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Digital camouflage is a common countermeasure against military reconnaissance. In the face of high-tech imaging reconnaissance,
battlefield detection means tend to be automated and refined. In order to adapt to the concealment requirements under various
environmental backgrounds, combined with the camouflage performance of digital camouflage and its feedback mechanism in
camouflage pattern design, this paper proposed a digital camouflage pattern design method based on biased random walk.
Firstly, the original background is preprocessed, and the background texture’s direction, corner, step length, and pixel intensity
difference are statistically analyzed, and the boundary probability between pixel nodes is estimated. Then, a biased random
walk is used to outline the camouflage patches. The edge scatter is enriched according to the density of the patches, and the
camouflage patches are filled according to the proportion of the main color of the background. Finally, a digital camouflage
pattern is obtained. The quantitative analysis results show that the mean heart rate of the digital camouflage pattern based on
multiscene design is at least 31.0% higher than that of the original background segmentation texture, and the standard
deviation index of equivalent diameter is increased by 14.9% on average. In addition, the results of simulation camouflage
image detection in multiple scenes show that the proposed method can effectively deal with camouflage target detection on the
basis of fully retaining the original background texture information and has strong camouflage concealment effect in the scene.

1. Introduction

In optical images, pixels are regarded as the smallest indivis-
ible unit in the whole image. The mosaic generated based on
pixels is disordered. Compared with the smooth edge of tra-
ditional camouflage, the digital camouflage composed of
mosaics of different shapes and sizes shows better camou-
flage effect in major scenes [1–4]. The digital camouflage
design mainly includes two parts: the extraction of back-
ground tone and the design of camouflage patches [5]. The
main color extraction of background images generally
adopts K-means clustering method [6–11], color histogram
[12, 13], and other methods. According to the similarity rule,
the classification of image colors can obtain the main repre-
sentative colors in the background image, and filling the
designed digital patches can increase the similarity between
the digital camouflage pattern and the original background
and enhance the camouflage effect of the target.

Yan [8] pointed out that a good camouflage pattern
should not only be similar to the scene in color but also be
in harmony with the background in texture characteristics.
Yu et al. [5] proposed a method for designing camouflage
patches based on background color and edge information,
which got rid of the inherent dependence on the designer’s
experience and enhanced the camouflage effect. Bai et al.
[14] segmented the background based on the watershed
algorithm to obtain the blob shape. Wang Zhan et al. used
the mean shift and minimum spanning tree algorithm to
extract the background image blobs. Yun-xiang et al. [15]
used the fractal Brown model to study the generation of dig-
ital camouflage patterns. The above methods are based on
statistical background characteristics and have a high simi-
larity with the background image.

Considering the invariance of two-dimensional plane
digital camouflage, Wu et al. [16] proposed a stereoscopic
camouflage imaging algorithm based on background depth
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information and formed a raster image theory based on par-
allax factors to produce a digital camouflage pattern with
three-dimensional dynamic effect. The three-dimensional
and dynamic effects will be significantly weakened with the
increase of the reconnaissance distance, and the operability
and applicability are not strong. Based on this, Zhou et al.
[17] introduced texture lines covered by optical illusion
strips and arranged and combined them according to certain
rules to generate camouflage patterns, which stimulated
human vision to form visual perception deviations and
increased the camouflage target to some extent. The decep-
tive observation angle weakens the similarity between the
digital camouflage pattern itself and the background.

In order to make the designed digital camouflage pattern
not only retain the certainty of the original background tex-
ture but also show the randomness of the camouflage
patches, Qi et al. [18] used the Markov random field model
to simulate the characteristics of the regional background,
generated a two-dimensional texture matrix, and initially
solved the subjective and random problems of camouflage
spots. Bi et al. [19] used the random midpoint displacement
method to generate fractal curves to simulate complex and
irregular geometric shapes in nature, but this lacked the con-
straints of background information on texture curves.

Armi and Fekri-Ershad [20] analyzed many texture fea-
tures and found that affected by noise, illumination, scale,
rotation, viewpoint, and other factors, texture presents
diversity and complexity, which provides ideas for our tex-
ture design method. In recent years, random walk algo-
rithms have achieved outstanding results in the fields of
image dehazing [21, 22], image segmentation [23, 24], and
evolutionary images [25]. The biased random walk [26] is
based on satisfying a certain trend law but also meets the
characteristics of random walk. This concept fully conforms
to the design concept of digital camouflage texture. This
paper simulates the trend of irregular texture based on the
random walk algorithm, estimates the boundary probability
between pixel nodes by defining the trend function, outlines
the digital camouflage patches, and finally fills the main
color of the background to distort the surface features of
the target and realizes the design of digital camouflage
patterns.

2. Camouflage Patch Design

2.1. Random Walk Motion Hypothesis. Assume that each
pixel in the background image is node Nx,y (x and y repre-
sent the row and column coordinates of the image matrix,
respectively). We define the connection between nodes as
edge EðNx,y,Nx′,y′Þ and segment the image through the con-
nection between nodes and edges to obtain digital camou-
flage patches. A good digital patch should have both the
certainty of the background texture and the randomness of
the target survival scene. Therefore, the selection of nodes
and the direction of edges are the key points in the process
of camouflage patch generation. If a pixel is randomly
selected as the moving point M, the running trajectory of
the moving point M in the image is piecewise linear.

According to the general assumption of the type of motion,
this “linearity” depends on the time and position of each
point’s motion. If mapped in an image, it is equivalent to
node Nx,y = ðx, yÞ coordinates and edge lengths EðNx,y,
Nx′,y′Þ. The “piecewise “is reflected in the angle between
the edge and the edge; that is, the current node is the vertex,
the moving point M moves to the next node as the end
point, and the ray from the vertex to the horizontal right side
of the image is set as the starting edge. The connecting line
from the vertex to the end point is the end edge, and the
angle between the end edge rotated clockwise to the direc-
tion of the start edge is recorded as the rotation angle θ. So
far, the texture curve drawn in the image is the digital cam-
ouflage patch.

Assuming that the number of points obtained by a per-
son throwing a dice once is the moving point motion step,
and the number of points obtained by throwing the dice
twice is converted into an angle, then the random walk of
the moving point M in the image is shown as the running
trajectory in Figure 1. Theoretically, the node position that
the moving pointM will reach next is the product of the ran-
dom probabilities of two dice throws, and the obtained prob-
ability is a set of random variables. Therefore, the moving
point trajectory in Figure 1 is a completely unconstrained
random process.

2.2. Biased Random Walk. From the point of view of a single
event, the ideal random walk motion does not have any reg-
ularity. After the digital patches generated based on random
walk are colored, it can show good destructiveness in the
whole scene but ignores the original texture trend of the
background pattern. The biased random walk is based on
the irregular random walk, and it also satisfies some specific
trends. Therefore, the limited condition of the background
texture feature is used as a constraint function, which not
only retains the background feature but also satisfies the ran-
domness. The resulting camouflage patches can have more
advanced camouflage effects.

P

(M)

Start side

Figure 1: Schematic diagram of random walk piecewise linear
motion.
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2.2.1. Random Walk Dependency Model. The general idea of
a random walk is to stop at ðxl, ylÞ with a given probability
Pðx, y, θ, lÞ (l is the movement distance). The probability dis-
tribution qx,y,θðlÞ of the motion unit that starts to move
along θ and moves a distance l at the position ðx, yÞ is

qx,y,θ lð Þ = exp −
ðl
0
P x + ζ�x,y,θ sð Þ, y + ζx,�y,θ sð Þ, θ, s� �

ds
� �

,

ð1Þ

where ζx,y,θðsÞ is expressed as the vector of the motor unit
from the point ðx, yÞ in the distance interval ½x + sx, y + sy�;
ζx,y,θðsÞ = s ⋅ ∠θ; based on the chemokine ρ with biased char-
acteristics, a simple functional correlation can be derived:

P x, yð Þ = P ρ x, yð Þð Þ: ð2Þ

This means that each motor unit can only be affected by
chemokines at a specific location. Based on this, we assume a
simplest dependency model:

β x, y, θð Þ = β0 ρ x, yð Þ,Dθρ
� �

,

Dθρ = ∂xρ + ∂yρ + cθ ⋅ ∇lρ,
ð3Þ

where c is a constant.
Combined with the above-mentioned dependency

models, the chemotactic function ρðx, yÞ can be enriched
by establishing various mathematical model mechanisms,
so as to realize the control of biased random walk of seeds
in the motor unit.

2.2.2. Mathematical Model Mechanism. Considering that the
camouflage patches need to retain the original background
texture information, the constraint function must first learn
the prior information of the background texture. Perform
image segmentation processing on the original background,
remove noise points, count the obtained edge point informa-
tion of each segmentation, and iterate the 8 neighborhood
directions of each pixel point. If it is the same as the previous
step, the statistical step size is l + 1. If they are different, cal-
culate the rotation angle θ, and after traversing the entire
image, obtain the statistical values of the step length and
direction rotation angle, calculate the ratio of the different
step length l and the direction angle θ, and obtain the final
probability distributions Pl andPθ:

Pl = pl1, pl2,⋯,pl maxf g,
Pθ = p1, p2,⋯,p8f g:

(
ð4Þ

The definition of the direction angle is shown in
Figure 2. As can be seen from the figure, there is a positional
correspondence between the pixels in the same straight line
direction, and there will be repeated calculations when the
direction corners are counted. Therefore, when we set the
random walk prerequisites, the 8 directions in the direction
corners are converted into 4 directions, and batch iterations

are considered, which not only ensures that there are no
gaps in each direction but also prevents the phenomenon
of reentry and overlap in the adjacent steps of the random
walk.

2.3. Build Weight Coefficients. According to the segmenta-
tion result of the original background image, the step size
information L = fl1, l2,⋯lmaxg is obtained, the frequency of
occurrences corresponding to different step sizes is counted,
and the probability value Pl of the step size is calculated.
Finally, the walk step size is randomly generated according
to the probability and normalized, and the step size param-
eter SstepPara is obtained as

SstepPara = RRandom Φ Lð Þ, Plð Þ, ð5Þ

where Φð⋅Þ represents the normalization process, namely,
ΦðLÞ = flϕg and lϕi = li/lmax, and RRandomðA, BÞ represents
that a certain data in the corresponding set A is generated
according to the probability value in the set B, where A
and B are the corresponding relationship.

The core of realizing random walk is to obtain the weight
of each texture edge (straight edge). In order to fully describe
the background information, the pixel value and geometric
distance (step size and direction) of the current position
are comprehensively considered. Convert all pixel coordi-
nates in the image to line indices Eðx, yÞ, set the edge indices
in the order of coordinates, and calculate the pixel difference
of each potential edge according to the edge index assump-
tion in the image, and normalize it. The pixel parameters
VvalPara is

VvalPara =Φ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠 Ival E x, yð Þð Þ − Ival E x′, y′

� �� �� �2r !
,

ð6Þ

where Ival is the current position pixel value.
Finally, the Gaussian weight W is calculated, that is,

W = exp − α ⋅ VvalPara + β ⋅ SstepPara
� �� �

+ C, ð7Þ

where α and β are the coefficients of the VvalPara and SstepPara
parameters, respectively. In this paper, the parameter α is set
to 0.8, and the parameter β is set to 0.2, so that the obtained
weight result highlights the pixel change law, and C is the
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1: 𝜃 = 225°
2: 𝜃 = 270°
3: 𝜃 = 315°
4: 𝜃 = 0°
5: 𝜃 = 45°
6: 𝜃 = 90°
7: 𝜃 = 135°
8: 𝜃 = 180°

Figure 2: Schematic diagram of direction angle definition.
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minimum optional constant (this paper sets C = 10−5) to
ensure numerical stability.

2.4. Dirichlet Problem. The Dirichlet problem is the solution
of the harmonic function at the boundary. Let the boundary
of the region D be Q, and find the solution of continuous

boundary value on Q, satisfying the given condition in D. In
the image, the boundary of the patch is composed of texture,
then the area D must be bounded, and the boundary points
are all regular points. Combined with the conditional function,
set up the Dirichlet problem to solve the camouflage patch
boundary, first initialize the boundary, construct a diagonal

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3: Original background image. (a) Forest, (b) desert, (c) ocean, (d) grassland, (e) snow, (f) gravel, (g) woodland, and (h) city.
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matrix from all the seed points in the sample image according
to the label size, and regard it as the initialization boundaryQ0.

Construct a Laplace sparse matrix Γ according to the
weight information corresponding to each edge, set up the
Dirichlet problem, solve the random walk probability by
solving the combined Dirichlet problem, obtain the proba-

bility matrix, and match texture patch markers based on
the maximum values of rows and columns returned and
index information.

Γ = diag 〠S
� �

− S, ð8Þ

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4: Four main color extraction. (a) Forest, (b) desert, (c) ocean, (d) grassland, (e) snow, (f) gravel, (g) woodland, and (h) city.
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where S is composed of edge index and corresponding edge
weight information, the row and column are equivalent to
the sparse square matrix of the total number of pixels, and
diag ð⋅Þ indicates that the diagonal matrix is constructed.

So, the matrix Ζ for estimating texture patch edges can
be expressed as

Ζ = −Γcore/ Γcore ⋅ Ikð Þ, ð9Þ

where Γcore is the sparse matrix containing the core pixels of
k camouflage patches, Γcore is the noncore sparse matrix, and
Ik is the k-order unit matrix.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5: Texture patch map. (a) Forest, (b) desert, (c) ocean, (d) grassland, (e) snow, (f) gravel, (g) woodland, and (h) city.
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3. Camouflage Pattern Fill

3.1. Camouflage Patch Main Color Fill. Some animals in
nature can change the pigmentation state of their skin to
hide in the background. The protective prey can “distort”

their body contours, making predators appear visual frag-
ments and improving the animal’s own survivability.

Different combat environments require different main
colors of digital camouflage. The original image contains N
pixels, and each pixel value is between [0,1]. Four clustering

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6: Texture patch dense map. (a) Forest, (b) desert, (c) ocean, (d) grassland, (e) snow, (f) gravel, (g) woodland, and (h) city.
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centers (pixel values) are randomly initialized. According to
the clustering idea, four main colors are extracted, which are
used as digital camouflage coloring options to enhance the
target camouflage effect. The specific idea is that the pixel
values with similar sizes are grouped, and the pixel values
corresponding to the clustering center are relocated through
iteration. After the iteration process converges, the final four
pixel values are the four main colors of digital camouflage.
Filling the extracted background main color to the digital
camouflage patch can increase the hiding performance of
the target to a certain extent. K-means clustering algorithm
is one of the simplest and most effective unsupervised algo-
rithms at present. Using this algorithm, it can realize eight

typical scenes such as forest, desert, ocean, grassland, snow,
gravel, woodland, and city (Figure 3) to extract the color
and generate the main color cluster diagram; the result is
shown in Figure 4.

The background is analyzed according to the mathemat-
ical model in Section 2, followed by a biased random walk
strategy, to generate camouflage patches and fill the patches
with four main tones. The results are shown in Figure 5.

It can be seen from Figure 5 that the generated camou-
flage pattern, because of the strong difference in the main
color, makes the inner edge of the pattern obvious, and the
texture information is very easy to obtain, forming a new
exposed feature of the camouflage target.

Minimum
spanning

tree 
(a) (b) (c) (d)

(e) (f) (g) (h)

Ours (a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: Camouflage pattern. (a) Forest, (b) desert, (c) ocean, (d) grassland, (e) snow, (f) gravel, (g) woodland, and (h) city.
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3.2. Destructive Edge Design. Inspired by “camouflage mas-
ters” in animal worlds such as chameleons and cuttlefish
and considering the destructiveness of gradient edges to tex-
tures, it is proposed to add random scattered points to the
edges of patches. Since the label of the marked image in
the background image area reflects the distribution of the
patches in the background, the density is calculated accord-
ing to the patch size information. The texture patch density
map corresponding to each background image is shown in
Figure 6.

In order to make the designed camouflage pattern
destructive to the target, this paper increases its randomness
from two aspects. One is to convert the texture patch density
map into a probability map; that is, the area with higher
brightness of the dense map indicates that the patch size is
small and the texture density is high. Therefore, this paper
adapts the size of the design area scatter template according
to this rule; the second is to calculate the proportion of the
extracted background main color in the original background
and generate probability random numbers according to the
proportion, so that the background color distribution is sat-
isfied when filling the main color, and the camouflage effect
of the digital pattern is increased. The final generated cam-
ouflage pattern is shown in Figure 7.

4. Comparative Results Analysis

4.1. Analysis of Camouflage Pattern Design. In order to intu-
itively reflect the effectiveness and robustness of the algo-
rithm in this paper, it is compared with the fusion mean
shift and minimum spanning tree scheme proposed in Ref-
erence, and the results are shown in Figure 7.

The method proposed in this paper has obvious advan-
tages over the minimum spanning tree algorithm in the
degree of edge damage and has better robustness. In multiple
typical scenarios, digital patterns can show good random-
ness. In order to further illustrate the superiority of the algo-
rithm in this paper, we use intuitive values for quantitative
analysis.

4.2. Quantitative Analysis. Eccentricity is a measure of the
flatness of an ellipse. Generally speaking, the greater the
eccentricity, the flatter the ellipse. Mapped to the image,
the larger the eccentricity of the ellipse with the same
standard second-order central moment as the patch area,
the more distorted and irregular the texture patch is.
The diameter of the circle with the same area as the patch
area represents the size of the patch formed by the texture.
The standard deviation of the equivalent diameter of all
patches in the image is counted, which intuitively reflects
the fluctuation amplitude of the size of all patches in the
image.

In this paper, forest, desert, ocean, grassland, snow,
gravel, woodland, and city represent 8 typical background
environments, including different texture density types. To
intuitively reflect the superiority of the algorithm in this
paper, two characteristic parameters of mean eccentricity
and equivalent diameter are analyzed under eight back-
grounds and compared with several existing classical algo-
rithms. The results are shown in Tables 1 and 2.

It can be seen from Table 1 that the texture image gen-
erated in eight different types of backgrounds, compared
with the three typical algorithms, the ellipse second-order
center distance, and the corresponding eccentricity are
larger, and the corresponding texture patch shape is more
distorted. In multiple scenarios, the eccentricity index is
increased by at least 31.4%. Table 2 intuitively reflects the
fluctuation of texture patch shape. Although the standard
deviation of equivalent diameter of texture pattern designed
by Markov algorithm is higher in gravel and woodland sce-
narios, the standard deviation of equivalent diameter
increases by 14.9% on average. Overall, the robustness of
digital camouflage design scheme based on biased random
walk is better.

The obtained digital camouflage pattern is combined
with the scene to obtain a camouflage simulation image,
and the camouflage target is segmented by using the SINet
network framework [27] proposed by the Media Computing
Laboratory of Nankai University. The results are shown in
Table 3.

Table 1: Mean eccentricity comparison statistics.

Method Forest Desert Ocean Grassland Snow Gravel Woodland City

Water divide [14] 0.2488 0.2608 0.2302 0.1570 0.2200 0.2836 0.1933 0.3445

Markov [18] 0.1670 0.1151 0.1637 0.1200 0.1751 0.1828 0.1300 0.1867

DSH [15] 0.3853 0.4699 0.3770 0.3316 0.4619 0.3855 0.4481 0.4590

Ours 0.6803 0.6845 0.5722 0.6619 0.6808 0.7218 0.6898 0.6907

Table 2: Equivalent diameter standard deviation comparison statistics.

Method Forest Desert Ocean Grassland Snow Gravel Woodland City

Water divide [14] 4.0819 6.0444 4.0608 4.8725 4.6106 14.0797 5.0899 5.4081

Markov [18] 9.3463 10.4637 6.9831 7.5966 10.5611 14.1472 11.9873 7.8641

DSH [15] 6.8744 11.1016 17.7655 2.2917 17.6447 11.7586 6.1297 9.0849

Ours 10.7921 11.3147 27.6717 16.2704 17.9355 13.3947 11.7163 11.5464
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The test results in Table 2 show that the camouflage
pattern obtained based on the biased random walk digital
camouflage pattern design scheme and even the extremely
robust SINet network cannot completely segment the dig-
ital camouflage target and even completely miss the detec-
tion phenomenon. In addition, combined with human eye
interpretation, it may be found that the camouflage simu-
lation areas of different scenes have obvious concealment.

5. Conclusion

This paper proposed a digital camouflage pattern design
method based on a biased random walk strategy. First, we
segment the original background, count the pixel and edge
information, and complete a biased random walk based on
the estimated boundary probability to obtain the prototype
of the camouflage patch. Then, according to the patch den-
sity distribution, the scatter and distortion effect in the local
area of the texture is mapped, and the camouflage pattern is
optimized. Finally, the K-means clustering algorithm is used
to extract the main color of the background, and the camou-
flage patches are randomly filled according to the proportion
of the color to complete the digital camouflage pattern
design that conforms to the background characteristics.
Quantitative analysis of characteristic parameters shows that
the camouflage patches generated by the algorithm in this
paper are distorted and irregular and exhibit strong random-
ness. At the same time, the detection results of camouflage
targets based on camouflage simulation images show strong
concealment, which is in line with the camouflage perfor-
mance of digital camouflage.

The method proposed in this paper is mainly based on
the random walk characteristics of the texture inside the pat-
tern and the principle of edge destruction. The digital cam-
ouflage pattern designed in this paper has strong confusion
under visual observation. However, from the perspective of
practical application, the camouflage also needs to effectively
deal with infrared reconnaissance, radar reconnaissance, and
hyperspectral reconnaissance, which need to be combined
with a large number of actual detection data for analysis
and verification. It is difficult to obtain the experimental data
of multi-reconnaissance cooperative detection, which also
brings difficulties to the research of this problem.
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