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This paper validates and analyzes the robustness of the proportional-integral-derivative (PID) action controller from an open
transfer function that integrates a proportional-integral (PI) action controller to obtain the response of a robust action control
during the automatic parking maneuver of a vehicle where the simulations are based on 3 adjustment methods: Ziegler-
Nichols (ZN), Chien-Hrones-Reswick (CHR), and Cohen-Coon (CC), and as a result of the computer simulations, it is
determined the best performance index of the PID controller represented by mathematical and graphic equations with the help
of MATLAB/Simulink software.

1. Introduction

The complexity of developing a robust control system [1, 2]
that performs adequately when deployed to a vehicle that
takes into account noises, disturbances, and adverse condi-
tions [3–5] is a recurrent task in the automotive industry
that is increasingly looking more for better solutions and
innovations. For the specific problem of aiding the auto-
matic parking maneuver, it is suitable to apply the PID con-
troller that must follow the designated trajectory [6].

1.1. Proposed Problem. For the problem proposed in Figure 1,
the transfer function aggregated by the PI controller and the
significant variables of the vehicle system are presented.

Table 1 describes the variables that comprise the transfer
function of the vehicle system, which allows the extension to
proportional-integral-derivative (PID) action controller
validation.

The parameters (values) highlighted in Table 1 are used
in the computational simulations [7, 8].

1.2. PID Controller Fundamentals. The industrial
proportional-integral-derivative (PID) action controller is a
control loop feedback technique widely used in control sys-

tems [9]. Feedback control systems [10] are a widely
deployed strategy to control the process variable by compar-
ing it to a desired value and applying the resulting difference
as an error signal to realize the control output in order to
reduce or eliminate the error [11, 12].

The proportional-integral-derivative (PID) controller
generates its output proportional to the error (P), propor-
tional to the integral of the error (I, integral term), and pro-
portional to the derivative of the error (D, derivative term),
considering the position of the parallel PID controller classic
[6, 9, 12]. Equation (1) of the algorithm is described below:

u tð Þ = KP e tð Þ + KP
1
TI

ð
e tð Þ dt + KP TD

d
dt

e tð Þ: ð1Þ

The block diagram characteristics of the PID controller
[12, 13] are represented in Figure 2.

The proportional gain also multiplies the integral and
derivative terms; the multiplicative factor (TD) is the time
derived from the controller, and the derivative action has
the function of anticipating the error resulting from the
action of the proportional-integral controller in order to
eliminate this potential error that is expected and guarantee
the stability of the system in less time [6, 11].
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2. Mathematical Modeling

The 3 tuning methods determined to calibrate the PID con-
troller are aimed at evaluating the best system performance
index based on the response from the identification of the
process frequency (reaction curve).

2.1. Ziegler-Nichols Method. The adjustment method for the
PID controller proposed by Ziegler and Nichols [14] is
mainly used in industries. This is a manual mode process
based on an open-loop step response from a system, and it
is indicated for a first-order plant model plus the dead time
represented by

G sð Þ = k
1 + sT

e−sL, ð2Þ

where L is the delay time, T is the time constant, and K
stands for the static gain of the controller. If the output
of the step response is measured through an experiment,
then the parameters K , L, and T (or a, where a = ðKL/TÞ)
can be extracted from the reaction curve graph. The calcu-
lation of the PID controller is based on the results of the
reaction curve proposed by Ziegler-Nichols [14, 15], as
shown in Table 2.

The values of KP, T I, and TD are ð1:2/aÞ, ð2LÞ, and ðL/2Þ,
respectively.

2.2. Chien-Hrones-Reswick Method. Derived from the origi-
nal Ziegler-Nichols open-loop method, the Chien-Hrones-
Reswick (CHR) method gives a faster response without over-
shoots and also with 20% [16, 17]; the adjustment parame-
ters are based on Table 3.

This method has the ability to adjust the set point and
the disturbance. To tune the controller according to the
CHR method, L and T parameters must be set [16].

2.3. Cohen-Coon Method. The Cohen-Coon (CC) tuning
technique [18] of the PID controller is based on the
Ziegler-Nichols method. The Ziegler-Nichols method pre-
sents a slow response at a steady state, whereas the Cohen-
Coon tuning method can overcome this limitation in the
parameter values for adjusting the PID controller [18, 19]
based on Table 4.

This method takes the parameters of the PID controller
and tries the open-loop transfer function. If there is a long
delay in the process in relation to the open-loop time con-
stant, it presents a better answer about the Ziegler-Nichols
method, and the three initial adjustment parameters are as
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Figure 1: Vehicle block diagram with a PID controller.

Table 1: Block diagram variables.

Variables Descriptions Values Units

m Mass of the vehicle 2.057 kg

R Wheel radius 0.3056 m

tauplant Time constant 0.10 s

Kplant Static plant gain 1 —

Tdist Torque disturbance 0.1 Nm

Vvehicle Vehicle speed — m/s

avehicle Vehicle acceleration — m/s2

ref Reference — —

s/ 1 + tDDFsð Þ Feedforward term — —

1/s Integrative constant — —

e tð Þ System error — —

aref Reference acceleration — m/s2

Tref Reference torque — Nm
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follows: steady output state (K), effective time constant of
the first-order response (s), and dead time (t) [20, 21].

3. Experimental Data Used in PI
Controller Simulation

From the block diagram proposed in Figure 1, the exit speed
and acceleration of the vehicle are estimated, and an
approach and simplification for the study of the transfer
function associated with the PI controller [22] responsible
for controlling the plant of a given vehicle are determined.
The plant’s open-loop [23] acceleration transfer function is
referred to as GðsÞ, according to

G sð Þ =
m
R

+ Tdist
� � R

m

Kplant
1 + s tauplant

 !
: ð3Þ

Using theMATLAB software [24] and replacing the values
in Table 1 in the plant transfer function, the resolution of the
transfer function description in Equation (4) is presented:

G sð Þ =
1:003

0:1 s + 1 : ð4Þ

The current simulator is controlled by a proportional-
integral (PI) action designed withminimum proportional gain
(KPmini = 2) and minimum integrative gain (TImini = 1) and
maximum proportional gain ðKPmax = 2Þ and maximum inte-
grative gain (T Imax = 3). The plant operates with minimum
gain (Kplant = 1) and maximum gain (Kplant = 3). The open-
loop acceleration transfer function [25] after the step signal
is applied has the following behavior, as shown in Figure 3.

The first step was to consider all the minimum values of
the plant in the open loop and the PI controller gain, as
shown in Figure 3.

The resolution was presented by MATLAB [26], where
the PI controller obtained the following transfer function,
according to

GP sð Þ =
2s + 2
s

: ð5Þ

The output variables do not track input variables;
however, the system is not controlled by the proposed
proportional-integral (PI) controller output that does not
have the desired gain. When considering a closed loop, the
acceleration and velocity [27] responses are, respectively,
shown in Figure 4.

The acceleration (Figure 4(a)) shows a fast output signal
in relation to time, but at no time is it stable. This directly
influences the behavior of the velocity signal (Figure 4(b));
therefore, it does not guarantee any stability in the system.

The second step was to consider all the maximum values
of the gain of the plant and the PI controller: in this case, the
open-loop transfer function [28] is represented by

G sð Þ =
3:003

0:1 s + 1 : ð6Þ

The open-loop acceleration transfer function after the
step signal [29] is applied has the following behavior, as
shown in Figure 5.

The resolution was presented by MATLAB, where the PI
controller [30] obtained the following transfer function,
according to

GP sð Þ =
6s + 2
3s : ð7Þ

When considering a closed loop, the acceleration and
velocity responses are, respectively, shown in Figure 6.

The output variables do not track input variables;
however, the system is not controlled by the proposed
proportional-integral (PI) controller output that does not
have the desired gain.

3.1. Considerations. In this case, the output of the closed-
loop PI controller is similar to that of the open-loop system
response for the minimum and maximum gains of the
controller, as shown in Figures 3–6; the acceleration
(Figure 6(a)) does not present an adequate output, with sud-
den changes in relation to time. The speed (Figure 6(b)) is
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Figure 2: PID controller features.

Table 2: Controller parameters for the Ziegler-Nichols method.

Controller type KP TI TD

P
T
KL

∞ 0

PI 0:9 T
KL

L
0:3 0

PID 1:2 T
KL

2L 0:5L
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not constant in relation to the estimated time. Both variables
do not perform satisfactorily; this reflects the lack of control
of the system.

4. Results: Experimental Data Used in PID
Controller Simulation

For proper control of the vehicle plant, the system must be
considered a closed loop; the PID controller [31] calculation
is based on Table 2 proposed by Ziegler-Nichols (ZN), where
the PID controller gains are found, respectively.

4.1. Minimum Plant Gain (ZN). From Equation (3), the
minimum plant gain ðKplant = 1Þ was replaced together with
the parameters of Tables 1 and 2 with the help of MATLAB

software; the values of L, tau, and T are obtained; however,
the PID controller is represented by

GP sð Þ =
0:001157s2 + 0:2512s + 13:64

0:01842s : ð8Þ

The PID controller output can be evaluated by the reac-
tion curve method; the system is excited by a step input sig-
nal, as shown in Figure 7.

The output of the PID controller (reference acceleration)
starts to be identified from the amplitude (gain K = 0, 5). At
gain K = 1, the controller output has an overshoot and a low
stationary error, and at time 0.1 s, the system starts to stabi-
lize. The acceleration response and vehicle speed, respec-
tively, are shown in Figure 8.
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Figure 3: Reaction curve or aref tangent line in open-loop PI (1).

Table 3: Controller parameters for the Chien-Hrones-Reswick method.

Controller type
With 0% overshoot With 20% overshoot

KP TI TD KP TI TD

PID
0:6
a

T 0:5L 0:95
a

1:4T 0:47L

Table 4: Controller parameters for the Cohen-Coon method.

Controller type KP T I TD

PID
1:35T
KL

1 + 0:18τ
1 − τ

� �
2:5 − 2τ
1 − 0:39τ L

0:37 − 0:37τ
1 − 0:81τ L
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Compared to the response of the PI controller, the
results of the PID controller are better and guarantee stabil-
ity in the system.

4.2. Maximum Plant Gain (ZN). From Equation (3), the
maximum plant gain ðKplant = 3Þ was replaced together with

the parameters of Tables 1 and 2 with the help of MATLAB
software; the values of L, tau, and T are obtained; however,
the PID controller is represented by

GP sð Þ =
0:0003855s2 + 0:08374s + 4:547

0:01842s : ð9Þ
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Figure 4: Vehicle acceleration (a) and velocity (b) responses, respectively, in PI (1).
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Figure 5: Reaction curve or aref tangent line in open-loop PI (3).
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The PID controller output can be evaluated by the reac-
tion curve method; the system is excited by a step input sig-
nal, as shown in Figure 9.

The PID controller output signal (reference acceleration)
does not reach the desired gain (K = 3) to stabilize the sys-
tem; in this case, it produces a large stationary error [32,
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Figure 6: Vehicle acceleration (a) and speed (b) responses, respectively, in PI (3).
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33] and consequently instability in the system. The behavior
of the acceleration response and vehicle speed, respectively,
is shown in Figure 10.

The acceleration output signal initially presents an over-
shoot during the time of 0.1 s and an acceleration of 1.1m/s2

and a low stationary error; then, the system is controlled
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Figure 8: Acceleration (a) and vehicle velocity (b), respectively, in closed-loop PID-ZN (1).
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[34]. The speed output signal relates to time, and each sec-
ond tends to increase.

4.3. Minimum Plant Gain (CHR). The PID controller calcu-
lation is based on Table 3 proposed by Chien-Hrones-

Reswick (CHR), where the PID controller gains are found,
respectively, to be no response overshoot (0%); from
Equation (3), the minimum plant gain ðKplant = 1Þ was
replaced together with the parameters of Tables 1 and 3
with the help of MATLAB software; the values of L, tau,
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Figure 10: Acceleration (a) and vehicle speed (b), respectively, in closed-loop PID-ZN (3).
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and T are obtained; however, the PID controller is repre-
sented by

GP sð Þ =
0:003287s2 + 0:7139s + 6:821

0:1047s : ð10Þ

The PID controller output can be evaluated by the
reaction curve method; the system is excited by a step
input signal, as shown in Figure 11.

The PID controller does not track input variables, which
makes the system slow and uncontrolled; the behavior of the
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Figure 12: Vehicle acceleration (a) and speed (b) responses, respectively, in PID-CHR (1).
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acceleration response and vehicle speed, respectively, is
shown in Figure 12.

The acceleration and velocity apparently have an ade-
quate output, but in this case, the controller takes a long time
to respond and this can cause instability in the system.

With 20% of the overshoot in response, the PID control-
ler calculation is based on Table 3 proposed by Chien-
Hrones-Reswick (CHR), where the PID controller gains are
found, respectively. From Equation (3), the minimum plant
gain ðKplant = 1Þ was replaced together with the parameters
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Figure 14: Vehicle acceleration (a) and speed (b) responses, respectively, in PID-CHR (20%) (1).
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of Tables 1 and 3 with the help of MATLAB software; the
values of L, tau, and T are obtained; however, the PID con-
troller is represented by

GP sð Þ =
0:006849s2 + 1:583s + 10:8

0:1465s : ð11Þ

The PID controller output can be evaluated by the reac-
tion curve method; the system is excited by a step input sig-
nal, as shown in Figure 13.

The output signal from the PID controller (reference
acceleration) reaches the recommended gain; in this case, it
does not produce a large stationary error and consequently
stabilizes the system from the time of 0.28 s; the behavior
of the acceleration response and vehicle velocity, respec-
tively, is shown in Figure 14.

Acceleration response and velocity perform well, and
this is due to the stable control of the system.

4.4. Maximum Plant Gain (CHR). The PID controller calcu-
lation is based on Table 3 proposed by Chien-Hrones-

1.2

1.1

1

0.9

0.8

0.7a ve
h

0.6

0.5

0.4

0.2

0.3

0.2 0.4
Time (s)

Step response

0.60

(a)

1.2

1

0.8

V
ve

h

0.6

0.4

0.2

0
0.2 0.4

Time (s)

Step response

0.60

(b)

Figure 16: Vehicle acceleration (a) and speed (b) responses, respectively, in PID-CHR (3).
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Reswick (CHR), where the PID controller gains are found,
respectively, to be no response overshoot (0%); from Equa-
tion (3), the maximum plant gain ðKplant = 3Þ was replaced
together with the parameters of Tables 1 and 3 with the help
of MATLAB software; the values of L, tau, and T are
obtained; however, the PID controller is represented by

GP sð Þ =
0:001096s2 + 0:238s + 2:274

0:1047s : ð12Þ

The PID controller output can be evaluated by the reac-
tion curve method; the system is excited by a step input sig-
nal, as shown in Figure 15.

The system was not controlled due to the fact that the
PID controller output does not track its input in this sam-
pling time; the behavior of the acceleration response and
vehicle speed, respectively, is shown in Figure 16.

The acceleration and velocity apparently have an ade-
quate output, but in this case, the controller takes a long time
to respond and this can cause instability in the system.
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Figure 18: Vehicle acceleration (a) and speed (b) responses, respectively, in PID-CHR (20%) (3).

0 0.1 0.2 0.3
Time (s)

0

0.2

0.

0.6

A
m

pl
itu

de

0.8

Tangent line graph aref

1

1.2

0.4 0.5 0.6 0.7

Reaction curve
Tangent line

Tangential point
Plant gain (k)

Figure 19: Reaction curve or aref tangent line in closed-loop PID-CC (1).

12 Modelling and Simulation in Engineering



With 20% of the overshoot in response, the PID control-
ler calculation is based on Table 3 proposed by Chien-
Hrones-Reswick (CHR), where the PID controller gains are
found, respectively. From Equation (3), the maximum plant
gain ðKplant = 3Þ was replaced together with the parameters
of Tables 1 and 3 with the help of MATLAB software; the
values of L, tau, and T are obtained; however, the PID con-
troller is represented by

GP sð Þ =
0:002283s2 + 0:5275s + 3:6

0:1465s : ð13Þ

The PID controller output can be evaluated by the reac-
tion curve method; the system is excited by a step input sig-
nal, as shown in Figure 17.

The PID controller (reference acceleration) does not
reach the recommended gain, and it creates an interval
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Figure 20: Vehicle acceleration (a) and speed (b) responses, respectively, in PID-CC (1).
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Figure 21: Reaction curve or aref tangent line in closed-loop PID-CC (3).
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between the input and output variables, which produces a
large stationary error at all times; the system is not stable.
The behavior of the acceleration response and vehicle veloc-
ity, respectively, is shown in Figure 18.

The system is not controlled; the controller takes a long
time to respond. The acceleration and speed apparently have
an adequate output.

4.5. Minimum Plant Gain (CC). The PID controller calcula-
tion is based on Table 4 proposed by Cohen-Coon (CC),
where the PID controller gains are found, respectively. From
Equation (3), the minimum plant gain ðKplant = 1Þ was
replaced together with the parameters of Tables 1 and 4 with
the help of MATLAB software; the values of L, tau, and T are
obtained; however, the PID controller is represented by

GP sð Þ =
0:001161s2 + 0:3466s + 15:59

0:02223s : ð14Þ

The PID controller output can be evaluated by the reac-
tion curve method; the system is excited by a step input sig-
nal, as shown in Figure 19.

The system was not controlled because the PID control-
ler does not track its input in this sampling time; the behav-
ior of the acceleration response and vehicle speed,
respectively, is shown in Figure 20.

For this sampling time, the PID controller response is
slow, and this causes instability in the system.

4.6. Maximum Plant Gain (CC). From Equation (3), the
maximum plant gain ðKplant = 3Þ was replaced together with
the parameters of Tables 1 and 4 with the help of MATLAB
software; the values of L, tau, and T are obtained; the PID
controller is represented by

GP sð Þ =
0:0003871s2 + 0:1155s + 5:196

0:02223s : ð15Þ

The PID controller output can be evaluated by the reac-
tion curve method; the system is excited by a step input sig-
nal, as shown in Figure 21.

The system was not controlled because the PID control-
ler output does not track its input in this sampling time. The
behavior of the acceleration response and vehicle speed,
respectively, is shown in Figure 22.

Apparently, the acceleration response and vehicle speed
are great, and it is notable that the controller output takes
a long time to respond (Figure 21), which makes the system
uncontrollable.

5. Performance Index of the PID Controller

The Ziegler-Nichols and Chien-Hrones-Reswick (20%) tun-
ing methods are the most indicated to be used in helping
maneuver the vehicle system.

Some performance indexes, such as overshoot (MO), set-
tling time (ts), and rise time (tr), can evaluate the perfor-
mance of the controller in the system. Table 5 shows the
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Figure 22: Vehicle acceleration (a) and speed (b) responses, respectively, in PID-CC (3).

Table 5: Transient response to a single-step entry.

PID controller Overshoot MO (%) Settling time ts (s) Rise time tr (s) Peak amplitude

Ziegler-Nichols 11:100 0:073 0:015 1:110
Chien-Hrones-Reswick (20%) 0 0:128 0:035 0:999
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performance of the tuning method of the PID controller
based on the results of the simulations already highlighted.

These values were extracted from the PID controller
response of Figure 7 (Ziegler-Nichols) and Figure 13
(Chien-Hrones-Reswick (20%)), both responses with mini-
mum plant gain, that is, Kplant = 1. The performance index
of the Ziegler-Nichols tuning method has an overshoot, a
shorter settling time and a shorter rise time, and a greater
amplitude than the desired amplitude it is considered. The
performance index of the Chien-Hrones-Reswick (20%) tun-
ing method has the opposite response, that is, desired ampli-
tude, no overshoot, and larger settling and larger rise time.
Both answers are acceptable because the PID controller
showed stability even with time variation.

6. Discussion and Final Considerations

PI controller does not recognize its output variables to esti-
mate its input values in order to have proper control of the
vehicle system during the parking maneuver; the proposed
PID controller guarantees stability in the system and clas-
sifies the operation action as robust according to the simula-
tions presented, highlighting the 2 best tuning methods (ZN
and CHR (20%)), both with minimal system gains (ZN
method: aggressive tuning method but with tune adjust-
ments, better control of the system achieved, and small
values of settling time; CHR method (20% over value): faster
system response with 20% over value and higher value
requirement of settling time). However, the PID controller
is recommended to control the parking maneuver assistance
system integrated into the vehicle.
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