131 0.0521 0.0655 0.079

Hydrogen sulfide (mg/100 cm2·day) 0.1456 0.2867 0.2846 0.5118 0.279

Sulfation rate (mg/100 cm2·day) 0.0348 0.0431 0.0176 0.0664 0.0394

Ammonia (mg/100 cm2·day) 0.0098 0.0584 0.1645 0.0115 0.0089

Sea salts (mg/100 cm2·day) 2.083 0.7638 1.6562 6.6289 3.719

Water-soluble dust (g/m2) 4.2203 3.063 2.9046 18.6164 5.1195

Table 4: Median values of the climatic factors in the well data-accumulated regions.

Factors
Regions

Guangzhou Wanning Qingdao Shenyang Wuhan

Monthly mean temperature (°C) 24.08 26.2 13.75 12.2 18.8

Monthly high temperature (°C) 32.7 35.6 25.5 23 24.5

Monthly low temperature (°C) 18.42 19.8 4.95 -0.8 14.2

Monthly mean humidity (%) 74.75 81.18 71.5 63 68.5

Monthly high humidity (%) 93.95 95 97 94 81.3

Monthly low humidity (%) 44 46.25 24 29 53.4

Infrared radiation (MJ/mm2) 172.87 165.47 171.9 6.68 168.34

Ultraviolet radiation (MJ/mm2) 17.27 22.58 15.45 0.89 24.23

Total solar radiation (MJ/mm2) 312.1 367.1 253.3 12.09 314.67

Sunshine duration (h/month) 110.3 123.05 138.1 130.45 442.4

Precipitation (mm/month) 77.6 140.6 18.6 15.8 74.4

Rainfall duration (h/month) 8.27 12 5 3.5 15.95
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with the mechanical properties of the materials tested in
those regions.

3.3. Training and Testing. For the training dataset, to predict
the outdoor service-life of PC materials, we set the experi-
mental period as the output and 14 factors (the 11 environ-
mental factors in Table 7 and 3 mechanical properties:
tensile strength, yield strength, and elongation at break) as
the input. In order to obtain the best performance, every
combination (especially the hidden-layer structure and the
activation function) within reasonable limits has been
explored. Figure 6 shows the results. Figure 6(a) is the iden-
tity activation function; the best hidden-layer structure is
27-38, and the achieved accuracy is 62.30%. Figure 6(b) is
the logistic activation function; the best hidden-layer struc-
ture is 12-23, and the achieved accuracy is 70.49%.
Figure 6(c) is the relu activation function; the best hidden-
layer structure is 15-16, and the achieved accuracy is

72.13%. Figure 6(d) is the tanh activation function; the best
hidden-layer structure is 10-31, and the achieved accuracy
is 70.49%.

Overfitting is a common problem in machine learning
models. Therefore, the accuracy achieved on the training data
set cannot be a reference standard of the models’ perfor-
mance. Figure 6 shows the accuracy of four types of activa-
tion functions for several hidden-layer structures and shows
that the accuracy can reliably measure models’ performance.
Furthermore, the figure shows that the optimal combination
is the “relu” activation function.

The neural network with two hidden layers with 15 and
16 neurons, respectively, combined with the “relu” activation
function provided the best classification accuracy: 91% on the
training set and 72.13% on the testing set.

4. Discussions

The model trained by 100 input features can recognize the
training data with a 91% accuracy (91/100) and the test
data with a 72.13% accuracy (44/61). Moreover, additional
information can be extracted from the specifics of the rec-
ognitions. Tables 8 and 9 show the classification accuracy
for various well data-accumulated areas and incomplete
data areas, respectively. Tables 10 and 11 show the classifica-
tion accuracy of various experimental periods in the well
data-accumulated areas and the incomplete data areas,
respectively.

In terms of the recognition of the training data, the obser-
vations in Qingdao and Shenyang (40 observations) were all
accurately classified, whilst a single false recognition (8/9)
was observed for Wanning and Wuhan (Table 8). The single
false recognition resulted from a confusion between 12
months and 36 months whilst no recognition was confused
between 12 months and 24 months, including the incomplete
data regions (Table 11). Therefore, it can be inferred that the
outdoors mechanical degradation of polycarbonate is charac-
terized by an initial deterioration followed by a slight
improvement (as shown in Figure 7) assuming that the sys-
tematic error generated during data collection for the three
different experimental periods is the same.

There is a significant deterioration of the mechanical
properties between the samples exposed to the environment
for 12 months and 24 months. Hence, no false recognition
was observed among them. Almost all misclassifications
(25/26) are related to the 36-month samples. Hence, it is
probable that the mechanical properties of the samples

Materials’ original
mechanical property

Materials’ measured
mechanical property

76.37% 23.63%

Experimental
periods

Pollutants

Weather

Exposure experiments

Figure 5: Relationship schema between the various factors
influencing the tensile property degradation.

Table 6: Mean and variance of the importance of the climatic
factors after 100 repetitions of the calculations.

Factors
Mean of the
100 results

Variance of the
100 results

Monthly mean temperature (°C) 0.00852239 3:15E‐05
Monthly high temperature (°C) 0.00914544 3:62E‐05
Monthly low temperature (°C) 0.00712514 2:77E‐05
Monthly mean humidity (%) 0.00885633 4:42E‐05
Monthly high humidity (%) 0.01877014 9:72E‐05
Monthly low humidity (%) 0.01216982 4:30E‐05
Infrared radiation (MJ/mm2) 0.00647525 3:20E‐05
Ultraviolet radiation (MJ/mm2) 0.00876974 3:95E‐05
Total solar radiation (MJ/mm2) 0.00665031 2:21E‐05
Sunshine duration (h/month) 0.01466707 6:16E‐05
Precipitation (mm/month) 0.01137561 5:17E‐05
Rainfall duration (h/month) 0.01273025 4:96E‐05

Table 5: Mean and variance of the importance of the pollutant
factors after 100 repetitions of the calculations.

Factors
Mean of the
100 results

Variance of the
100 results

Sulfur dioxide (mg/m3) 0.00969447 3:55E‐05
Hydrogen chloride (mg/m3) 0.01319386 5:18E‐05
Experimental period (month) 0.76373876 6:70E‐03
Nitrogen dioxide (mg/100 cm2·day) 0.01498199 7:16E‐05
Hydrogen sulfide (mg/100 cm2·day) 0.00904402 3:97E‐05
Sulfation rate (mg/100 cm2·day) 0.00600798 2:41E‐05
Ammonia (mg/100 cm2·day) 0.01206354 4:74E‐05
Sea salts (mg/100 cm2·day) 0.02162541 8:38E‐05
Water-soluble dust (g/m2) 0.0084063 3:89E‐05
Non-water-soluble dust (g/m2) 0.0059862 2:42E‐05
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exposed for 36 months fall between those of the samples
exposed for 12 months and 24 months. Therefore, it is diffi-
cult to accurately classify the samples exposed for 36 months.
The frequency of the misclassification of the samples exposed

for 36 months as samples exposed for 12 months or as sam-
ples exposed for 24 months depended on whether the
mechanical properties of the samples exposed for 36 months
were closer to those of the samples exposed for 12 months or

Table 7: Data of the chosen factors from the regions with incomplete data.

Factors
Median

Dunhuang Jiangjin Lhasa

Sulfur dioxide (mg/m3) 0.00765 0.1786 0.00155

Hydrogen chloride (mg/m3) 0.0817 0.0018 0

Nitrogen dioxide (mg/100 cm2·day) 0.05945 0.0288 0.004284

Ammonia (mg/100 cm2·day) 0.0062 0.05685 0.01545

Sea salts (mg/100 cm2·day) 0.4321 0.0029 0.002835

Monthly high temperature (°C) 25.85 28.05 20.85

Monthly high humidity (%) 72 100 93

Monthly low humidity (%) 11.5 35 5

Sunshine duration (h/month) 224.25 68.5 184.19

Precipitation (mm/month) 0.05 63.85 25.95

Rainfall duration (h/month) 0 36.55 4.095

10 15 20 25 30 35
Number of first hidden layer neurons

N
um

be
r o

f s
ec

on
d 

hi
dd

en
 la

ye
r n

eu
ro

ns

40 45

0.7200

0.7000

0.6500

0.6000

0.5500

0.5000

0.4500

0.4000

0.3500

0.3000

0.2500

10

15

20

25

30

35

40

45

(a)

10 15 20 25 30 35
Number of first hidden layer neurons

N
um

be
r o

f s
ec

on
d 

hi
dd

en
 la

ye
r n

eu
ro

ns

40 45

0.7200

0.7000

0.6500

0.6000

0.5500

0.5000

0.4500

0.4000

0.3500

0.3000

0.2500

10

15

20

25

30

35

40

45

(b)

10 15 20 25 30 35
Number of first hidden layer neurons

N
um

be
r o

f s
ec

on
d 

hi
dd

en
 la

ye
r n

eu
ro

ns

40 45

0.7200

0.7000

0.6500

0.6000

0.5500

0.5000

0.4500

0.4000

0.3500

0.3000

0.2500

10

15

20

25

30

35

40

45

(c)

10 15 20 25 30 35
Number of first hidden layer neurons

N
um

be
r o

f s
ec

on
d 

hi
dd

en
 la

ye
r n

eu
ro

ns

40 45

0.7200

0.7000

0.6500

0.6000

0.5500

0.5000

0.4500

0.4000

0.3500

0.3000

0.2500

10

15

20

25

30

35

40

45

(d)

Figure 6: Performance of the explored neural network structures with the number of neurons in the two hidden layers varying between 10
and 50.
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samples exposed for 24 months. The statistics obtained from
every sample shown in Figure 7 support these findings.

Considering the results shown in Figure 8, the black line
is more likely to coincide with the blue line than the red one.
Moreover, the black line intersects the blue line at 73%. The
crossover point at 73% also divides the three lines into two
parts: on the right side of the crossover point, all three lines
exhibit the same trend, reaching their maxima at 100%; on
the left side of the crossover point, the red line differs from
the other two by exhibiting a semi-circle-shaped peak. This
suggests that the samples exposed for three years (three-year
samples) have a similar breaking elongation value distribu-
tion as the one-year samples. However, the breaking elonga-
tion values of the three-year samples will partially shift to the
left as a result of the weathering and the degradation of the
mechanical properties of the materials. Therefore, a higher
proportion of the three-year samples reached an elongation
before break above 73% and a lower proportion below
73%. Similarly, the two-year samples have the same value
distribution and a significant and concentrated left shift,
especially in the part below 73%. Jiang et al. [20] researched
the weathering mechanism of bisphenol A polycarbonate.
Their results support our findings. Jiang et al. showed that
this phenomenon is a weathering-induced ductile-brittle-
ductile transition which partially results from the competi-
tion between oxidation-induced chain-scission and chain

crosslinking. Hence, it is inferred that our polycarbonate
samples also exhibit the same weathering mechanism.

Table 9 shows that the classification accuracy of the
experimental regions in incomplete data areas is less than
that of the well data-accumulated areas by 18.87%. There
are three possible reasons:

(1) The median characterization does not perform well
because of the smaller amount of data available in
the incomplete data areas. Errors tend to be more
pronounced with smaller amounts of data

(2) Statistically, the data range of some factors in the
incomplete data areas is far beyond that in the well
data-accumulated areas. Hence, the difficulty of rec-
ognizing the test data is beyond the capacity of the
model trained by the limited training data

(3) Fundamentally, different regional environmental
characteristics led to essential differences in the prop-
erty degradation of the polycarbonate between the
training data areas and the test data areas

5. Conclusions

It was proven that by using the integrated tools of Python, it
is possible to conveniently analyze data with the state-of-the-
art mathematical methods. The important climatic factors
and pollutant factors affecting the breakage elongation
identified by the extra-trees algorithm present high stability
and interpretability. In addition, the important parameters

Table 8: Classification accuracy of the experimental region in various well data-accumulated areas.

Guangzhou Qingdao Shenyang Wanning Wuhan Total

True 18/19 20/20 20/20 18/21 15/20 91/100

False 1/19 0/20 0/20 3/21 5/20 9/100

Table 9: Classification accuracy of the experimental regions for
various incomplete data areas.

Dunhuang Jiangjin Lhasa Total

True 12/20 17/20 15/21 44/61

False 8/20 3/20 6/21 17/61

Table 10: Classification accuracy of the experimental periods in the
well data-accumulated areas.
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Table 11: Classification accuracy of various experimental periods in
incomplete data areas.
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Figure 7: Inferred outdoor mechanical property degradation of
polycarbonate.
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guided a more reasonable use of the data in the subsequent
process and improved the performance of the multilayer
perceptron model. If limited amounts of data are available,
looping through all possible combinations with high com-
puting performance is a reliable way to find the optimal
hyperparameters of a machine learning model. The model
obtained through this method could recognize the experi-
mental periods with relatively high accuracy. This provided
an important reference value for the study of weathering pro-
cesses and appropriate protection measures for polycarbon-
ate in atmospheric environments.

According to the error analysis, from the macroscopic
point of view, the outdoors mechanical properties of polycar-
bonate would deteriorate first and then rise slightly. This sug-
gests that the outdoor weathering process of polycarbonate is
a ductile-brittle-ductile transition.

It is feasible to predict the weathering periods of samples
in incomplete data areas with samples in the well data-
accumulated areas, although with modest errors. Moreover,
it is more accurate to predict the service life of certain samples
from the data obtained from well data-accumulated areas.

Data Availability

The raw data of materials’ mechanical property required to
reproduce these findings cannot be shared at this time as
the data also forms part of an ongoing study. The environ-
mental data can be found in China Geteway to Corrosijon
and Protection (http://data.ecorr.org/) and a part of them is
in the attachment.
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Supplementary Materials

In the file data.xlsx, the sheet name place-1 means the data of
the meteorological factors of this place. The sheet name
place-2 means the data of the pollutant factors of this place.
In all sheets of the file, Guangzhou, Qingdao, Shenyang,
and Wuhan are referred to as well data-accumulated areas.
The remaining three areas will be referred to as incomplete-
data areas (Dunhuang, Jiangjin, and Lhasa). The data used
in the presented experiments were recorded during various
intervals: between 2005 and 2012 and in 2014 in Qingdao;
between 2006 and 2014 in Shenyang and Wuhan; between
2005 and 2014 in Guangzhou; and between 2012 and 2014
in Dunhuang, Jiangjin, and Lhasa. All tables in the file con-
tained monthly data of environmental factors, including the
temperature (monthly maximum, minimum, and mean), rel-
ative humidity (monthly maximum, minimum, and mean),
atmospheric pressure (monthly maximum, minimum, and
mean), infrared radiation, ultraviolet radiation, total solar
radiation, sunshine duration, precipitation, rainfall duration;
monthly data of the pollutant factors, such as the concentra-
tion of sulfur dioxide and hydrogen chloride determined
using the instantaneous method; the concentration of nitro-
gen dioxide, hydrogen sulfide, ammonia, sea salts, and sulfa-
tion rate determined using the continuous method; the pH,
concentration of sulfate ions, and chloride ions in the rain;
and the water-soluble and non-water-soluble dust fall quan-
tity in the year. (Supplementary Materials)
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