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CFD analysis of flow and heat transfer characteristics in a baffled duct is reported. The baffle locations (s = 0:05H – 0:40H), flow
paths (V-apex directing Downstream or VD and V-apex directing Upstream or VU), and baffle heights (b = 0:05H – 0:30H) are
investigated in the laminar flow regime with the Reynolds number based on the entry conditions between 100 and 2,000. Solutions
of the present work are obtained by the finite volume method (a commercial code). Key mechanisms such as fluid streams,
impinging streams, and disturbed thermal boundary layer in the baffled duct are observed. The baffle locations have high
impact on flow and heat transfer behavior. The best heat transfer rate of the baffled duct is 15.55 times higher than that of the
general duct with no baffle, while the optimum TEF is 4.06.

1. Introduction

V-pattern rib/baffle is a kind of vortex generators frequently
used to change thermal behavior and flow profiles in heat
exchangers. The changes of flow and thermal profiles
improve heat transfer coefficient and thermal efficiency.
The V-pattern rib/baffle is more effective in improving effi-
ciency of heat exchangers compared with other types of vor-
tex generators [1]. The V-pattern rib/baffle has been
developed with two main aims: (1) to improve the heat
transfer in the heat exchangers and (2) to facilitate installa-
tion, manufacturing, and maintenance. Moreover, it is rec-
ommended that the structural rib/baffle must be stable for
the installation in the heat exchangers.

Researchers have investigated thermal development in
different types of heat exchangers with V-pattern rib/baffles
(or similarity shape). Zhang et al. [2] studied the forced con-
vective heat transfer in a channel installed with micro V-
pattern ribs and dimples at the Re number of 50,500. They
found that the combined vortex generator (micro V-

pattern rib-dimple hybrid configuration) resulted in the
higher heat transfer coefficient compared with the generator
with only V-pattern ribs or dimples. Xiao et al. [3] studied
the enhanced heat transfer efficiency of a mini-channel heat
sink with V-pattern ribs. They stated that the Nusselt num-
ber of their study was 1.71–3.55 times higher than the base
case. Bahiraei et al. [4] selected V-pattern ribs combined
with nanofluid to improve the second law characteristics of
fluid flow behavior in a square channel. Jain and Lanjewar
[5] presented the overview of V-pattern rib geometries in a
solar air heater and performance analysis. The effects of rel-
ative roughness pitches with single relative staggered rib
were considered. They concluded that the maximum Nu/
Nu0 and f/f0 of the solar air heater are around 2.30 and
3.18, respectively. Jin et al. [6] numerically simulated the
augmented thermal efficiency in a solar air heater roughened
by multiple V-pattern ribs. They found that the optimum
number of spanwise ribs declined with an increase in the
channel height, the angle of attack, and relative rib spacing.
Bahiraei et al. [7] simulated the thermal performance of
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Figure 1: Physical domain of (a) baffled duct and (b) baffle configuration.
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Cu-water nanofluid within a square channel installed with
90° V-shaped ribs. The numerical analysis of fluid flow and
heat transfer profiles in a solar air heater using V-down ribs
with multiple gaps were performed by Misra et al. [8]. Jin
et al. [9] reported the best thermal performance for a solar
air heater inserted with staggered multiple V-pattern ribs
as 2.43. Jin et al. [10] numerically studied the influences of
multiple V-pattern ribs on the absorber plate in a solar air
heater. The best thermal performance reported is 1.93.
Kumar and Kim [11] found that the combined vortex gener-
ator (V-pattern rib and groove roughness) performs better
in terms of thermal efficiency compared with other V-
pattern rib roughness shapes. The effects of V-down ribs
with gaps at various flow attack angles (30°–75°) in a rectan-
gular duct were examined by Singh et al. [12]. Their best
flow attack angle is 60°. Deo et al. [13] experimentally ana-
lyzed the performance of a duct roughened with multigap
V-down ribs combined with staggered ribs. The rib pitch-
to-height ratios, rib height-to-hydraulic diameter ratios,
and angles of attack were considered in their study. They
reported the enhanced heat transfer of 3.34 times higher
than that of the base case. Ravi and Saini [14] studied the
forced convection in a solar heater with discrete multi-V-
shaped and staggered rib roughness on both sides of the
absorber plate. Caliskan and Baskaya [15] experimentally
investigated the impinging jet array heat transfer from a sur-
face with V-pattern and convergent-divergent ribs. Singh
et al. [16] presented the exergy analysis of a solar air heater
using discrete V-down rib on the absorber plate. Karwa
and Chitoshiya [17] experimentally studied the selection of
discrete V-down ribs to augment the heat transfer rate in a
solar heater. Their results indicated the enhanced thermal
efficiency of 12.5–20%. The experimental investigations of
heat transfer in a two-pass channel using V-pattern ribs
and cylindrical dimples were presented by Singh and Ekkad
[18]. Kumar et al. [19] reported the Nusselt number and
friction factor correlations of a solar air heater having with

multi-V-pattern ribs with gaps. They found their highest
Nusselt number to be 6.74 times higher than the base case.
The experimental results on the thermal performance
improvement of a double pass duct with roughness elements
(discrete multi-V-pattern and staggered ribs) were reported
by Ravi and Saini [20]. Boruah et al. [21, 22] reported the
entropy analysis for mixed convective flows over a backward
facing step channel with baffle. They found that the elliptical
baffle is an optimum design for staggered arrangement.

From the literature review and our related works [1], we
found that the location of the V-shaped rib/baffle has high
impact on the variations of fluid flow and heat transfer pat-
terns. Thus, in the present work, we include these factors
into consideration for the V-shaped rib/baffle modification.
First, the V-shaped rib/baffle is modified with the objective
to increase structural stabilization. Second, the location in
a cross-sectional plane in the tested duct is considered. The
numerical method is employed to examine flow and heat
transfer characteristics. The flow pattern and heat transfer
profiles are important data for the heat transfer improve-
ment. The knowledge of the fluid flow and heat transfer
mechanisms in the tested duct is the key to improvement
of heat exchanger efficiency.

2. Baffled Duct, Computational Domain, and
Boundary Conditions

The baffled duct and computational domain with boundary
conditions are illustrated in Figure 1(a), while the modified
V-shaped baffle is presented in Figure 1(b). Hydraulic diam-
eter, Dh, of the baffled duct is equivalent to 0.05m
(H =W =Dh = 0:05m). The baffles are inserted in the duct
with a pitch distance, P = 0:05m or P =H. The angle of
attack or inclination angle of the baffle is fixed at 30° for
all investigated cases. The baffle height, b, is varied: b =
0:05H, 0.10H, 0.15H, 0.20H, 0.25H, and 0.30H. The distance
between the upper-lower duct walls and the upper-lower
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Figure 2: Validation of smooth square duct.
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baffles, s, is also varied: 0.05H–0.40H, depending on the baf-
fle height. The periodic length of the computational domain
is represented with L, where L/H = 1. There are two flow
directions: (1) V-Downstream (VD) or positive x (+x) and
(2) V-Upstream (VU) or negative x (−x). The flow in the
laminar regime with the Reynolds number between 100
and 2,000 (based on the entry condition) is considered for
the present research.

A constant temperature at the duct walls of 310K is set.
The inlet and outlet zones of the baffled duct are applied

with the periodic condition. The V-shaped baffle and V-
shaped bar are applied as an insulator. The no-slip wall
boundary is utilized for the whole surfaces of the baffled
duct. Viscous dissipation is assumed to be negligible, and
body force is not considered.

3. Mathematical Foundation

The assumptions for the numerical investigation are as
follows.
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Figure 3: Streamlines in cross sectional planes for the baffled duct with various b/H and s/H at Re = 800 of (a) VD and (b) VU.
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(i) Flow and heat transfer in the baffled duct are three-
dimensional and steady-state problems

(ii) The tested fluid is air (considered as incompressible
fluid because of its low velocity) at an initial temper-
ature of 300K with the Prandtl number of 0.707

(iii) The fluid properties are set to be constant because the
variation of the fluid temperature is within ±10°C

(iv) Forced convective heat transfer is measured, while
the radiation and the natural convection are not
considered.

The continuity equation, the momentum equation, and
the energy equation are expressed in Equations (1)–(3),
respectively.

Continuity equation:

∂
∂xi

ρuið Þ = 0: ð1Þ

Momentum equation:

∂ ρuiuj

� �
∂xj

= −
∂p
∂xi

+ ∂
∂xj

μ
∂ui
∂xj

+
∂uj

∂xi

 !" #
: ð2Þ

Energy equation:

∂
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ρuiTð Þ = ∂
∂xj

Γ
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Figure 4: Pressure contours in transverse planes for the baffled duct with b/H = 0:20 and s/H = 0:15 at Re = 800 of (a) VD and (b) VU.
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where Γ is the thermal diffusivity and is written as fol-
lows:

Γ = μ

Pr : ð4Þ

4. Numerical Method

The finite volume technique (a commercial code, ANSYS-
FLUENT) is selected to solve the simulated problem of the baf-
fled duct. The important equations of the present prediction
are the continuity, the momentum, and the energy equations.
For the simulated settings, the continuity and the momentum
equations are discretized by the power law scheme, while the
energy equation is discretized by the QUICK scheme. The sim-
ulated solutions are considered to be converged when the nor-
malized residual data are lower than 10-5 for all variables but
lower than 10-9 for the energy equation.

Five important variables of the present investigation are
Reynolds number (Re), friction factor (f ), local Nusselt
number (Nux), average Nusselt number (Nu), and thermal
enhancement factor (TEF).

The Reynolds number is written as

Re = ρ�uDh

μ
: ð5Þ

The pressure loss in the baffled duct is reported by the
friction factor as

f = Δp/Lð ÞDh

1/2ð Þρ�u2 : ð6Þ

The forced convective heat transfer in the baffled duct is
assessed in terms of local Nusselt and averaged Nusselt
number which can be determined by Equations (8) and
(9), respectively.

q = kf
∂T
∂n

� �
,

hx =
q

Tw − T f
:

ð7Þ

Subscript w is the wall, f is the local fluid, and n is the
local coordinate normal to the wall.

Nux =
hxDh

k
, ð8Þ

Nu = 1
A

ð
Nux∂A: ð9Þ

The TEF is reported to describe the enhancement of the
Nusselt number and friction factor in the baffled duct at sim-
ilar pumping power. The TEF can be calculated as shown in

TEF = h
h0

����
pp

= Nu
Nu0

����
pp

= Nu
Nu0

� �
/ f

f0

� �1/3
: ð10Þ
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In Equation (10), Nu0 is the Nusselt number and f0 is the
friction factor of the smooth duct with no baffle.

5. Numerical Results

5.1. Validation of Numerical Results. The validation of the
numerical model of the baffled duct is divided into two parts:
(1) smooth duct validation (Nusselt number and friction fac-
tor) and (2) grid independence. For the smooth duct valida-
tion, the Nusselt number and the friction factor of the

present model are compared with the previously reported
correlation [23]. The Nusselt number and the friction factor
of the present research are in similar trends to the correla-
tion data. The deviations of the Nusselt number and the fric-
tion factor are within ±2% as depicted in Figure 2.

For the grid independence, the simulated model (VD, b
/H = s/H = 0:15) with different grid cells, 120000, 180000,
240000, and 360000, are compared. The Nusselt number
and the friction factor of the present model and correlation
data follow similar trends. The present values differ from
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Figure 7: Temperature contours in cross-sectional planes for the baffled duct with various b/H and s/H at Re = 800 of (a) VD and (b) VU.
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the correlation values within ±2% when the augmented grid
cell is higher than 180000. Thus, the simulated model is cre-
ated with grid cells around 180000 for all investigated cases.

From this section, it can be concluded that the simulated
model offers a reliable mean to study fluid flow and heat
transfer profiles.

5.2. Fluid Flow and Heat Transfer Profiles. The streamlines
in cross-sectional planes of the baffled duct with various s/
H and b/H ratios are shown in Figures 3(a) and 3(b), respec-
tively, for V-Downstream and V-Upstream directions. Gen-
erally, vortex flows are observed in all studied cases due to
the pressure difference between in front of and behind the
baffles (see Figure 4). The eight main vortex centers are
observed. The flow structure changes when s/H, b/H, and
flow directions are changed. There are two groups of the
vortex flows: (1) Vortex no. 1 (VT1) at the middle zone of
the cross-sectional plane and (2) Vortex no. 2 (VT2) at the
upper-lower zones of the cross-sectional plane (see
Figure 5). The VT1 helps with fluid mixing, while the VT2
disturbs the thermal boundary layer on heat transfer sur-
faces. When increasing s/H, the VT2 extends, but the VT1

contracts for both flow directions. When increasing b/H,
the VT2 slightly extends (see Figure 6).

Figures 7(a) and 7(b) show the temperature profiles in
cross-sectional planes in the baffled duct with different b/H
and s/H ratios for V-Downstream and V-Upstream, respec-
tively. In general, better fluid mixing is observed in all cases.
The disturbed thermal boundary layer is found near the
tested duct walls. The temperature profile changes when
the ratio of s/H and b/H and flow directions change. The
disturbed thermal boundary layer is clearly detected when
the b/H ratio increases. The disturbance of thermal bound-
ary layer plays an important role in enhancing heat transfer
coefficient.

Figures 8(a) and 8(b) show the local Nusselt number dis-
tributions on the baffled duct walls with various b/H and s/H
ratios for V-Downstream and V-Upstream, respectively. The
highest heat transfer coefficient is presented with the red
contour, while the reversed result is plotted with the blue
contour. The highest heat transfer coefficient is observed as
a result of the disturbed thermal boundary layer caused by
impinging flow. At similar s/H ratios, the local Nusselt num-
ber increases with an increase of baffle height. The b = 0:30H
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Figure 8: Local Nusselt number contours for the baffled duct with various b/H and s/H at Re = 800 of (a) VD and (b) VU.
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condition results in the highest heat transfer coefficient,
while the b = 0:05H condition results in the lowest coeffi-
cient. The heat transfer profile does not follow similar pat-
terns when changing the s/H ratio and the flow direction.

5.3. Thermal Performance Analysis. Figures 9–14 present the
thermal performance analysis in terms of Nu/Nu0, f /f0, and

TEF for the baffled duct with b = 0:05H, 0.10H, 0.15H,
0.20H, 0.25H, and 0.30H, respectively.

For the VD direction at Re = 2,000, the highest Nu/Nu0
is observed at s = 0:25H, 0.25H, 0.20H, 0.20H, 0.15-0.20H,
and 0.10H, and b = 0:05H, 0.10H, 0.15H, 0.20H, 0.25H,
and 0.30H, respectively. For the VU direction at Re = 2,000
, the highest Nu/Nu0 are obtained at s = 0:05H, except for
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b = 0:05H which the highest Nu/Nu0 is observed at s = 0:30
H. The Nusselt number of the baffled duct is found to be
1.19–15.55 and 1.04–15.07 times greater than the smooth
duct for both VD and VU directions, respectively.

For the VD direction at Re = 2,000, the maximum f /f0 is
found at s = 0:25H, 0.25H, 0.20H, 0.25H, 0.20H, and 0.15H
when b = 0:05H, 0.10H, 0.15H, 0.20H, 0.25H, and 0.30H,

respectively. For the VU direction at Re=2,000, the highest
f /f0 is found at s = 0:20 – 0:25H, 0.20H, 0.20H, 0.15H,
0.10H, and 0.05–0.10H when b = 0:05H, 0.10H, 0.15H,
0.20H, 0.25H, and 0.30H, respectively. In the studied condi-
tion, the friction factor of the baffled duct for the VD and
VU directions is 1.84–98.46 and 1.71–112.08 times, respec-
tively, greater than that of the plain duct.
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For the VD direction at Re = 2,000, the highest TEF of
the baffled duct is observed at s = 0:25H, 0.05H, 0.20H,
0.20H, 0.15H, and 0.10H when b = 0:05H, 0.10H, 0.15H,
0.20H, 0.25H, and 0.30H, respectively.

For the VU direction at Re = 2,000, the optimal TEF of is
observed at s = 0:05H, except for b = 0:05H which the high-

est TEF is observed at s = 0:30H. In addition, the maximum
TEF of 4.06 is found at Re = 2,000, b/H = 0:10, and s/H =
0:05 for the VU direction (see Figure 15).

The comparison between the numerical results from this
present study and those from previous works [24–27] is
shown in Figure 16. Figure 16(a) shows that the present
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Figure 13: Thermal performance analysis of b/H=0.25.
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Figure 14: Thermal performance analysis of b/H = 0:30.
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Figure 16: Continued.
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vortex generator provides lower heat transfer rate than the
V-orifice [27]. However, as shown in Figure 16(b), there is
lower friction loss generated by the present vortex generator
compared with the V-orifice [27]. Therefore, from
Figure 16(c), TEF of the present generator offers the best
thermal performance.

6. Conclusion

Numerical analysis on fluid flows and heat transfer profiles
in the baffled duct is presented. The effects of baffle height
(b/H = 0:05 – 0:30), baffle location (s/H = 0:05 – 0:40), and
flow directions (VD and VU) are examined in the laminar
flow regime (Re = 100 – 2,000). The main findings can be
concluded as follows.

The important mechanisms such as impinging flow, vor-
tex flow, and disturbed thermal boundary layer which help
to improve the heat transfer coefficient are observed in the
baffled duct. The flow and heat transfer profiles in the baffled
duct change when varying the ratios of s/H and b/H and
flow directions. The baffle location is a significant factor
for the variations of the flow and heat transfer mechanisms
in the baffled duct.

In the investigated range, the heat transfer rate and the
friction loss of the baffled duct are 1.04–15.55 and 1.71–

112.08 times, respectively, higher than the smooth duct with
no baffle. The TEF of the baffled duct ranges from 1.00 to
4.06, depending on the ratios of b/H and s/H, Re, and flow
directions.

The present baffle configuration has more stability than
the general V-shaped baffle with no V-bar and easy to install
and maintenance in heat exchanger systems. The present
baffle remains TEF and heat transfer coefficient close to the
general type of the V-shaped baffle.

Nomenclature

b: Baffle height, m
Dh: Hydraulic diameter of the duct, m
f: Friction factor
H: Square duct height, m
h: Convective heat transfer coefficient, W m-2 K-1

k: Thermal conductivity, W m-1 K-1

L: Numerical model length, m
Nu: Nusselt number (=hDh/k)
p: Static pressure, Pa
Re: Reynolds number
s: Gap spacing between upper/lower duct walls and

upper/lower baffle edges, m
T: Temperature, K
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Figure 16: Comparison with the previous works for (a) Nu/Nu0, (b) f /f0, and (c) TEF.
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�u: Mean velocity in channel, m s-1

W: Duct width, m.

Greek Letters

α: Flow attack angle, degree
TEF: Thermal enhancement factor
ρ: Density, kg m-3.

Subscript

0: Smooth square channel
pp: Pumping power
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