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The Cattaneo-Christov model will be used to examine the significance of heat generation, viscous dissipation, and thermal
radiation on a double-diffusive MHD flow in this study. In this study, it was discovered that heat and mass transfer can be
affected by nonlinear buoyancy significance. The flow direction was subjected to a uniform magnetic field. A set of partial
differential equations governs the current design (PDEs). In order to simplify these equations, they are converted into ordinary
differential equations (ODEs). In order to numerically solve the nonlinear ODEs, the spectral relaxation method (SRM) is
utilized. In order to decouple and linearize the equation sets, the SRM employs the Gauss-Seidel relaxation method.
Geothermal power generation and underground storage systems are just a few examples where this research could be put to
use. When compared to previous findings, the current outcomes were discovered to be closely related. Owing to an increase in
Lorentz force, the imposed magnetic field slows down fluid motion. Viscosity dissipation and heat generation all contribute to
the formation of an ever-thicker thermal boundary layer. When the Cattaneo-Christov models are used, the thermal and
concentration boundary layers get a lot thicker.

1. Introduction

The wide range of free convection flow that occurs naturally
and in building practice has been extensively studied by a
number of scientists. Unpredictable driving possibilities
arise when thermal and mass transport occurs simulta-
neously between transitions. Temperature angles and
arrangement gradients can both contribute to a shift in vital-
ity. The Dufour or diffusion thermo effect describes the
synthesis-induced change in vitality. The Soret or thermo-
diffusion effect can also lead to mass transitions as a result
of temperature gradients. When it comes to heat transfer
processes, thermodiffusion and diffusion thermoeffects are
of secondary importance compared to those recommended

by Fick’s or Fourier’s theories. There are exceptions to every
rule. Many equipment, like the MHD current generator and
the Hall accelerator, use magnetohydrodynamic flows to
transfer heat and mass, and recent advances in this area have
been impressive [1–3]. Magnetic field effects on the motion
of electrically executing viscous fluid with mass transport
are also useful for the study of the planetary atmosphere.
On an infinite vertical permeable slab by a tough magnetic
field, Kinyanjui et al. [4] demonstrated the concurrent trans-
fer of heat plus mass in a transient-free convection motion
with radiative retention. An experiment by Yih [5] looked
at the effects of velocity on thermal and solute transfer prop-
erties of mixed convection around a penetrable upright plate
implanted in a submerged permeable channel under the
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bonded influence of heat and mass diffusion. Mixed convec-
tion was studied by Elbashbeshy [6] in a permeable channel
with an upright plate implanted in it. Research by Oyelami
and Dada [7] investigated the impact of viscous dissipation
on thermal transport by natural convection. It was found
that viscous dissipation and chemical reactions affect ther-
mal and mass transport in the Eyring-Powell fluid model
studied by Oyelami and Dada [8]. Heat transport effects on
incompressible fluid unsteady MHD flow were studied by
Falodun and Fadugba [9]. Using an accelerated penetrable
surface as a model, Fagbade et al. [10] scrutinized the
MHD motion of a viscoelastic fluid passing through it. Falo-
dun and Omowaye [11] investigated the convective flow of
doubly diffusive thermal and mass transport in a thermal-
stratification porous channel. Idowu and Falodun [12]
recently looked at the thermophysical properties of non-
Newtonian fluids that flow past an upright plate with holes
when the Soret-Dufour mechanism is at work.

Fabrication calls for a stretching of the moving plate in
its own plane so that it can work precisely and thermally
with the fluid it is in contact with. Materials can stretch
and shrink in a variety of ways. It was Crane [13] who first
thought about two-dimensional flows on a stretched surface.
Stratification is a property shared by all fluids contained
within walls that have been heated to varying degrees. When
the thermal boundary layer discharges constantly inside the
fluid, the effects of thermal stratification can be observed.
There can be thermal stratification when a hot fluid is dis-
charged over a cool region, which results in a lighter fluid
being deposited on top of a thicker fluid of equal density.
In recent years, researchers have studied the analysis of flows
derived from a hot surface and thermally stratified. Chemi-
cal and hydrometallurgical processes, in particular, experi-
ence thermal stratification as a result of heat transfer.
Effects on flow over stretchable surfaces have become
increasingly important. Expulsion of polymer, for example,
will involve the object biting into dust and then continuing
at a temperature appropriate for cooling. In light of the
effects of thermal stratification, researchers have completed
relevant research [14–17] in this manner. Some researchers
have studied the MHD effects of Cattaneo-Christov theories
in various energy-related currents triggered by the sheet’s
expansion. There are numerous processes in which MHD
flows are taken into account. Examples include flow meters
and power generators that use MHD technology, energy
retrieval, plasma studies, aerodynamics, and solar energy
equipment. In terms of heat flow, MHD’s physical effects
are significant. A large number of scientists have focused
their attention on Cattaneo and Christov’s heat transfer the-
ories because of this. An additional relaxation time term was
added by Cattaneo to Fourier’s heat conduction law to create
the Cattaneo-Christov Fourier thermal conduction law. As a
result of Cattaneo’s generalization of the modified Fourier
heat conduction law, he established a single equation for
temperature. Many fluid flow tests were conducted following
the development of the Cattaneo-Christov model. In the
squeezed flow of nanofluids, Muhammad et al. [18]
addressed the Cattaneo-Christov thermal and mass fluxes.
It was found that Hashim and Khan [19] utilized the

Cattaneo-Christov thermal flow model for a Carreau fluid
motion past a moving plate. Williamson hybrid nanofluids
based on engine oil were studied by Jamshed et al. [20] for
their reactions to the Cattaneo-Christov heat flow. Many sci-
entists have been interested in studying fluid flow by stretch-
ing or shrinking films because of the practical applications in
many design projects, such as paper and glass production,
driving out polymer films and wires, drawing plastic films,
turning filaments, and developing gemstones. Sakiadis [21]
and Crane [13] were pioneering researchers in this field.
Falodun et al. [22] carried out the MHD thermal and mass
transport of Casson fluid motion research. A liquid
Walter’s-B fluid was discussed by Idowu and Falodun [23].
A non-Newtonian nanofluid flowing through a slanting
plate was researched by Idowu and Falodun [24]. It was
found that thermophoresis and thermal radiation plays a
significance function in the unsteady MHD thermal and
mass transport convection motion past a movable plate, as
studied in [25]. According to Ahmed et al. [26], Soret-
Dufour was utilized to address MHD heat and mass flow
mechanisms.

In the literature, researchers are interested in the roles of
thermal radiation, viscous dissipation, and heat generation
in heat transport. Thermal radiation, viscous dissipation,
and heat generation have applications in geothermal energy
production and underground storage systems. Advanced
energy conversion systems that operate at high temperatures
rely heavily on thermal radiation. Nuclear power plants,
rockets, satellites, gas turbines, and spacecraft are a few
examples of this type of technology. As studied by Falodun
and Ayegbusi [27], thermal radiation, viscous dissipation,
and heat generation all had a significance on the motion of
an electrically executing nanofluid. Bhatti and Abdelsalam
[28] conducted experiments to address the significances of
magnetic fields and thermal radiation on the bioinspired
peristaltic drive of hybrid nanofluid. Internal heat genera-
tion, viscous dissipation, and thermal radiation were all
explored when examining the peristaltic dynamics of a
hybrid bionanofluid with a moderate Reynolds number by
Abo-Elkhair et al. [29]. Idowu and Falodun [30] investigated
how a steady free convection flow affected thermal radiation
and magnetic fields in a porous channel. It was detected that
thermal radiation, viscous dissipation, and heat generation
all have an impact on the dynamics of a Casson fluid. An
elastic surface was addressed by Zhang et al. [31], who ana-
lyzed the significance of magnetic field, thermal radiation,
and viscous dissipation on the transport of a hybrid nano-
fluid. Entropy generation with heat transfer was used to
study the three-dimensional motion of a hybrid nanofluid
by Upreti et al. [32]. On a bidirectional porous surface, Joshi
et al. [33] addressed the mixed convective flow of a magnetic
hybrid nanofluid. Idowu et al. [34] investigated the transport
of a dissipative Casson fluid in the presence of heat genera-
tion and viscous dissipation. An electrically executing fluid
was explored by Falodun et al. [35] for its nonlinear viscous
dissipative effect on an unsteady flow. For carbon nanotube
nanofluids, Upreti et al. [36] discussed the significance of
modified Arrhenius and thermal radiation on MHD trans-
port. The slip transport of a micropolar fluid through a
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wedge with heat evolution and viscous dissipation was deter-
mined analytically by Singh et al. [37]. It was discovered by
Upreti et al. [38] that thermophoresis, suction, and injection
all affect the free convective MHD transport of an Ag-
kerosene oil nanofluid. Ramana Reddy et al. [39] investi-
gated oscillatory mixed convective transport with chemical
reaction and thermal radiation. Thermal radiation and vis-
cous dissipation in an electrically conducting fluid were
examined by Ramana Reddy et al. [40]. Reddy and Krishna
[41] looked at thermal radiation and MHD heat transfer at
a surface that is being stretched.

Using Cattaneo-Christov theories, studies have been
done on the generation of heat, thermal radiation, and
chemical reactions in a double-diffuse MHD flow. These
facts serve as a backdrop to our investigation, which aims
to better understand how heat is generated and how thermal
radiation affects the chemistry-reacting MHD double diffu-
sion flow. In the flow geometries, a porous medium is used
to create the vertical plate. Thermal engineering, geothermal
energy recovery, and underground storage systems will ben-
efit greatly from this research. Engineers and scientists alike
will benefit greatly from this research owing to its wide range
of potential applications. SRM, a novel numerical technique,
was employed in this research. Decoupling the differential
equations is done using this method. There is a table with
calculations for important engineering quantities and graphs
that show how key parameters affect velocity, temperature,
and concentration.

2. Mathematical Modeling

A steady case of incompressible two-dimensional MHD vis-
cous fluid flow through a half-infinite vertical sheet folded in

a penetrable medium which is thermally stratified is pre-
sented. Simulations were carried out with thermal radiation
and concentration buoyancy significant. Infinite vertical
sheet is placed such that x-axis is in vertical direction and
the y-axis normal to the sheet. Wall temperature and con-
centration are considered as Tw and Cw, while T∞ and
C∞ are the ambient temperature and concentration, respec-
tively. The temperature difference ði:e:,Tw − T∞Þ and con-
centration difference ði:e:,Tw − T∞Þ determine the
distributions of heat and mass transfer within the boundary
layer. Since the plate as depicted in Figure 1 is considered to
be cool, hence, Tw < T∞ and Cw < C∞. The velocities u = 0
and v = 0 at the wall because this paper considered no slip
condition. Hence, the adhesive forces are greater than the
cohesive forces. The Cattaneo-Christov theories of mass
and heat flux are considered important. The contribution
of density fluctuation with temperature plus concentration
is elucidated to take place in body force term, and the varia-
tions in both concentration and temperature produce the
buoyant force. A constant magnetism is supplied to the
porous stretched sheet in a normal direction. Furthermore,
it is believed that the flow is undergoing a homogeneous
chemical reaction of first order with heat radiation. The
energy transport phenomenon viscous dissipation effect is
incorporated, whereas ohmic heating effect is neglected. It
is also assumed the concentration of foreign mass is low
due to which effects of Soret and Dufour effects are negligi-
ble. Being within the constraints and under the usual Bous-
sinesq’s approximation, the governing equations of the
modeled problem are as follows (seen Falodun and Omo-
waye [11] and Idowu et al. [34]):
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with the corresponding boundary constraints

u = uw xð Þ = ax, v = νw xð Þ, T = Tw, C = Cw, at y = 0, ð5Þ

u⟶ 0, T ⟶ T∞, C⟶ C∞,  as y⟶∞: ð6Þ
Here, ½u, v, 0� are the velocity elements along x and y

directions. ν, σ, ρ, k′, k∗, β0, and g denote the viscosity,
the electrical conductivity, the fluid density, the Darcy per-
meability, the Forchheimer parameter, the magnetic induc-
tion, and the acceleration owing to gravity, respectively. K1
is the chemical reaction, cp is the specific heat, and Dm is
the mass diffusivity. βt and βc are the thermal and concen-
tration expansion coefficients. The boundary constraints
defined in Equations (5) and (6) are used to describe the flow
behavior of the fluid within a solid boundary.

The wall temperature and concentration ðTw, CwÞ with
ambient temperature and concentration ðT∞, C∞Þ are
explained as follows (see Falodun and Omowaye [11]):

Tw − T0 =m1x, T∞ − T0 =m2x, Cw − C0 =m3x, C∞ − C0 =m4x:

ð7Þ

The stream function Ψðx, yÞ is calculated as follows:

Ψ x, yð Þ = x
ffiffiffiffiffi
aν

p
f ηð Þ: ð8Þ

The continuity equation is automatically satisfied. The
similarity variables are given as follows (see Falodun and
Omowaye [11]):

η = y

ffiffiffi
a
ν

r
, θ Tw − T0ð Þ = T − T0, ϕ Cw − C0ð Þ = C − C0, ð9Þ

substituting Equations (8) and (9) into Equations (2)–(4),
and in boundary conditions (Equations (5) and (6)), we have
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Figure 1: Physical configuration.
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Figure 2: Flow diagram of the present solution technique.
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Figure 3: Significance of the viscous dissipation on velocity and temperature plots.

St=0.1, 0.2, 0.3, 0.4, 0.5

0 5 10 15
0

0.5

1

1.5

2

𝜂

Sw
0.0
0.5
1.0

2.0
3.0

fl  
(𝜂

)

St=0.1, 0.2, 0.3, 0.4, 0.5

150 5 10
0

0.2

1

0.8

0.4

0.6

𝜂

Sw
0.0
0.5
1.0

2.0
3.0

𝜙
 (𝜂

)

Figure 4: Significance of the suction and thermal stratification on velocity and concentration plot.
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Figure 5: Significance of the Schmidt number on velocity and concentration plot.
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the following:

f ′′′ − k0 +Mð Þf ′ − α∗ + 1ð Þf ′2 + f f ′′ +Grθ + λrθ
2 + λmϕ

2 + Gmϕ = 0,
ð10Þ

1 + Rð Þθ′′ + Prf θ′ + Prf ′θ + PrEcf ′′2 +Qoθ − β1 f f ′θ′ + f 2θ′′
� �

= 0,

ð11Þ

ϕ′′ + Scf ϕ′ + Scf ′ϕ − ScRcϕ − β2 f f ′ϕ′ + f 2ϕ′′
� �

= 0:

ð12Þ
The boundary constraints are presented as follows:

f ′ ηð Þ = 1, f ηð Þ = Sw, θ ηð Þ = 1 − Stð Þ, ϕ ηð Þ = 1 − Stð Þ, at η = 0, ð13Þ

f ′ ηð Þ⟶ 0, θ ηð Þ⟶ 0, ϕ ηð Þ⟶ 0, as η⟶∞, ð14Þ

where Gm = ðgβcðCw − C0ÞÞ/a2x is the mass Grashof, M =
σβ2

0/ρa is the magnetic, Gr = ðgβtðTw − T0ÞÞ/a2x is the ther-
mal Grashof number, λr = ðgβtðTw − T0Þ2Þ/a2x is the non-
linear temperature buoyancy parameter, Pr = ν/α is the
Prandtl number, λm = ðgβcðCw − C0Þ2Þ/a2x is the nonlinear
concentration buoyancy parameter, β1 = bh1 is the heat flux
relaxation parameter, β2 = bh2 is the mass flux relaxation
parameter, Sc = ν/Dm is Schmidt, k0 = ν/k′a is the perme-
ability term, α∗ = bx/k∗ is the Forchheimer parameter, and
Rc = K1/a is the chemical reaction term.

The foremost important quantities for engineering are
the skin friction and the Nusselt and Sherwood numbers.
The local skin friction is given by Cf = 2τw/ρU2

0x
2, where

τw = μð∂u/∂yÞjy=0 is the shear stress.
In dimensionless form, skin friction coefficient is ðffiffiffiffiffiffiffiffiffi

x Re
p

/2ÞCf = f ′′ð0Þ.
The Nusselt number is defined as Nu = xqw/kðTw − T0Þ,

where qw = −kð∂T/∂yÞjy=0 is the heat flux. In dimensionless

form, heat transfer rate is Nu/
ffiffiffiffiffiffiffiffiffi
x Re

p
= −θ′ð0Þ.

The Sherwood number is defined as Sh = xJw/ðDmðCw
− C0ÞÞ, where Jw = −Dmð∂C/∂yÞjy=0 is the mass flux. In

dimensionless form, the mass transfer rate is Sh/
ffiffiffiffiffiffiffiffiffi
x Re

p
= −

ϕ′ð0Þ.

3. Method of Solution

To solve the Equations (10)–(12) subject to Equations (13)
and (14), the SRM is utilized. SRM is an iterative method
that uses the Gauss-Seidel approach in a systematic manner.
Motsa [42] came up with this idea. If this method is used, the
current iterations are evaluated at (r + 1), and linear and
nonlinear terms are assumed to have been previously known
at the previous iteration, denoted by ðrÞ. To use this method
to solve systems of differential equations, you must first sep-
arate the system into its parts. Then, you must use the sys-
tematic Gauss-Siedel approach to write the system in a
linear form. Use the implicit finite difference approach to
solve the linear differential equations. The Chebyshev pseu-
dospectral method is then used to solve the discretized linear
differential equations. Figure 2 in this paper illustrates the
algorithm showing the basic steps of SRM.

The approach has been utilized to solve diverse flow
analysis by Falodun et al. [22], Motsa et al. [43], Alao et al.
[44], and Idowu and Falodun [45].

Apply the SRM in Equations (10)–(12) considering
Equations (13) and (14) to obtain the following:

f ′′′r+1 + a0,r f ′r+1 + a1,r + a2,r f ′′r+1 + a3,r + a4,r = 0, ð15Þ

b0,rθ′′r+1 + b1,rθ′r+1 + b2,rθr+1 + b3,r +Qoθr+1 + b4,rθ′r+1 + b5,rθ′′r+1 = 0,
ð16Þ

ϕ′′r+1 + c0,rϕ′r+1 + c1,rϕr+1 − ScRcϕr+1 + c2,rϕr+1′ + c3,rϕ′′r+1 = 0, ð17Þ
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Figure 6: Significance of the radiation parameter on temperature
plot.
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Figure 7: Significance of the heat generation on temperature plot.
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subject to

f r+1 0ð Þ = 0, f r+1′ 0ð Þ = 1, θr+1 0ð Þ = ϕr+1 0ð Þ = 1, ð18Þ

f r+1′ ∞ð Þ⟶ 0, θr+1 ∞ð Þ = ϕr+1 ∞ð Þ⟶ 0: ð19Þ

The parameter coefficients are defined as follows:

a0,r = − k0 +Mð Þ, a1,r = − α∗ + 1ð Þf ′2r , a2,r = f r , a3,r = Grθr + λrθ
2
r ,

a4,r = Gmϕr + λmϕ
2
r , b0,r = 1 + Rð Þ, b1,rPrf r , b2,r = Prf ′r+1, b3,r = PrEcf ′′2r+1,

b4,r = −β1 f r+1 f ′r+1, b5,r = −β1 f
2
r+1, c0,r = Scf r+1, c1,r = Scf ′r+1,

c2,r = −β2 f r+1′ f r+1, c3,r = −β2 f
2
r+1:

ð20Þ

An initial approximation is chosen to satisfy the bound-

ary conditions in this study as follows:

f0 ηð Þ = 1 − e−η, f 0′ ηð Þ = e−η, θ0 ηð Þ = ϕ0 ηð Þ = e−η: ð21Þ

Starting from the above initial guess, Equations
(15)–(17) are iteratively solved. Discretizing Equations
(15)–(17) is by employing the Chebyshev collocation
method, while implicit finite difference approach is utilized
in the η-direction. The difference scheme is defined for the
unknown functions as follows:

f ηj

� �
=

f n+1j + f nj
2 , θ ηj

� �
=
θn+1j + θnj

2 , ϕ ηj

� �
=
ϕn+1j + ϕnj

2 :

ð22Þ

Applying the spectral approach on Equations (15)–(17)
is to obtain the following:

D3 + a0,rD + a2,rD
2� �
f r+1 + a1,r + a3,r + a4,r = 0, f r+1′ η0ð Þ = 1, f r+1 ∞ð Þ = 0,

ð23Þ

b0,rD
2 + b1,rD + b2,r +Q0 + b4,rD + b5,rD

2� �
θr+1 + b3,r = 0, θr+1 η0ð Þ = 1, θr+1 ∞ð Þ = 0,

ð24Þ

D2 + c0,rD + c1,r + c2,rD − ScRc + c3,rD
2� �
ϕr+1 = 0, ϕr+1 η0ð Þ = 1, ϕr+1 ∞ð Þ = 0:

ð25Þ

We now apply the finite difference scheme on the equa-
tions above to obtain the following scheme:

A1 f
n+1
j = B1 f

n
j + K1, ð26Þ

A2θ
n+1
j = B2θ

n
j + K2, ð27Þ

A3θ
n+1
j = B3θ

n
j + K3, ð28Þ
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Figure 8: Significance of the Prandtl number on velocity and temperature plots.
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Figure 9: Significance of the magnetic parameter on velocity
profile.
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subject to the following constraints:

f r+1′ η0ð Þ = 1, θr+1 η0ð Þ = ϕr+1 η0ð Þ = 1,
f r+1′ ηNxð Þ = 0, θr+1 ηNxð Þ = ϕr+1 ηNxð Þ = 0,

ð29Þ

where

A1 =
D3 + a0,rD + a2,rD

2

2 ,

B1 = −
D3 + a0,rD + a2,rD

2

2 ,

K1 = −an+11,r − an+13,r − an+14,r ,

A2 =
b0,rD

2 + b1,rD + b2,r +Qo + b4,rD + b5,rD
2

2 ,

B2 = −
b0,rD

2 + b1,rD + b2,r +Qo + b4,rD + b5,rD
2

2 ,

K2 = −bn+13,r ,

A3 =
D3 + c0,rD + c1,r + c2,rD − ScRc + c3,rD

2

2 ,

B3 = −
D3 + c0,rD + c1,r + c2,rD − ScRc + c3,rD

2

2 ,

K3 = 0:

ð30Þ

4. Discussion of Results

Figures 3–15 depict the flow parameters’ influence on the
velocity, temperature, and concentration profiles. Figure 3
shows the significance of the Eckert number Ec on the tem-
perature and velocity plots of the viscous dissipation param-
eter. The fluid’s motion is accelerated by a high Eckert
number, as shown in Figure 3. Ec is a measure of the flow’s
kinetic energy in relation to its enthalpy. When Ec rises,

more heat energy is dissipated through viscous dissipation
and entered into the energy equation. Increasing the velocity
profile in Figure 3 is one way this heat energy aids fluid par-
ticle heating and acceleration. Accelerating and increasing
buoyancy force are two of the benefits of using Ec. Both
velocity and temperature increase as the Eckert number
rises. In other words, in addition to the thermally stratified
medium, a high value of Ec increases momentum and the
thickness of the thermal boundary layer. The Eckert num-
ber, which is a physical representation of this relationship,
relates effective transport and heat release potential. So, the
difference in temperature between the wall and the free flow
ðTw − T∞Þ has a big effect on how hot or cold fluid particles
are in the boundary layer.
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Figure 10: Significance of the thermal Grashof number on velocity
plot.
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Figure 11: Significance of the mass Grashof number on velocity
plot.
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Figure 12: Significance of the nonlinear convective temperature
parameter on velocity plot.
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Thermal stratification and suction velocity are both
shown in Figure 4 as potential influencers on velocity and
concentration profiles. Both the velocity and concentration
profiles improve when the thermal stratification values and
the suction velocity are raised. By increasing the velocity of
the fluid particles, positive suction velocity acts as a force
on fluid flow. Solute boundary layer thickness and momen-
tum increase as pressure is applied to the fluid flow in the
thermally stratified porous medium. As a result, both suc-
tion velocity and flow rate are accelerated by thermal strati-
fication. Consequently, the velocity and solute layers thicken
significantly. When two fluids of varying temperatures come
into contact, thermal stratification occurs. Physical proper-
ties like viscosity, density, and specific heat capacity increase
to speed up the thickness of the boundary layer. In this
study, heat generation and viscous dissipation cause the
temperature in the thermal stratification region to rise.

Figure 5 depicts the influence of the Schmidt number Sc
on the velocity and concentration profiles. The Schmidt
number is critical in this study because it tells us how thick
the viscous and concentration boundary layers are. The
effect of the Schmidt number on concentration is similar to
that of the Prandtl number on temperature. There is a
decrease in the concentration profile when the Schmidt
number is increased. The inverse of the Brownian diffusion
coefficient is the Schmidt number. As a result, when the
Schmidt momentum is increased, Brownian diffusion is
weakened, and the concentration profile is immediately
reduced. According to our numerical simulation, increases
in the Schmidt number result in the same rate of species’
spontaneous diffusion. Species diffusion exceeds momentum
diffusivity when the Schmidt number is less than one. In
other words, there is no species concentration if you set
the Schmidt number to 0. A high Schmidt number indicates
that momentum diffusion is more important than mass flux
in the physical world. However, it is worth noting that the
Schmidt number increases with dynamic viscosity, while

density and mass diffusivity decrease the Schmidt number.
Because of this, the Schmidt number is used to measure
the amount of mass transfer in boundary layer flows.

When the thermal radiation parameter is increased, a
temperature increase is shown in Figure 6. This is because
the higher the radiation parameter, the more heat is trans-
ferred to the boundary layer region. The fluid in the thermal
boundary layer is heated by using the Roseland approxima-
tion to approximate the radiant heat flux. Radiant heat plays
a critical role in the transfer of heat at extremely high tem-
peratures. However, increasing R improves the fluid’s ther-
mal condition.

When the heat generation parameter is increased or
decreased, the temperature changes in Figure 7. The temper-
ature rises as the heat generation parameter increases. The
difference in temperature between the fluid and the free
stream is the physical basis for the term “heat generation.”
An increase in the heat generation parameter, therefore,
translates into a higher flow rate and a higher temperature
for a given fluid. As a result, the free stream’s temperature
is minuscule. So, when the heat generation parameter and
the thermally stratified medium have high values, you can
expect the temperature profile and the thickness of the ther-
mal boundary layer to rise.

Figure 8 depicts the impact of the Prandtl number on the
velocity and temperature profile. The velocity profiles nar-
row as the Prandtl number rises. Temperature gradients
near the surface are greater at higher Prandtl numbers, and
the temperature drops significantly as a result. Figure 8
shows that the temperature decreases as the Prandtl number
increases because of excessive stratification. That means
thermal diffusivity controls flow, while momentum diffusiv-
ity controls flow behavior. Controlling the rate at which an
electrically conductive fluid cools is therefore advantageous.
In this experiment, the temperature of the wall and the tem-
perature of the free stream, along with the thickness of the
thermal boundary layer, cause the water to cool.

When a magnetic field parameter is present, it can be
seen in Figure 9. The Lorentz force is generated as a result
of the imposed magnetism. Due to the Lorentz force’s slow-
ing properties, it is expected that the flow will be suppressed.
When the magnetic parameter has a large value, the Lorentz
force is stronger. This makes the velocity profile and overall
thickness of the boundary layer become even more similar.

Using the Grashof number, the velocity distribution is
shown in Figure 10. As the buoyancy parameter goes up,
the flow speeds up because the thermal buoyancy helps the
flow of fluids in the boundary layer. It is shown in
Figure 11 that the modified Grashof number has an effect
on velocity. One can see an increase in the velocity profile
with a rising modified Grashof number. Figures 12 and 13
depict the nonlinear convective parameters temperature ð
λrÞ and concentration ðλmÞ. λr can be seen to improve the
velocity profile in Figures 12 and 13. Thermal and mass
boundary layers are buoyant due to a nonlinear buoyancy
force. As a result, increasing the nonlinear convective
parameter increases the buoyancy force, which in turn
increases the drag force by increasing velocity and the total
hydrodynamic boundary layer thickness. The heat flux

0 5 10 15
0

0.5

2.5

1.5

1

2

𝜂

𝜆m
0.1
0.5
1.0

1.5
2.0

fl  
(𝜂

)

Figure 13: Significance of the nonlinear convective concentration
parameter on velocity plots.

9Modelling and Simulation in Engineering



relaxation parameter ðβ1Þ effect on velocity and temperature
profiles is shown in Figure 14. The velocity and temperature
distributions are improved by increasing β1. When thermal
radiation and heat generation are included in the energy
equation, the temperature distribution of the boundary
layer’s fluid particles increases. As a result, the temperature
and overall thickness of the thermal buoyancy layer rise when
thermal radiation and heat generation increase. Using the

mass flux relaxation parameter ðβ2Þ, the velocity and concen-
tration profiles are shown in Figure 15. The velocities and con-
centration profiles were found to increase with an increase in
β2. Figures 14 and 15 show double-diffusive flow (heat and
mass transfer) with both heat production and heat loss.

This study was solved using SRM, whereas Besthapu
et al. [14] used SHAM. Table 1 shows the comparison. The
results of this study are exactly the same as the results of
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Figure 14: Significance of the thermal flux relaxation parameter on velocity and temperature plots.
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Figure 15: Significance of the mass flux relaxation parameter on velocity and concentration plots.

Table 1: Comparison of the present study solved using SRM and that of Besthapu et al. [14] solved using SHAM.

Gr Besthapu et al. [14] (SHAM solution) Present result (SRM solution) when R =Q0 = 0
−f ′′ 0ð Þ −θ′ 0ð Þ ϕ′ 0ð Þ −f ′′ 0ð Þ −θ′ 0ð Þ ϕ′ 0ð Þ

0:0 1.24193395 0.59113154 2.80938835 1.24193381 0.59113144 2.80938835

0.5 1.02710038 0.59947136 2.80110453 1.02710036 0.59947112 2.80110451

1.0 0.81565774 0.60736531 2.79307309 0.82565762 0.60736525 2.79307308

2.0 0.40184567 0.62177831 2.77768697 0.40184565 0.62177841 2.77768697
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other studies. Calculated values of Cf , Nu, and Sh are shown
in Table 2 for a variety of flow parameters, such as k0 and a
wide range of k, M, Gr, R, Sc, and St. The Sherwood and
Nusselt numbers have no effect on the sheath friction coeffi-
cient when k0 is large. The skin friction coefficient decreases
with a large value ofM, but the Sherwood and Nusselt num-
bers are unaffected. When Gr is increased, the skin friction
coefficient also rises in proportion to it. A possible explana-
tion for this is that the buoyancy force is causing the
momentum boundary layer to thicken more rapidly. The
sheath friction coefficient and the Nusselt number rise in
direct proportion to the value of R. Thus, a high R value
increases the rate of heat transfer, as can be seen here. The
sheath friction coefficient and the Nusselt number both
worsen when Pr increases, whereas when Sc rises, the sheath
friction coefficient is worsened and the mass transport rate is
increased via the Sherwood number. The skin friction coef-
ficient decreases as the stratification parameter (St) is raised.
As with Sherwood, the rate at which heat is transferred
increases with an increase in St.

5. Conclusion

In this study, numerical simulations have been used to inves-
tigate the significances of thermal radiation, viscous dissipa-
tion, and heat generation on double-diffusive MHD
convective heat and mass transport boundary layer flow past
a stretchable sheet situated in a thermally stratified penetra-
ble channel. The following are the study’s major conclusions:

(i) Heat and mass are transported more quickly when
the velocity and temperature are elevated due to
the viscous dissipation effect

(ii) Raising the thermal stratification and suction
parameter has a big effect on the velocity and con-
centration plots because it makes the distributions
rise

(iii) As the thermal radiation goes up, the temperature
plot goes up, which helps improve the thermal state
of the fluid

(iv) The speed and thickness of the hydrodynamic
boundary layer are both reduced by a magnetic field

Because of the presence of a magnetic field, these find-
ings are expected to be useful in controlling the flow of tur-
bulence in the boundary layer. Use of high polymer additives
in petroleum pipelines can also benefit commercially from
this technique. Thermal radiation is used a lot in the making
of ceramics and glass, as well as in the development of high-
temperature advanced energy conversion systems.

All aspects of viscous fluid heat and mass transfer, and
the steady flow of electrically conductive and chemically
reacting fluids are all aspects of this study. However, there
are still a lot of possibilities for further investigation into this
type of issue. For your convenience, the following are some
of these instances:

(i) Newtonian hybrid nanofluids for turbulent flow
regimes can be studied in this manner

(ii) Extending it to a wedge with the effects of joule and
ohmic heating is possible
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