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In this paper, a nonlinear coupling model with hysteresis, dynamics, and creep is proposed to describe accurately the complex
characteristics of piezoelectric-actuated positioning stage, where a classic Hammerstein model in series with a fractional-order
model is given. The fractional-order model is presented to express the nonlinear creep characteristics. Firstly, the Hammerstein
structure model is composed of two blocks, where the former block is the classical PI model to describe the static hysteresis
effects, and the latter block is the second-order discrete transfer function model to characterize the dynamic characteristics.
In addition, the parameters of the coupling model are identified. Secondly, based on the built model, the inverse of
fractional-order model and the inverse of PI model are implemented as the feedforward compensations, and an adaptive
control is designed to adjust the tracking performance of the whole system. Finally, the effectiveness of the proposed
coupling model and controllers are verified by the piezoelectric-actuated positioning experiment stage. Experimental results
show that the established coupling model can accurately characterize the hysteresis, dynamics, and creep properties of the
stage. Also, the results show that the tracking error is less than 0.8% at low frequency and mixed frequency.

1. Introduction

With the advancement of the era and the development of
science and technology, the sub-micron-nanopositioning
and control accuracy is required for modern scientific
research and industrial production. The traditional actuator
cannot meet the needs of precise positioning and control
[1–3]. Therefore, the piezoelectric actuator has started to
receive special attention and research from scholars [4–6].
It has gradually been applied in many fields that require fast
response and high-precision actuate control, such as micro-
positioning stage [7], fast tool servo system [8], and other
high-precision fields. However, piezoceramic materials suf-
fer from the strong hysteresis effect, lightly dynamic proper-
ties, and creep characteristics [4, 5, 9]. The above problems
will seriously affect the positioning accuracy and motion
accuracy of the piezoelectric-actuated positioning stage
and even lead to the instability of the whole control system
[7, 10, 11]. The nonlinear effect of the piezoelectric-actuated

positioning stage is mainly the hysteresis, which is more
than 80%.

Hysteresis is a rather complicated nonlinear process. The
main phenomenon is that under the action of voltage signal,
the ascending displacement curve generated by piezoelectric
actuator does not coincide with the descending displacement
curve, and a hysteresis loop will be formed by the existing
displacement difference [12, 13]. In the current literature,
the commonly used hysteresis nonlinear models are mainly
divided into three categories [14]. The first category is the
physical model based on physical principles, such as Jiles-
Atherton (JA) model [15, 16]. The second category is the
phenomenological model based on hysteresis nonlinear phe-
nomena, for instance, Prandtl-Shlinskii (PI) model [17, 18].
The third category of model based on intelligent computing
and learning mainly applies various intelligent algorithms to
fit and model data, for example, SVM [19]. Since the phe-
nomenological model does not involve the physical nature
of hysteresis, that studies the relationship between input
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and output of hysteretic system, which widely used in the
modeling of hysteresis phenomenon. Among those models,
the strength of classic PI model is simple structure, few
parameters, simple calculation process, and the existence of
inverse models.

The creep characteristic means that when the voltage
applied by the piezoelectric actuator no longer changes, the
stable value of output displacement can be stable after a cer-
tain period of time. This phenomenon can be seen as a slow
drift of piezoelectric-actuated positioning stage displacement
after sudden changes in input voltage, which may cause
positioning errors [20]. Nowadays, there are two types of
mathematical modeling methods, which are commonly used
to depict creep properties. One is the logarithmic model
[21, 22], which belongs to the phenomenological model.
The other is the finite spring-damping superposition model
[23, 24]. Besides, the fractional operator is a modeling tool
for a distributed parameter system with memory effect, and
the creep effect of the piezoelectric-actuated positioning
stage has global memory [20, 25]. However, the existing
fractional-order model is complicated to obtain accurate
parameters. In the literature [20], a fractional-order model
is proposed by representing the PEA as resistocaptance,
but only the step signal is studied. In addition, one coupled
fractional-order creep and hysteresis model is established in
[5]; however, only the creep effect under ultralow frequency
is studied.

How to effectively suppress the inherent bad properties of
piezoelectric-actuated positioning stage and achieve high-
precision tracking control of it is a challenging question. In
the literature [26], an inverse model open-loop control
method based on scanning probe microscope was designed
to suppress the hysteresis and other nonlinear characteristics
of the intelligent driver. In the article [27], an adaptive neural
digital dynamic surface control (DSC) scheme with the
implicit inverse compensator is developed to mitigate the
asymmetric hysteresis effect. In reference [9], an adaptive
controller is proposed, which adopts a minimization param-
eterized hysteresis model to reduce the amount of computa-
tion. Literature [28] designs an adaptive predictive controller,
which is based on t-S fuzzy model and has a parallel distrib-
uted form structure, and the controller parameters are
adjusted online according to real-time error. It shown that
the adaptive control strategy can accurately track the desired
input signal, which is considered in this paper.

The main contribution of this paper is that a nonlinear
mathematical model coupling with hysteresis, dynamics,
and creep is proposed, which is a classic Hammerstein struc-
ture model in series with a fractional-order model. Firstly,
due to the piezoelectric-actuated positioning stage is a dis-
tributed parameter system, where the creep effect exits
memory effect, so the creep characteristics in this paper are
described by the fractional-order operator which is suitable
for the distributed system with memory properties. Sec-
ondly, the Hammerstein structural model is presented
consisting of two blocks, where the static block is repre-
sented by the classic PI model, and the dynamic block is
built by the second-order discrete transfer function model,
which describes the hysteresis and the dynamics characteris-

tics, respectively. Thirdly, based on the above model, the
inverse compensations of the fractional-order and the PI
model are obtained, and minimum variance-based adaptive
control is designed to track the desired signal and reduce
the error.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the fractional calculus and its Grunwald-
Letnikov (G-L) definition, which presents a detailed descrip-
tion of the coupling model in the piezoelectric-actuated
positioning stage. The identification method of the coupling
model parameters is given in Section 3. Section 4 designs a
compound control algorithm combining feedforward and
inverse compensation with adaptive control. Section 5 intro-
duced the piezoelectric driving positioning experiment
platform and verified the proposed coupling model through
the experiment platform. Similarly, adaptive compound con-
trol effect is given in Section 5. Finally, Section 6 concludes
this paper.

2. Piezoelectric-Actuated Positioning
Stage Model

According to the literature review, the piezoelectric-actuated
positioning stage has hysteresis, creep, and linear dynamics
characteristics. Hysteresis exists in the total frequency
domain of the positioning stage and is the main nonlinear
factor. In addition to the hysteresis effect, the creep prop-
erty occupies a secondary position in the low-frequency
domain. In the high-frequency region, the dynamic strength
is higher than creep. However, to describe the properties of
piezoelectric-actuated positioning stage more accurately,
the influence of dynamics cannot be ignored in low-
frequency domain, and creep effect should not be neglected
in high-frequency region. In this paper, a coupling nonlinear
model of a piezoelectric-actuated positioning stage is pro-
posed, which is based on the classic Hammerstein structure
model in series with a fractional operator model. The Ham-
merstein structure model is composed of two blocks, where
the former block is the classical PI model to describe the
static hysteresis effects, and the latter block is a second-
order discrete transfer function model to characterize the
dynamic characteristics. The basic structure is shown in
Figure 1.

2.1. PI Model. In this paper, the classical PI model of
discrete-time is adopted. The classical PI model is a phe-
nomenological model based on operators, which is formed
by the linear superposition of finite weighted play operators
or stop operators, in which the play operators have the
properties of continuity, rate independence, and symmetry.
In addition, the output of the play operator not only depends
on the threshold and the corresponding weight but also has
a relationship with its historical value.

According to the definition in [29], suppose that
Cm½0, tE� is a space of piecewise monotonic continuous func-
tions on the time interval ½0, tE� for an arbitrary piece-wise
monotone function vðtÞ ∈ Cm½0, tE�. The time domain is
divided into N subintervals, 0 = t0 < t1 <⋯ < ti <⋯<tN = tE,
and the function vðtÞ is monotonically continuous on each
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subinterval ½ti, ti+1�. For the linear play operator Fr of thresh-
old r ≥ 0, it can be defined as

u 0ð Þ = Fr v½ � 0ð Þ = f r v 0ð Þ, u0ð Þ, ð1Þ

u tð Þ = Fr v½ � tð Þ = f r v tð Þ, u tið Þð Þ, ð2Þ
for ti < t < ti+1, 0 ≤ i <N, with

f r v, uð Þ =max v − r, min v + r, uð Þð Þ, ð3Þ

where uðtÞ is the output of the operator. The hysteresis loop of
the play operator is shown in Figure 2, which is a symmetric
parallelogram shape.

The PI model of discrete time is defined by

P v½ � tð Þ =wP0
v tð Þ + 〠

m

j=1
wpj

Fr j
v½ � tð Þ, ð4Þ

for t ∈ ½0, tE�, j = 1, 2,⋯,m, where m represents the number
of the play operators, wpj

is the weight of the play operator

that is generally calculated from the experimental data and
satisfies wpj

> 0, wP0
is a positive constant, and r j is the

threshold of the play operator.
In general, the selection principle of threshold r j is to

select at equal intervals, which is expressed as

rj =
j − 1
m

max v kð Þj j: ð5Þ

It should be noted that the accuracy of the PI model had
much relatedness among the number of operators, which
will be improved with the increase in the number of opera-
tors. However, the computation complexity increases with
the number of operators, and the computation time will also
increase significantly, causing severe problems in real-time
applications. Therefore, it is very important to select the
appropriate number of operators, and that should be a com-
promise e between the accuracy of the PI model and the
speed of operation. After several tests, the number of opera-
tors selected in this paper is m = 9.

2.2. Transfer Function Model. In this section, the dynamics
of the piezoelectric-actuated positioning stage will be
derived. The piezoelectric-actuated positioning stage is
mainly composed of a piezoelectric actuator, a flexible hinge,
and a base, among which the piezoelectric actuator is the
main driving element. Due to the special material properties
of the piezoelectric-actuated positioning stage, its linear
dynamic can be equivalent to the classical mass-spring-
damping mechanism system. Under the action of the input
voltage signal, the piezoelectric actuator can be regarded as
a force generator that generates force, and the mechanical
movement is performed through the linkage of the flexible
hinge. At this time, a smaller displacement will be output
by the positioning stage. Thus, the linear dynamic of the
piezoelectric-actuated positioning stage can be expressed
as [29]

M€x tð Þ + B1 _x tð Þ + B2x tð Þ = F tð Þ, ð6Þ

where xðtÞ is the output displacement of the positioning
stage, FðtÞ is the force generated by the piezoelectric actu-
ator, M is the equivalent mass of the positioning stage, B1
is the equivalent viscous friction coefficient of the posi-
tioning stage, and B2 is the equivalent stiffness coefficient
of the piezoelectric positioning stage.

In general, in the process of experiment and simulation,
the discrete expression of linear system is usually used:

A z−1
� �

x kð Þ = B z−1
� �

u kð Þ + ε kð Þ, ð7Þ

Linear
dynamics

Nonlinear
hysteresis

uv yx Nonlinear
creep

Transfer function
modelPI model

Hammerstein model

uv yx Fractional order
model

Figure 1: The proposed coupling structure model.
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Figure 2: Play operator.

3Modelling and Simulation in Engineering



where εðkÞ is the error and uðkÞ is the output of the PI model
and satisfies uðkÞ = FðkÞ.

A z−1
� �

= 1 + a1z
−1 + a2z

−2, ð8Þ

B z−1
� �

= b1 + b2z
−1, ð9Þ

where z−1 is the unit delay shift operator, Aðz−1Þ and Bðz−1Þ
are polynomials, and ai and bi are the coefficients of the
polynomial Aðz−1Þ and Bðz−1Þ, i = 1, 2.

The discrete transfer function is given by

G z−1
� �

= B z−1
� �

A z−1ð Þ : ð10Þ

In this paper, let vðkÞ was exploited as the input voltage
of the positioning stage, FðkÞ is the force generated by the
piezoelectric actuator, and P½v�ðkÞ is the output of the hys-
teresis that was given in the previous section. Then, express
the relation between FðkÞ and P½v�ðkÞ as

F kð Þ = P v½ � kð Þ: ð11Þ

2.3. Fractional-Order Model. In this section, fractional calcu-
lus is briefly introduced firstly. Fractional calculus is the
generalization of basic calculus operators from integer-
order to noninteger-order, and its operator t0

Dα
t
is basically

defined as [30]

t0
Dα
t
=

dα/dtα Re αð Þ > 0,
1 Re αð Þ = 0,ðt
t0

dτð Þ−α Re αð Þ < 0,

8>>>><
>>>>:

ð12Þ

where t0 is the lower limit of calculus, t is the upper limit of
calculus, α is the order of calculus, which can be a complex
number, and Re ðαÞ is the real part of the order α.

In the existing literature, there are two definitions of frac-
tional calculus that are cited most frequently, namely,
Grunwald-Letnikov (G-L) definition and Riemann-Liouville
(R-L) definition, respectively, wherein, the G-L definition
[20, 25] of α the fractional derivative of f ðtÞ is

t0
Dα
t
f tð Þ = lim

h⟶0
h−α 〠

t−t0ð Þ/h½ �

j=0
−1ð Þj

α

j

 !
f t − jhð Þ

≈ lim
h⟶0

h−α 〠
t−t0ð Þ/h½ �

j=0
w αð Þ

j f t − jhð Þ,
ð13Þ

where ½ðt − t0Þ/h� is the integer part and

w αð Þ
0 = 1,w αð Þ

j = 1 − α + 1
j

� �
w αð Þ

j−1, j = 1, 2,⋯: ð14Þ

The Laplace transform of α fractional derivative [30] is
given by

L f αð Þ tð Þ
h i

= sαF sð Þ, ð15Þ

for f ðtÞ = 0, ∀t < 0.
The term creeps originated from the study of mechanical

materials. The creep of the piezoelectric material refers to
the rearrangement of its crystal grains after a period of time
when the input voltage is applied, and the displacement
during this period time is called creep. Besides, creep has
memory properties, which is a recovery phenomenon of
piezoelectric actuators in the absence of an external input
return signal. It has a slow output process and can be
regarded as a nonlinear process with gain uncertainty and
dependent on the input voltage. The fractional-order is just
the tool to describe the phenomenon with memory effect
and system with distributed parameters [20, 25].

Based on the foregoing facts, the creep in this paper is
described as follows:

yc tð Þ = kc ∗ t0
Dα

t
x tð Þ,−1 ≤ α ≤ 1, ð16Þ

where ycðtÞ is the output of the creep, xðtÞ is the output of
the Hammerstein model, and the input of the creep, kc is
the gain of the fractional-order model. When −1 ≤ α < 0
the fractional operator presents integral characteristics and
0 < α ≤ 1, the derivative characteristics of fractional operator
is presented.

The fractional-order model is the last part of the entire
system. The output xðkÞ of the Hammerstein model can be
used as the input of the fractional-order model, and the
actual output displacement yðkÞ of the positioning stage is
collected. The above data is used to identify this model. In
order to facilitate computer programming and industrial
practice, formula (16) is discretized as

yc kð Þ = kc ∗ h−α 〠
k

j=0
w αð Þ

cj
x k − jð Þ: ð17Þ

3. Parameter Identification

In this section, the parameters of the proposed model are
identified. According to the characteristics of the model, a
stepwise identification method is adopted. There are three
steps. Firstly, under the conditions of low frequency, to iden-
tify the PI model, parameters employed the collected actual
input voltage and output displacement; secondly, to further
identify the coefficients of the second-order transfer function
used the obtained PI model in the case of mixed frequencies;
finally, to process the output of the obtained Hammerstein
model as the input of the fractional-order model and iden-
tify the parameters of the fractional-order model.

3.1. Parameter Identification of the PI Model. According to
the previous methods, when the input voltage frequency is
low (less than or equal to 10Hz), the hysteresis loop is
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almost unchanged of piezoelectric-actuated positioning
stage, which can be approximated as having static character-
istics. The sinusoidal input signal vðtÞ = 10 sin ð2πf tÞ + 10
of the positioning stage is given, and where the frequency
f is 1Hz, the output displacement yðtÞ of the positioning
stage is measured. The experimental data to identify the PI
model is constituted.

For the above model (4), its discrete form is expressed as
follows:

P v½ � kð Þ =wP0
v kð Þ + 〠

m

j=1
wpj

Fr j
v½ � kð Þ, ð18Þ

where Frj
½v�ðkÞ is the output of the play operator of the PI

model and wpj
is the weight corresponding to the play

operator and is also the parameter to be identified.
Define yðkÞ as the displacement output measured by

the experimental positioning stage, and the error value
between yðkÞ the established PI model and the positioning
stage measured

eP kð Þ = y kð Þ − P kð Þ, ð19Þ

where ePðkÞ is the error between the actual collected dis-
placement output and the PI model output and PðkÞ is
the output of the PI model.

Based on the previous discussion, using the sum of
squares of the error as the criterion function required for
identification, the minimum error criterion function is
defined as

JP min = ePTeP: ð20Þ

For the purpose of identifying the parameters of the PI
model, the nonlinear least square method is adopted, and
the number of play operators in this paper is m = 9. The
identification result is wP0

= 0:3344, wP1
= 0:0714, wP2

=
0:0322, and wP3

= 0:0072, and the rest of the operators have
extremely small values, so they are all set to 0 here.

3.2. Parameter Identification of the Transfer Function Model.
For the parameter identification of the transfer function
model, the mixed frequency signals vðtÞ = 6∑3

i=1 sin ð2πf itÞ
+ 18 is used to characterize the dynamic characteristics of
the stage in a wide frequency range, and f1 = 5Hz, f2 =
40Hz, f3 = 80Hz. The new experimental data are consti-
tuted as follows. Firstly, the control input signal is given
to the piezoelectric stage, and the output P½v�ðkÞ of the
PI model is collected as input uðkÞ to the transfer function
model. Then, the actual output displacement yðkÞ of the
positioning stage is collected as the output of the transfer
function model. The system identification toolbox of the
matlab software is used to identify the parameters of the
second-order transfer function in this paper. The discrete

form of the second-order transfer function model of the
positioning stage can be obtained as

G zð Þ = 0:5954z − 0:5907
z2 − 1:3767z + 0:3816 : ð21Þ

3.3. Parameter Identification of the Fractional-Order Model.
With the identified Hammerstein structure model, it is ready
to identify the parameters of the fractional creep model. Like
the parameter identification process of the PI model, the
parameters of the fractional-order model are also identified
by the nonlinear least square method.

Define ecðkÞ as the error between the actual output
displacement of the positioning stage is collected and the
output of identified Hammerstein structure model.

ec kð Þ = y kð Þ − yc kð Þ: ð22Þ

The minimum error criterion function is defined as

Jc min = eTc ec: ð23Þ

To better characterize the creep properties of the posi-
tioning stage, the fractional parameters of each frequency
and the parameters of the mixed frequency are identified
in this paper, respectively. The results are shown in Table 1.

4. Adaptive Compound Control

In this paper, the inverse of PI model and the inverse of
fractional-order model are connected in series to eliminate
the hysteresis and creep characteristics of the system. On
this basis, combined with the adaptive control based on min-
imum variance, the system performance is adjusted so that it
can track the expected input.

4.1. Inverse Compensation Control. As a phenomenological
operator model that can describe the nonlinear characteris-
tics of hysteresis, the biggest advantage of classical PI model
compared with other hysteresis models is that the classical
PI model has the characteristics of analytical inverse, which
is beneficial to the design of controller. The inverse obtained
according to the classical PI model is still the structural form
of PI model, and its parameters can be obtained by numeri-
cal calculation through the parameters of PI model.

The inverse of PI model is still the combination and
superposition of a limited number of the hysteresis operators
and corresponding weight coefficients. According to the for-
mula of the PI model in the previous text, the expression of
the inverse of PI model is as follows

P−1 y½ � kð Þ =wP′
T ∗ PrP′

v½ � kð Þ, ð24Þ

where Prh′
½v�ðkÞ is the hysteresis operator of the inverse of PI

model, wP′
T
is the weight coefficient of the hysteresis opera-

tor of the inverse of PI model, and rP′ is the threshold of the
hysteresis operator of the inverse of PI model.
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The threshold selection principle of the inverse of PI
model is as follows:

rPi′ = 〠
i

j=0
wPj rPi − rPj
� �

, i = 0, 1,⋯, n, ð25Þ

where wP is the weight coefficient of PI model, rP is the
threshold of PI model, and n is the number of hysteresis
operators.

The weight coefficient of the inverse of PI model can be
calculated by the following formula:

wP0′ = 1
wP0

, ð26Þ

wPi′ =
wPi

wP0 +∑i
j=1wPj

� �
wP0 +∑i−1

j=1wPj

� � , ð27Þ

where wP0′ and wP0 represent the initial weight coefficients of
the inverse of PI model and PI model, respectively.

Then, the initial value of the inverse of PI model can be
expressed as

y0i′ = 〠
i

j=1
wjy0i + 〠

n

j=1+1
wjy0j: ð28Þ

Similarly, according to the fractional-order model in the
previous article, the formula of the inverse of the fractional-
order model can be obtained as follows:

yc
−1 tð Þ = 1

kc
∗ t0

D−α
t
x tð Þ,  − 1 ≤ α ≤ 1: ð29Þ

4.2. Adaptive Control. Let the mathematical model of the
controlled object be expressed as

A z−1
� �

y kð Þ = z−dB z−1
� �

∗ c〠
k

j=0
w αð Þ

cj z
−jP v½ � kð Þ, ð30Þ

c = kc ∗ h−α, ð31Þ
where P½v�ðkÞ is the output of the PI model. Aðz−1Þ = 1 +
a1z

−1 + a2z
−2 +⋯ + anaz

−na ; Bðz−1Þ = b1 + b2z
−1 + b3z

−2 +⋯
+ bnbz

−nb+1. d ≥ 1 as the pure time delay; in this case, d = 2.

yðkÞ is the actual system output, and vðkÞ is the system
control input.

Then, the optimal predicted output at ðk + dÞ based on
the input and output data at time k and previous time is
expressed as

y k + dð Þ = G z−1
� �

C z−1ð Þ y kð Þ + F z−1
� �

B z−1
� �

C z−1ð Þ

∗ c〠
k

j=0
w αð Þ

cj z
−jP v½ � kð Þ,

ð32Þ

where Cðz−1Þ = Aðz−1ÞEðz−1Þ + z−dGðz−1Þ, Fðz−1Þ = Bðz−1ÞE
ðz−1Þ, Eðz−1Þ = 1 + e1z

−1 + e2z
−2 +⋯ + enez

−ne , Gðz−1Þ = g1
z−1 + g2z

−2 +⋯ + gng
z−ng , Fðz−1Þ = f1z

−1 + f2z
−2 +⋯ + f nf

z−nf . ne = d − 1, ng = na − 1, and nf = nb + d − 1.
In this case, select the performance indicator function as

J = E y kð Þ − yd kð Þ½ �2� 	
, ð33Þ

where ydðkÞ is the expected input signal.
In combination with formulas (30), (31), and (33), the

minimum variance control is

~v kð Þ = 〠
m

i=0
wP′

T 〠
k

j=0
w −αð Þ

cj
1
c

C z−1
� �

yd kð Þ −G z−1
� �

y kð Þ
F z−1ð ÞB z−1ð Þ

" #
:

ð34Þ

As can be seen from the above equation, the characteris-
tic equation of the system is

cF z−1
� �

B z−1
� �

= 0: ð35Þ

Table 1: Parameter identification result of fractional-order model.

Frequency (f /Hz) Gain (kc) Order (α)

1 1.0463 0.0002

10 1.0497 -0.0085

20 1.0386 -0.0077

50 1.0481 -0.0098

100 1.0327 -0.0059

5/40/80 1.0172 -0.0023

Figure 3: Piezoelectric-actuated positioning stage.
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Figure 4: Continued.
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Figure 4: Continued.
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According to the characteristic equation, where c is a
normal number, which does not affect the characteristics of
the characteristic roots, the characteristic stability of the sys-
tem is mainly determined by formula Bðz−1Þ, and Bðz−1Þ is
the inherent polynomial of the discrete second-order trans-
fer function of the whole system. According to the above,
it can be seen that the solutions of its equations are all in

the left half-axis plane and are stable polynomials. Therefore,
it can be known that the whole system is stable.

5. Simulation and Experimental Verification

5.1. Experimental Setup. In this paper, the structure of
the piezoelectric-actuated positioning stage is shown in
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Figure 4: Displacement output comparison of Hammerstein model and the proposed model.
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Figure 3. The main parts of the entire experimental system
are the following. (a) Experimental piezoelectric stage
PS1H80-030U, (b) piezo driver PH301, (c) signal generator
SAB101, and (d) display and interface panel and experimen-
tal computer as a controller. The piezoelectric-actuated posi-
tioning stage includes a mobile stage, a piezoelectric actuator,
and a displacement sensor. The resolution of the displace-
ment sensor is 2 nm, and the maximum displacement dis-
tance of the mobile stage is 30μm. The working process of

the entire experimental system is as follows. The signal gen-
erator inputs a voltage signal of 0-10V; after the power
amplifier, the input voltage range becomes a voltage signal
of 0-150V and a bandwidth of 6 kHz, which is input to the
piezoelectric driver through the display and interface panel
as the driving voltage of the positioning stage, the output
displacement of the positioning stage is measured by the
displacement sensor, and the output displacement range is
0-100μm after being amplified by the flexible hinge. The
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Figure 5: Error analysis of Hammerstein model and the proposed model.
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signal is collected and saved by the experimental computer as
the controller during the whole process. In this paper, the
sampling time of the controller is 0.5ms.

5.2. Validation and Analysis of Proposed Coupling Model. In
this section, the root-mean-square error erms and the relative
error er is employed as indicators to verify the accuracy of
the model in this paper. In the following, the root-mean-
square error erms and the relative error er are defined as

erms =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
L

k=1

y kð Þ − ym kð Þð Þ2
L

vuut , ð36Þ

er =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑L

k=1 y kð Þ − ym kð Þð Þ2
∑L

k=1 y kð Þð Þ2

s
, ð37Þ

where L is the number of collected data, yðkÞ is the collected
displacement output of the piezoelectric-actuated position-
ing stage, and ymðkÞ is the predicted output of the proposed
coupling model.

To verify the effectiveness of the proposed coupling
model, experiments with a set of periodic sinusoidal voltage
signals vðtÞ = 10 sin ð2πf tÞ + 10 are conducted, and the
frequencies are 1Hz, 10Hz, 20Hz, 50Hz, and 100Hz.
Besides, the mixed frequency input voltage signal vðtÞ =
6∑3

i=1 sin ð2πf itÞ + 18 with different frequencies f1 = 5Hz,
f2 = 40Hz, and f3 = 80Hz also is used to excite the
piezoelectric-actuated positioning stage. In this paper, the
input-output characteristics of the experimental positioning
stage are experimentally studied through the above two sets
of input data, and the analysis conclusions will be given
below.

It is well known that the positioning stage has different
properties in different frequency ranges, among which the
hysteresis effect always exists and is the main behavior char-
acteristic. Besides, in the low-frequency (less than or equal to
10Hz) range, the creep characteristics are strong, while the
dynamics are weak. On the contrary, in the high-frequency
(above 50Hz) range, the dynamics are stronger than the
creep properties. In the midfrequency (below 50Hz and
greater than 10Hz) segment, the two strengths are almost
the same. Nevertheless, dynamics cannot be neglected in
the low-frequency range, and creep behavior cannot be
ignored in the high-frequency range. Based on this fact, in
order to show the effect of the coupling model more clearly,
the following analysis and discussion are carried out.
Figure 4 shows the experimental data of the piezoelectric-
actuated positioning stage under different frequency input
voltage signals and for comparison with the predicted output
data of the proposed coupling model and the Hammerstein
model. Figure 5 shows the fitting error of the proposed
model and the Hammerstein model. It can be seen that in
the low-frequency band, the creep phenomenon presented
is obviously stronger than the dynamics, and the effect of
the coupling model with the fractional operator model is
better than that of the Hammerstein model.

It can be clearly seen from Table 1 that in the case of
ultralow frequency (1Hz and below), the creep effect
exhibits a differential nature. In addition, at other frequen-
cies, the integral nature of the creep effect is characterized.
In order to more clearly present the difference and effect
between the proposed coupling model in this article and
the Hammerstein model, two sets of quantitative indicators
are given, namely, the root-mean-square error erms displayed
in Table 2 and the relative error er described in Table 3. It
can be clearly seen from Table 2 that the proposed coupling
model of the fractional creep model in the series has a better
effect, especially in the low-frequency range. On account of
except for the hysteresis effect throughout the entire fre-
quency range, the displayed creep effect is significantly
higher than the dynamics characteristics, so the proposed
coupling model is significantly better than the Hammerstein
model. In the midrange frequency range, the effect of the
coupling model is better because of the strong creep and
dynamics characteristics. In the high-frequency range, the
creep effect is gradually weakened, and the dynamics charac-
teristic is the main property besides hysteresis. At this time,
the Hammerstein model is obviously better than the low-
frequency range. However, there is no doubt that the creep
phenomenon cannot be ignored. The effect of the coupled
model is still better than the Hammerstein model. In
summary, the proposed coupling model in this paper can
effectively describe the hysteresis, dynamics, and creep
effects of the piezoelectric-actuated positioning stage; the
relative error er is within about 2%.

Table 2: The root mean square error of the Hammerstein model
and the proposed coupling model.

Frequency (f /Hz)
The root-mean-square error erms/(μm)
The Hammerstein

model
The proposed
coupling model

1 0.4610 0.1787

10 0.4044 0.1174

20 0.3098 0.1106

50 0.3402 0.1482

100 0.2656 0.1932

5/40/80 0.1195 0.0682

Table 3: The relative error of the Hammerstein model and the
proposed coupling model.

Frequency (f /Hz)
The relative error er

The Hammerstein
model

The proposed
coupling model

1 4.79% 1.86%

10 4.21% 1.22%

20 3.26% 1.16%

50 3.57% 1.55%

100 2.81% 2.05%

5/40/80 2.12% 1.21%
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5.3. Analysis of Adaptive Control. In this paper, the input
voltage signal is sinusoidal voltage signal ydðtÞ = 10 sin
ð2πf tÞ. The selected frequencies f are 1Hz, 10Hz, 20Hz,
and 50Hz, and two sets of mixed frequency control input
signals ydðtÞ = 10∑3

i=1 sin ð2πf itÞ. One set of frequencies are
f1 = 1Hz, f2 = 5Hz, and f3 = 10Hz; the other set of frequen-
cies are f1 = 1Hz, f2 = 10Hz, and f3 = 20Hz. The tracking
control simulation is carried out.

Figure 6 shows the result of the adaptive control scheme,
and Figure 7 shows the tracking error. It can be seen that the
adaptive control scheme designed in this paper can track the
expected displacement well in the case of mixing low and
medium and low frequencies. Especially when the input sig-

nal frequency is 1Hz, the tracking error is controlled around
0.02μm.

It can be seen from the data in Tables 4 and 5 that the
input-output tracking effect measured in the simulation
study of adaptive compound control based on minimum
variance is good. When the input signal is at low frequency
1Hz, the creep characteristics are strong. The accuracy of
the coupling model considering creep characteristics is obvi-
ously better than that of Hammerstein model without creep
characteristics. However, with the increase of frequency, the
positioning drift phenomenon becomes weaker, the calculus
property of creep characteristics changes, and the influence
of creep characteristics on the system is greatly weakened.
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Therefore, in this paper, the fractional operator parameters
identified at 1Hz are taken as the fractional creep model
parameters in the simulation.

When the expected input signal frequency is 1Hz, the
root mean square errors erms based on the minimum vari-
ance adaptive composite control is 0.0076μm. The relative
error er is 0.76%. When the system input frequency is
increased to the medium frequency, when the expected
input signal frequency is 20Hz, the root mean square error
erms based on the minimum variance adaptive composite
control is 0.1153μm. The relative error er is 1.63%. In addi-
tion, when the input signal is a mixed frequency (1/5/10Hz),
the root mean square error erms of adaptive composite con-
trol based on minimum variance is 0.06μm, and relative
error er is 0.49%. Through the above data analysis, it can
be seen that the minimum variance adaptive composite
control can effectively track the expected input signal of
the piezoelectric-driven positioning system, especially at
low frequency.

6. Conclusion

In this paper, a new nonlinear model of coupled hysteresis,
dynamics, and creep effects is proposed, which is based on
the Hammerstein structure model and the fractional-order
model. The Hammerstein model includes a classical PI
model describing the static hysteresis characteristics and
a second-order transfer function model representing the
dynamic characteristics. The parameter identification of
the proposed coupling model is simple and easy to imple-
ment. According to the coupling model, the feedforward
compensations of the inverse of the fractional-order model
and the inverse of the PI model are designed, and the
tracking performance of the controlled system is adjusted
by the adaptive control. To verify the effectiveness of the pro-
posed model and controller, an experimental piezoelectric-
actuated positioning stage is built. The experimental results
show that the established coupling model can characterize
accurately the complex nonlinear properties of the position-
ing stage. Also, the results show that the desired signal can
be tracked well.
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